Instructors: Randy H. Katz David A. PaHerson hhp://inst.eecs.berkeley.edu/~cs61c/fa10. Fall Lecture #9. Agenda

Size: px
Start display at page:

Download "Instructors: Randy H. Katz David A. PaHerson hhp://inst.eecs.berkeley.edu/~cs61c/fa10. Fall Lecture #9. Agenda"

Transcription

1 CS 61C: Great Ideas in Computer Architecture (Machine Structures) Instructors: Randy H. Katz David A. PaHerson hhp://inst.eecs.berkeley.edu/~cs61c/fa10 Fall Lecture #9 1 Agenda InstrucTon Stages Revisited Administrivia Technology Break Rise of the Warehouse- Scale Computer Fall Lecture #9 2 1

2 Agenda InstrucTon Stages Revisited Administrivia Technology Break Rise of the Warehouse- Scale Computer Fall Lecture #9 3 InstrucTon Level Parallelism P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8 P 9 P 10 P 11 P 12 Instr 1 IF ID ALU MEM WR Instr 2 IF ID ALU MEM WR IF ID ALU MEM WR Instr 3 IF ID ALU MEM WR Instr 4 Instr 5 Instr 6 Instr 7 Instr 8 IF ID ALU MEM WR IF ID ALU MEM WR IF ID ALU MEM WR IF ID ALU MEM WR IF ID ALU MEM WR Fall Lecture #8 4 2

3 Conceptual MIPS Datapath Fall Lecture #9 5 Stages of the Datapath (1/5) There is a wide variety of MIPS instructons: so what general steps do they have in common? Stage 1: Instruc(on Fetch No maher what the instructon, the 32- bit instructon word must first be fetched from memory (the cache- memory hierarchy) Also, this is where we Increment PC (that is, PC = PC + 4, to point to the next instructon: byte addressing so + 4) Fall Lecture #8 6 3

4 Stages of the Datapath (2/5) Stage 2: Instruc(on Decode Upon fetching the instructon, we next gather data from the fields (decode all necessary instructon data) First, read the opcode to determine instructon type and field lengths Second, read in data from all necessary registers For add, read two registers For addi, read one register For jal, no reads necessary Fall Lecture #8 7 Stages of the Datapath (3/5) Stage 3: ALU (ArithmeTc- Logic Unit) Real work of most instructons is done here: arithmetc (+, -, *, /), shihing, logic (&, ), comparisons (slt) What about loads and stores? lw $t0, 40($t1) Address we are accessing in memory = the value in $t1 PLUS the value 40 So we do this additon in this stage Fall Lecture #8 8 4

5 Stages of the Datapath (4/5) Stage 4: Memory Access Actually only the load and store instructons do anything during this phase; the others remain idle during this phase or skip it all together Since these instructons have a unique step, we need this extra phase to account for them As a result of the cache system, this phase is expected to be fast Fall Lecture #8 9 Stages of the Datapath (5/5) Stage 5: Register Write Most instructons write the result of some computaton into a register E.g.,: arithmetc, logical, shihs, loads, slt What about stores, branches, jumps? Don t write anything into a register at the end These remain idle during this fihh phase or skip it all together Fall Lecture #8 10 5

6 Latency: the Tme to access first item Bandwidth: # of items accessed per unit Tme Historically, bandwidth has improved much faster than latency Why? Limits to Performance: Latency vs. Bandwidth Bandwidth improves faster than latency Latency improves faster than bandwidth Fall Lecture #8 11 Latency vs. Bandwidth: Physical Analogy Time to first drop Time to fill glass Water per Tme Water Tank Glass Glass Length and diameter of pipes affects latency and bandwidth Fall Lecture #8 12 6

7 Latency vs. Bandwidth: Which is Faster? SD SF, 1 Truck, 10 hours, 1000 by 1 TByte Disks (1 PByte) Time to first byte: Time to last byte: Bandwidth: SD SF, 100 gbps fiber link (10 GB per sec) Time to first byte: Time to last byte: Bandwidth: Fall Lecture #8 13 Latency vs. Bandwidth: Which is Faster? SD SF, 1 Truck, 10 hours, 1000 by 1 TByte Disks (1 PByte) Time to first byte: 10 hours Time to last byte: 10 hours Bandwidth: 100 TBytes/hr (222 Gbps) SD SF, 100 Gbps fiber link (10 GB per sec) Time to first byte: 2.6 ms (speed of 500 mi!) Time to last byte: 28 hours Bandwidth: 10 GB/s Fall Lecture #8 14 7

8 Agenda Stages of an InstrucTon Revisited Administrivia Technology Break Rise of the Warehouse- Scale Computer Fall Lecture #9 15 Administrivia Due dates for Project 2/First Part (Saturday, 18 September) and Project 2/Second Part (Saturday, 25 September) Midterm ExaminaTon, 6 October, 6-9 PM, 1 Pimentel Fall Lecture #9 16 8

9 Agenda Stages of an InstrucTon Revisited Administrivia Technology Break Rise of Warehouse- Scale Computers Fall Lecture #9 17 Agenda Stages of an InstrucTon Revisited Administrivia Technology Break Rise of Warehouse- Scale Computers Fall Lecture #9 18 9

10 Growth in Access Devices Fall Lecture #9 19 The ARM Inside the iphone Fall Lecture #

11 iphone Innards 1 GHz ARM Cortex A8 Fall Lecture #8 21 E.g., Google s Oregon Datacenter Fall Lecture #

12 Energy ProporTonal CompuTng The Case for Energy- ProporTonal CompuTng, Luiz André Barroso, Urs Hölzle, IEEE Computer December 2007 It is surprisingly hard to achieve high levels of utlizaton of typical servers (and your home PC or laptop is even worse) Figure 1. Average CPU utlizaton of more than 5,000 servers during a six- month period. Servers are rarely completely idle and seldom operate near their maximum utlizaton, instead operatng Fall Lecture #9 most of the Tme at between 10 and 50 percent of their maximum 24 Energy ProporTonal CompuTng The Case for Energy- ProporTonal CompuTng, Luiz André Barroso, Urs Hölzle, IEEE Computer December 2007 Doing nothing well NOT! Energy Efficiency = UTlizaTon/Power Figure 2. Server power usage and energy efficiency at varying utlizaton levels, from idle to peak performance. Even an energy- efficient server stll consumes about half its full power when doing virtually no work. Fall Lecture #

13 Energy ProporTonal CompuTng The Case for Energy- ProporTonal CompuTng, Luiz André Barroso, Urs Hölzle, IEEE Computer December 2007 CPU energy improves, but what about the rest of the server architecture? Figure 3. CPU contributon to total server power for two generatons of Google servers at peak performance (the first two bars) and Fall 2010 for the - - Lecture later generaton #9 at idle (the rightmost bar). 26 Energy ProporTonal CompuTng The Case for Energy- ProporTonal CompuTng, Luiz André Barroso, Urs Hölzle, IEEE Computer December 2007 Doing nothing VERY well Design for wide dynamic power range and ac(ve low power modes Energy Efficiency = UTlizaTon/Power Figure 4. Power usage and energy efficiency in a more energy- proportonal server. This server has a power efficiency of more than 80 percent of its peak value for utlizatons of 30 percent and above, with efficiency remaining above 50 percent for utlizaton levels as low as 10 percent. Fall Lecture #

14 Energy Use In Datacenters Datacenter Energy Overheads Fall Lecture #9 28 Michael PaHerson, Intel LBNL Datacenter Power Peak Power % Fall Lecture #

15 Nameplate vs. Actual Peak Component CPU Memory Disk PCI Slots Mother Board Fan System Total Peak Power 40 W 9 W 12 W 25 W 25 W 10 W Count Total 80 W 36 W 12 W 50 W 25 W 10 W 213 W Nameplate peak Measured Peak 145 W (Power- intensive workload) In Google s world, for given DC power budget, deploy as many machines as possible X. Fan, W- D Weber, L. Barroso, Power Provisioning for a Fall Lecture #9 Warehouse- sized Computer, ISCA 07, San Diego, (June 2007). 32 Server Innards Fall Lecture #

16 Server Internals Fall Lecture #8 34 Server Internals Google Server Fall Lecture #

17 Summary Five Stages/Phases of an InstrucTon InstrucTon Fetch (IF) InstrucTon Decode (ID) Execute (ALU) Memory (MEM) Write Results (WR) Bandwidth vs. Latency Easier to increase bandwidth than reduce latency Rise of the Warehouse- Scale Computer Energy ProporTonal CompuTng Power (WaHs), Energy (Power x Time, WaH- hours) Subject to responsiveness goals, drive nodes to higher utlizaton to achieve beher energy efficiency Fall Lecture #

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 27: Single- Cycle CPU Datapath Design

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 27: Single- Cycle CPU Datapath Design CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 27: Single- Cycle CPU Datapath Design Instructor: Sr Lecturer SOE Dan Garcia hgp://inst.eecs.berkeley.edu/~cs61c/sp13/ www.technologyreview.com/news/512891/software-makes-multiple-screens-less-distracting/

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #18 Introduction to CPU Design 2007-7-25 Scott Beamer, Instructor CS61C L18 Introduction to CPU Design (1) What about overflow? Consider

More information

CS3350B Computer Architecture Winter 2015

CS3350B Computer Architecture Winter 2015 CS3350B Computer Architecture Winter 2015 Lecture 5.5: Single-Cycle CPU Datapath Design Marc Moreno Maza www.csd.uwo.ca/courses/cs3350b [Adapted from lectures on Computer Organization and Design, Patterson

More information

Truth Table! Review! Use this table and techniques we learned to transform from 1 to another! ! Gate Diagram! Today!

Truth Table! Review! Use this table and techniques we learned to transform from 1 to another! ! Gate Diagram! Today! CS61C L17 Combinational Logic Blocks and Intro to CPU Design (1)! inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 17 Combinational Logic Blocks and Intro to CPU Design 2010-07-20!!!Instructor

More information

UC Berkeley CS61C : Machine Structures

UC Berkeley CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C : Machine Structures Lecture 24 Introduction to CPU Design 2007-03-14 CS61C L24 Introduction to CPU Design (1) Lecturer SOE Dan Garcia www.cs.berkeley.edu/~ddgarcia

More information

A Computer Scientist Looks at the Energy Problem

A Computer Scientist Looks at the Energy Problem A Computer Scientist Looks at the Energy Problem Randy H. Katz University of California, Berkeley EECS BEARS Symposium February 12, 2009 Energy permits things to exist; information, to behave purposefully.

More information

Clever Signed Adder/Subtractor. Five Components of a Computer. The CPU. Stages of the Datapath (1/5) Stages of the Datapath : Overview

Clever Signed Adder/Subtractor. Five Components of a Computer. The CPU. Stages of the Datapath (1/5) Stages of the Datapath : Overview Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 24 Introduction to CPU design Hi to Vitaly Babiy from Albany, NY! 2008-03-21 Stanford researchers developing

More information

CS 61C: Great Ideas in Computer Architecture. MIPS CPU Datapath, Control Introduction

CS 61C: Great Ideas in Computer Architecture. MIPS CPU Datapath, Control Introduction CS 61C: Great Ideas in Computer Architecture MIPS CPU Datapath, Control Introduction Instructor: Alan Christopher 7/28/214 Summer 214 -- Lecture #2 1 Review of Last Lecture Critical path constrains clock

More information

Instructors: Randy H. Katz David A. PaHerson hhp://inst.eecs.berkeley.edu/~cs61c/fa10. Fall Lecture #1. Agenda

Instructors: Randy H. Katz David A. PaHerson hhp://inst.eecs.berkeley.edu/~cs61c/fa10. Fall Lecture #1. Agenda CS 61C: Great Ideas in Computer Architecture (Machine Structures) Instructors: Randy H. Katz David A. PaHerson hhp://inst.eecs.berkeley.edu/~cs61c/fa10 1 Agenda Great Ideas in Computer Architecture Administrivia

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures)

CS 61C: Great Ideas in Computer Architecture (Machine Structures) CS 6C: Great Ideas in Computer Architecture (Machine Structures) Instructors: Randy H Katz David A PaHerson hhp://insteecsberkeleyedu/~cs6c/fa Direct Mapped (contnued) - Interface CharacterisTcs of the

More information

3/12/2014. Single Cycle (Review) CSE 2021: Computer Organization. Single Cycle with Jump. Multi-Cycle Implementation. Why Multi-Cycle?

3/12/2014. Single Cycle (Review) CSE 2021: Computer Organization. Single Cycle with Jump. Multi-Cycle Implementation. Why Multi-Cycle? CSE 2021: Computer Organization Single Cycle (Review) Lecture-10b CPU Design : Pipelining-1 Overview, Datapath and control Shakil M. Khan 2 Single Cycle with Jump Multi-Cycle Implementation Instruction:

More information

CS61C : Machine Structures

CS61C : Machine Structures inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture #22 CPU Design: Pipelining to Improve Performance II 2007-8-1 Scott Beamer, Instructor CS61C L22 CPU Design : Pipelining to Improve Performance

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Caches Part 3

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Caches Part 3 CS 61C: Great Ideas in Computer Architecture (Machine Structures) Caches Part 3 Instructors: Bernhard Boser & Randy H. Katz http://inst.eecs.berkeley.edu/~cs61c/ 10/24/16 Fall 2016 - Lecture #16 1 Software

More information

Computer Architecture

Computer Architecture Computer Architecture An Introduction Virendra Singh Associate Professor Computer Architecture and Dependable Systems Lab Department of Electrical Engineering Indian Institute of Technology Bombay http://www.ee.iitb.ac.in/~viren/

More information

CS 61C: Great Ideas in Computer Architecture Datapath. Instructors: John Wawrzynek & Vladimir Stojanovic

CS 61C: Great Ideas in Computer Architecture Datapath. Instructors: John Wawrzynek & Vladimir Stojanovic CS 61C: Great Ideas in Computer Architecture Datapath Instructors: John Wawrzynek & Vladimir Stojanovic http://inst.eecs.berkeley.edu/~cs61c/fa15 1 Components of a Computer Processor Control Enable? Read/Write

More information

Agenda. Old School CS61c. Agenda. New School CS61c 8/26/10. CS 61C: Great Ideas in Computer Architecture (Machine Structures)

Agenda. Old School CS61c. Agenda. New School CS61c 8/26/10. CS 61C: Great Ideas in Computer Architecture (Machine Structures) Agenda CS 61C: Great Ideas in Computer Architecture (Machine Structures) Instructors: Randy H. Katz David A. PaHerson hhp://inst.eecs.berkeley.edu/~cs61c/fa10 1 Great Ideas in Computer Architecture Administrivia

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Warehouse-Scale Computing

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Warehouse-Scale Computing CS 61C: Great Ideas in Computer Architecture (Machine Structures) Warehouse-Scale Computing Instructors: Nicholas Weaver & Vladimir Stojanovic http://inst.eecs.berkeley.edu/~cs61c/ Coherency Tracked by

More information

CS 61C: Great Ideas in Computer Architecture. Lecture 13: Pipelining. Krste Asanović & Randy Katz

CS 61C: Great Ideas in Computer Architecture. Lecture 13: Pipelining. Krste Asanović & Randy Katz CS 61C: Great Ideas in Computer Architecture Lecture 13: Pipelining Krste Asanović & Randy Katz http://inst.eecs.berkeley.edu/~cs61c/fa17 RISC-V Pipeline Pipeline Control Hazards Structural Data R-type

More information

CS 61C: Great Ideas in Computer Architecture Direct- Mapped Caches. Increasing distance from processor, decreasing speed.

CS 61C: Great Ideas in Computer Architecture Direct- Mapped Caches. Increasing distance from processor, decreasing speed. CS 6C: Great Ideas in Computer Architecture Direct- Mapped s 9/27/2 Instructors: Krste Asanovic, Randy H Katz hdp://insteecsberkeleyedu/~cs6c/fa2 Fall 2 - - Lecture #4 New- School Machine Structures (It

More information

Pipelining. CSC Friday, November 6, 2015

Pipelining. CSC Friday, November 6, 2015 Pipelining CSC 211.01 Friday, November 6, 2015 Performance Issues Longest delay determines clock period Critical path: load instruction Instruction memory register file ALU data memory register file Not

More information

Instructors: Randy H. Katz David A. PaGerson hgp://inst.eecs.berkeley.edu/~cs61c/fa10. 10/4/10 Fall Lecture #16. Agenda

Instructors: Randy H. Katz David A. PaGerson hgp://inst.eecs.berkeley.edu/~cs61c/fa10. 10/4/10 Fall Lecture #16. Agenda CS 61C: Great Ideas in Computer Architecture (Machine Structures) Instructors: Randy H. Katz David A. PaGerson hgp://inst.eecs.berkeley.edu/~cs61c/fa10 1 Agenda Cache Sizing/Hits and Misses Administrivia

More information

Computer Science 61C Spring Friedland and Weaver. The MIPS Datapath

Computer Science 61C Spring Friedland and Weaver. The MIPS Datapath The MIPS Datapath 1 The Critical Path and Circuit Timing The critical path is the slowest path through the circuit For a synchronous circuit, the clock cycle must be longer than the critical path otherwise

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Caches Part 3

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Caches Part 3 CS 61C: Great Ideas in Computer Architecture (Machine Structures) Caches Part 3 Instructors: Krste Asanović & Randy H. Katz http://inst.eecs.berkeley.edu/~cs61c/ 10/19/17 Fall 2017 - Lecture #16 1 Parallel

More information

COMPUTER ORGANIZATION AND DESI

COMPUTER ORGANIZATION AND DESI COMPUTER ORGANIZATION AND DESIGN 5 Edition th The Hardware/Software Interface Chapter 4 The Processor 4.1 Introduction Introduction CPU performance factors Instruction count Determined by ISA and compiler

More information

EITF20: Computer Architecture Part2.2.1: Pipeline-1

EITF20: Computer Architecture Part2.2.1: Pipeline-1 EITF20: Computer Architecture Part2.2.1: Pipeline-1 Liang Liu liang.liu@eit.lth.se 1 Outline Reiteration Pipelining Harzards Structural hazards Data hazards Control hazards Implementation issues Multi-cycle

More information

10/19/17. You Are Here! Review: Direct-Mapped Cache. Typical Memory Hierarchy

10/19/17. You Are Here! Review: Direct-Mapped Cache. Typical Memory Hierarchy CS 6C: Great Ideas in Computer Architecture (Machine Structures) Caches Part 3 Instructors: Krste Asanović & Randy H Katz http://insteecsberkeleyedu/~cs6c/ Parallel Requests Assigned to computer eg, Search

More information

Topics. CIT 470: Advanced Network and System Administration. Google DC in The Dalles. Google DC in The Dalles. Data Centers

Topics. CIT 470: Advanced Network and System Administration. Google DC in The Dalles. Google DC in The Dalles. Data Centers CIT 470: Advanced Network and System Administration Data Centers Topics Data Center: A facility for housing a large amount of computer or communications equipment. 1. Racks 2. Power 3. PUE 4. Cooling 5.

More information

MIPS Pipelining. Computer Organization Architectures for Embedded Computing. Wednesday 8 October 14

MIPS Pipelining. Computer Organization Architectures for Embedded Computing. Wednesday 8 October 14 MIPS Pipelining Computer Organization Architectures for Embedded Computing Wednesday 8 October 14 Many slides adapted from: Computer Organization and Design, Patterson & Hennessy 4th Edition, 2011, MK

More information

EITF20: Computer Architecture Part2.2.1: Pipeline-1

EITF20: Computer Architecture Part2.2.1: Pipeline-1 EITF20: Computer Architecture Part2.2.1: Pipeline-1 Liang Liu liang.liu@eit.lth.se 1 Outline Reiteration Pipelining Harzards Structural hazards Data hazards Control hazards Implementation issues Multi-cycle

More information

CS 61C: Great Ideas in Computer Architecture. Direct Mapped Caches

CS 61C: Great Ideas in Computer Architecture. Direct Mapped Caches CS 61C: Great Ideas in Computer Architecture Direct Mapped Caches Instructor: Justin Hsia 7/05/2012 Summer 2012 Lecture #11 1 Review of Last Lecture Floating point (single and double precision) approximates

More information

Agenda. Recap: Adding branches to datapath. Adding jalr to datapath. CS 61C: Great Ideas in Computer Architecture

Agenda. Recap: Adding branches to datapath. Adding jalr to datapath. CS 61C: Great Ideas in Computer Architecture /5/7 CS 6C: Great Ideas in Computer Architecture Lecture : Control & Operating Speed Krste Asanović & Randy Katz http://insteecsberkeleyedu/~cs6c/fa7 CS 6c Lecture : Control & Performance Recap: Adding

More information

The University of Alabama in Huntsville Electrical & Computer Engineering Department CPE Test II November 14, 2000

The University of Alabama in Huntsville Electrical & Computer Engineering Department CPE Test II November 14, 2000 The University of Alabama in Huntsville Electrical & Computer Engineering Department CPE 513 01 Test II November 14, 2000 Name: 1. (5 points) For an eight-stage pipeline, how many cycles does it take to

More information

EITF20: Computer Architecture Part2.2.1: Pipeline-1

EITF20: Computer Architecture Part2.2.1: Pipeline-1 EITF20: Computer Architecture Part2.2.1: Pipeline-1 Liang Liu liang.liu@eit.lth.se 1 Outline Reiteration Pipelining Harzards Structural hazards Data hazards Control hazards Implementation issues Multi-cycle

More information

Instructors: Randy H. Katz David A. PaHerson hhp://inst.eecs.berkeley.edu/~cs61c/fa10. Fall Lecture #6. Agenda

Instructors: Randy H. Katz David A. PaHerson hhp://inst.eecs.berkeley.edu/~cs61c/fa10. Fall Lecture #6. Agenda CS 61C: Great Ideas in Computer Architecture (Machine Structures) Instructors: Randy H. Katz David A. PaHerson hhp://inst.eecs.berkeley.edu/~cs61c/fa10 Fall 2010 - - Lecture #6 1 Agenda Review Overflow

More information

CS 61C: Great Ideas in Computer Architecture Pipelining and Hazards

CS 61C: Great Ideas in Computer Architecture Pipelining and Hazards CS 61C: Great Ideas in Computer Architecture Pipelining and Hazards Instructors: Vladimir Stojanovic and Nicholas Weaver http://inst.eecs.berkeley.edu/~cs61c/sp16 1 Pipelined Execution Representation Time

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 32: Pipeline Parallelism 3

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 32: Pipeline Parallelism 3 CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 32: Pipeline Parallelism 3 Instructor: Dan Garcia inst.eecs.berkeley.edu/~cs61c! Compu@ng in the News At a laboratory in São Paulo,

More information

Instructor: Randy H. Katz hap://inst.eecs.berkeley.edu/~cs61c/fa13. Fall Lecture #7. Warehouse Scale Computer

Instructor: Randy H. Katz hap://inst.eecs.berkeley.edu/~cs61c/fa13. Fall Lecture #7. Warehouse Scale Computer CS 61C: Great Ideas in Computer Architecture Everything is a Number Instructor: Randy H. Katz hap://inst.eecs.berkeley.edu/~cs61c/fa13 9/19/13 Fall 2013 - - Lecture #7 1 New- School Machine Structures

More information

CS 61C: Great Ideas in Computer Architecture. Multiple Instruction Issue, Virtual Memory Introduction

CS 61C: Great Ideas in Computer Architecture. Multiple Instruction Issue, Virtual Memory Introduction CS 61C: Great Ideas in Computer Architecture Multiple Instruction Issue, Virtual Memory Introduction Instructor: Justin Hsia 7/26/2012 Summer 2012 Lecture #23 1 Parallel Requests Assigned to computer e.g.

More information

CPS104 Computer Organization and Programming Lecture 19: Pipelining. Robert Wagner

CPS104 Computer Organization and Programming Lecture 19: Pipelining. Robert Wagner CPS104 Computer Organization and Programming Lecture 19: Pipelining Robert Wagner cps 104 Pipelining..1 RW Fall 2000 Lecture Overview A Pipelined Processor : Introduction to the concept of pipelined processor.

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations A simplified

More information

Data Center Fundamentals: The Datacenter as a Computer

Data Center Fundamentals: The Datacenter as a Computer Data Center Fundamentals: The Datacenter as a Computer George Porter CSE 124 Feb 10, 2017 Includes material from (1) Barroso, Clidaras, and Hölzle, as well as (2) Evrard (Michigan), used with permission

More information

CS 61C: Great Ideas in Computer Architecture. Lecture 11: Datapath. Bernhard Boser & Randy Katz

CS 61C: Great Ideas in Computer Architecture. Lecture 11: Datapath. Bernhard Boser & Randy Katz CS 61C: Great Ideas in Computer Architecture Lecture 11: Datapath Bernhard Boser & Randy Katz http://inst.eecs.berkeley.edu/~cs61c Agenda MIPS Datapath add instruction register transfer level circuit timing

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Caches Part 2

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Caches Part 2 CS 61C: Great Ideas in Computer Architecture (Machine Structures) Caches Part 2 Instructors: Krste Asanović & Randy H. Katz http://inst.eecs.berkeley.edu/~cs61c/ 10/16/17 Fall 2017 - Lecture #15 1 Outline

More information

CS6303 Computer Architecture Regulation 2013 BE-Computer Science and Engineering III semester 2 MARKS

CS6303 Computer Architecture Regulation 2013 BE-Computer Science and Engineering III semester 2 MARKS CS6303 Computer Architecture Regulation 2013 BE-Computer Science and Engineering III semester 2 MARKS UNIT-I OVERVIEW & INSTRUCTIONS 1. What are the eight great ideas in computer architecture? The eight

More information

Computer Architecture. Lecture 6.1: Fundamentals of

Computer Architecture. Lecture 6.1: Fundamentals of CS3350B Computer Architecture Winter 2015 Lecture 6.1: Fundamentals of Instructional Level Parallelism Marc Moreno Maza www.csd.uwo.ca/courses/cs3350b [Adapted from lectures on Computer Organization and

More information

CS 61C: Great Ideas in Computer Architecture Strings and Func.ons. Anything can be represented as a number, i.e., data or instruc\ons

CS 61C: Great Ideas in Computer Architecture Strings and Func.ons. Anything can be represented as a number, i.e., data or instruc\ons CS 61C: Great Ideas in Computer Architecture Strings and Func.ons Instructor: Krste Asanovic, Randy H. Katz hdp://inst.eecs.berkeley.edu/~cs61c/sp12 Fall 2012 - - Lecture #7 1 New- School Machine Structures

More information

Agenda. Recap: Components of a Computer. Agenda. Recap: Cache Performance and Average Memory Access Time (AMAT) Recap: Typical Memory Hierarchy

Agenda. Recap: Components of a Computer. Agenda. Recap: Cache Performance and Average Memory Access Time (AMAT) Recap: Typical Memory Hierarchy // CS 6C: Great Ideas in Computer Architecture (Machine Structures) Set- Associa+ve Caches Instructors: Randy H Katz David A PaFerson hfp://insteecsberkeleyedu/~cs6c/fa Cache Recap Recap: Components of

More information

Overview of the MIPS Architecture: Part I. CS 161: Lecture 0 1/24/17

Overview of the MIPS Architecture: Part I. CS 161: Lecture 0 1/24/17 Overview of the MIPS Architecture: Part I CS 161: Lecture 0 1/24/17 Looking Behind the Curtain of Software The OS sits between hardware and user-level software, providing: Isolation (e.g., to give each

More information

Review: Performance Latency vs. Throughput. Time (seconds/program) is performance measure Instructions Clock cycles Seconds.

Review: Performance Latency vs. Throughput. Time (seconds/program) is performance measure Instructions Clock cycles Seconds. Performance 980 98 982 983 984 985 986 987 988 989 990 99 992 993 994 995 996 997 998 999 2000 7/4/20 CS 6C: Great Ideas in Computer Architecture (Machine Structures) Caches Instructor: Michael Greenbaum

More information

4. The Processor Computer Architecture COMP SCI 2GA3 / SFWR ENG 2GA3. Emil Sekerinski, McMaster University, Fall Term 2015/16

4. The Processor Computer Architecture COMP SCI 2GA3 / SFWR ENG 2GA3. Emil Sekerinski, McMaster University, Fall Term 2015/16 4. The Processor Computer Architecture COMP SCI 2GA3 / SFWR ENG 2GA3 Emil Sekerinski, McMaster University, Fall Term 2015/16 Instruction Execution Consider simplified MIPS: lw/sw rt, offset(rs) add/sub/and/or/slt

More information

Processor. Han Wang CS3410, Spring 2012 Computer Science Cornell University. See P&H Chapter , 4.1 4

Processor. Han Wang CS3410, Spring 2012 Computer Science Cornell University. See P&H Chapter , 4.1 4 Processor Han Wang CS3410, Spring 2012 Computer Science Cornell University See P&H Chapter 2.16 20, 4.1 4 Announcements Project 1 Available Design Document due in one week. Final Design due in three weeks.

More information

Warehouse-Scale Computing

Warehouse-Scale Computing ecture 31 Computer Science 61C Spring 2017 April 7th, 2017 Warehouse-Scale Computing 1 New-School Machine Structures (It s a bit more complicated!) Software Hardware Parallel Requests Assigned to computer

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle

More information

CSE 124: THE DATACENTER AS A COMPUTER. George Porter November 20 and 22, 2017

CSE 124: THE DATACENTER AS A COMPUTER. George Porter November 20 and 22, 2017 CSE 124: THE DATACENTER AS A COMPUTER George Porter November 20 and 22, 2017 ATTRIBUTION These slides are released under an Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0) Creative

More information

Chapter 4. Instruction Execution. Introduction. CPU Overview. Multiplexers. Chapter 4 The Processor 1. The Processor.

Chapter 4. Instruction Execution. Introduction. CPU Overview. Multiplexers. Chapter 4 The Processor 1. The Processor. COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor The Processor - Introduction

More information

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN. 5 th Edition. The Hardware/Software Interface. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition The Processor - Introduction

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Warehouse-Scale Computing, MapReduce, and Spark

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Warehouse-Scale Computing, MapReduce, and Spark CS 61C: Great Ideas in Computer Architecture (Machine Structures) Warehouse-Scale Computing, MapReduce, and Spark Instructors: Bernard Boser & Randy H. Katz http://inst.eecs.berkeley.edu/~cs61c/ 11/11/16

More information

Final Exam Fall 2008

Final Exam Fall 2008 COE 308 Computer Architecture Final Exam Fall 2008 page 1 of 8 Saturday, February 7, 2009 7:30 10:00 AM Computer Engineering Department College of Computer Sciences & Engineering King Fahd University of

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 28: Single- Cycle CPU Datapath Control Part 1

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 28: Single- Cycle CPU Datapath Control Part 1 CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 28: Single- Cycle CPU Datapath Control Part 1 Guest Lecturer: Sagar Karandikar hfp://inst.eecs.berkeley.edu/~cs61c/ http://research.microsoft.com/apps/pubs/default.aspx?id=212001!

More information

CS 61C: Great Ideas in Computer Architecture Introduction to Assembly Language and RISC-V Instruction Set Architecture

CS 61C: Great Ideas in Computer Architecture Introduction to Assembly Language and RISC-V Instruction Set Architecture CS 61C: Great Ideas in Computer Architecture Introduction to Assembly Language and RISC-V Instruction Set Architecture Instructors: Krste Asanović & Randy H. Katz http://inst.eecs.berkeley.edu/~cs61c 9/7/17

More information

CS 61C: Great Ideas in Computer Architecture. Virtual Memory

CS 61C: Great Ideas in Computer Architecture. Virtual Memory CS 61C: Great Ideas in Computer Architecture Virtual Memory Instructor: Justin Hsia 7/30/2012 Summer 2012 Lecture #24 1 Review of Last Lecture (1/2) Multiple instruction issue increases max speedup, but

More information

Lecture Topics. Announcements. Today: Single-Cycle Processors (P&H ) Next: continued. Milestone #3 (due 2/9) Milestone #4 (due 2/23)

Lecture Topics. Announcements. Today: Single-Cycle Processors (P&H ) Next: continued. Milestone #3 (due 2/9) Milestone #4 (due 2/23) Lecture Topics Today: Single-Cycle Processors (P&H 4.1-4.4) Next: continued 1 Announcements Milestone #3 (due 2/9) Milestone #4 (due 2/23) Exam #1 (Wednesday, 2/15) 2 1 Exam #1 Wednesday, 2/15 (3:00-4:20

More information

LECTURE 10. Pipelining: Advanced ILP

LECTURE 10. Pipelining: Advanced ILP LECTURE 10 Pipelining: Advanced ILP EXCEPTIONS An exception, or interrupt, is an event other than regular transfers of control (branches, jumps, calls, returns) that changes the normal flow of instruction

More information

EECS 151/251A Fall 2017 Digital Design and Integrated Circuits. Instructor: John Wawrzynek and Nicholas Weaver. Lecture 13 EE141

EECS 151/251A Fall 2017 Digital Design and Integrated Circuits. Instructor: John Wawrzynek and Nicholas Weaver. Lecture 13 EE141 EECS 151/251A Fall 2017 Digital Design and Integrated Circuits Instructor: John Wawrzynek and Nicholas Weaver Lecture 13 Project Introduction You will design and optimize a RISC-V processor Phase 1: Design

More information

CS 61C: Great Ideas in Computer Architecture Case Studies: Server and Cellphone microprocessors. Not yet in producvon, the next core awer Ivy Bridge!

CS 61C: Great Ideas in Computer Architecture Case Studies: Server and Cellphone microprocessors. Not yet in producvon, the next core awer Ivy Bridge! CS 61C: Great Ideas in Computer Architecture Case Studies: Server and Cellphone microprocessors Instructors: Krste Asanovic, Randy H. Katz hcp://inst.eecs.berkeley.edu/~cs61c/fa12 Today: Intel Haswell

More information

10/16/17. Outline. Outline. Typical Memory Hierarchy. Adding Cache to Computer. Key Cache Concepts

10/16/17. Outline. Outline. Typical Memory Hierarchy. Adding Cache to Computer. Key Cache Concepts // CS C: Great Ideas in Computer Architecture (Machine Structures) s Part Instructors: Krste Asanović & Randy H Katz http://insteecsberkeleyedu/~csc/ Organization and Principles Write Back vs Write Through

More information

Computer Science 141 Computing Hardware

Computer Science 141 Computing Hardware Computer Science 4 Computing Hardware Fall 6 Harvard University Instructor: Prof. David Brooks dbrooks@eecs.harvard.edu Upcoming topics Mon, Nov th MIPS Basic Architecture (Part ) Wed, Nov th Basic Computer

More information

Multiple Issue ILP Processors. Summary of discussions

Multiple Issue ILP Processors. Summary of discussions Summary of discussions Multiple Issue ILP Processors ILP processors - VLIW/EPIC, Superscalar Superscalar has hardware logic for extracting parallelism - Solutions for stalls etc. must be provided in hardware

More information

9/9/12. New- School Machine Structures (It s a bit more complicated!) CS 61C: Great Ideas in Computer Architecture IntroducMon to Machine Language

9/9/12. New- School Machine Structures (It s a bit more complicated!) CS 61C: Great Ideas in Computer Architecture IntroducMon to Machine Language CS 61C: Great Ideas in Computer Architecture IntroducMon to Machine Language Instructors: Krste Asanovic Randy H. Katz h

More information

ECE260: Fundamentals of Computer Engineering

ECE260: Fundamentals of Computer Engineering ECE260: Fundamentals of Computer Engineering Pipelined Datapath and Control James Moscola Dept. of Engineering & Computer Science York College of Pennsylvania ECE260: Fundamentals of Computer Engineering

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures)

CS 61C: Great Ideas in Computer Architecture (Machine Structures) CS 61C: Great Ideas in Computer Architecture (Machine Structures) Instructors: Randy H. Katz David A. PaGerson hgp://inst.eecs.berkeley.edu/~cs61c/fa10 1 2 Cache Field Sizes Number of bits in a cache includes

More information

Final Lecture. A few minutes to wrap up and add some perspective

Final Lecture. A few minutes to wrap up and add some perspective Final Lecture A few minutes to wrap up and add some perspective 1 2 Instant replay The quarter was split into roughly three parts and a coda. The 1st part covered instruction set architectures the connection

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Caches Part 1

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Caches Part 1 CS 61C: Great Ideas in Computer Architecture (Machine Structures) Caches Part 1 Instructors: Krste Asanović & Randy H. Katz http://inst.eecs.berkeley.edu/~cs61c/ 10/11/17 Fall 2017 - Lecture #14 1 Parallel

More information

Full Datapath. Chapter 4 The Processor 2

Full Datapath. Chapter 4 The Processor 2 Pipelining Full Datapath Chapter 4 The Processor 2 Datapath With Control Chapter 4 The Processor 3 Performance Issues Longest delay determines clock period Critical path: load instruction Instruction memory

More information

Department of Computer and IT Engineering University of Kurdistan. Computer Architecture Pipelining. By: Dr. Alireza Abdollahpouri

Department of Computer and IT Engineering University of Kurdistan. Computer Architecture Pipelining. By: Dr. Alireza Abdollahpouri Department of Computer and IT Engineering University of Kurdistan Computer Architecture Pipelining By: Dr. Alireza Abdollahpouri Pipelined MIPS processor Any instruction set can be implemented in many

More information

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 4. The Processor

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface. 5 th. Edition. Chapter 4. The Processor COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface 5 th Edition Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle

More information

CS 251, Winter 2018, Assignment % of course mark

CS 251, Winter 2018, Assignment % of course mark CS 251, Winter 2018, Assignment 5.0.4 3% of course mark Due Wednesday, March 21st, 4:30PM Lates accepted until 10:00am March 22nd with a 15% penalty 1. (10 points) The code sequence below executes on a

More information

CS 61C: Great Ideas in Computer Architecture Control and Pipelining

CS 61C: Great Ideas in Computer Architecture Control and Pipelining CS 6C: Great Ideas in Computer Architecture Control and Pipelining Instructors: Vladimir Stojanovic and Nicholas Weaver http://inst.eecs.berkeley.edu/~cs6c/sp6 Datapath Control Signals ExtOp: zero, sign

More information

CS146 Computer Architecture. Fall Midterm Exam

CS146 Computer Architecture. Fall Midterm Exam CS146 Computer Architecture Fall 2002 Midterm Exam This exam is worth a total of 100 points. Note the point breakdown below and budget your time wisely. To maximize partial credit, show your work and state

More information

COSC 6385 Computer Architecture - Pipelining

COSC 6385 Computer Architecture - Pipelining COSC 6385 Computer Architecture - Pipelining Fall 2006 Some of the slides are based on a lecture by David Culler, Instruction Set Architecture Relevant features for distinguishing ISA s Internal storage

More information

CS 61C: Great Ideas in Computer Architecture. Multilevel Caches, Cache Questions

CS 61C: Great Ideas in Computer Architecture. Multilevel Caches, Cache Questions CS 61C: Great Ideas in Computer Architecture Multilevel Caches, Cache Questions Instructor: Alan Christopher 7/14/2014 Summer 2014 -- Lecture #12 1 Great Idea #3: Principle of Locality/ Memory Hierarchy

More information

ECE331: Hardware Organization and Design

ECE331: Hardware Organization and Design ECE331: Hardware Organization and Design Lecture 27: Midterm2 review Adapted from Computer Organization and Design, Patterson & Hennessy, UCB Midterm 2 Review Midterm will cover Section 1.6: Processor

More information

EN2910A: Advanced Computer Architecture Topic 02: Review of classical concepts

EN2910A: Advanced Computer Architecture Topic 02: Review of classical concepts EN2910A: Advanced Computer Architecture Topic 02: Review of classical concepts Prof. Sherief Reda School of Engineering Brown University S. Reda EN2910A FALL'15 1 Classical concepts (prerequisite) 1. Instruction

More information

Single Instructions Can Execute Several Low Level

Single Instructions Can Execute Several Low Level We have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with single instructions

More information

CS 230 Practice Final Exam & Actual Take-home Question. Part I: Assembly and Machine Languages (22 pts)

CS 230 Practice Final Exam & Actual Take-home Question. Part I: Assembly and Machine Languages (22 pts) Part I: Assembly and Machine Languages (22 pts) 1. Assume that assembly code for the following variable definitions has already been generated (and initialization of A and length). int powerof2; /* powerof2

More information

Processor design - MIPS

Processor design - MIPS EASY Processor design - MIPS Q.1 What happens when a register is loaded? 1. The bits of the register are set to all ones. 2. The bit pattern in the register is copied to a location in memory. 3. A bit

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 17 Datacenters and Cloud Compu5ng

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 17 Datacenters and Cloud Compu5ng CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 17 Datacenters and Cloud Compu5ng Instructor: Dan Garcia h;p://inst.eecs.berkeley.edu/~cs61c/ 2/28/13 1 In the news Google disclosed

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Caches Part 1

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Caches Part 1 CS 61C: Great Ideas in Computer Architecture (Machine Structures) Caches Part 1 Instructors: Nicholas Weaver & Vladimir Stojanovic http://inst.eecs.berkeley.edu/~cs61c/ Components of a Computer Processor

More information

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Caches Part 1

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Caches Part 1 CS 61C: Great Ideas in Computer Architecture (Machine Structures) Caches Part 1 Instructors: Bernhard Boser & Randy H. Katz hdp://inst.eecs.berkeley.edu/~cs61c/ 10/13/16 Fall 2016 - Lecture #14 1 New-School

More information

Review: Abstract Implementation View

Review: Abstract Implementation View Review: Abstract Implementation View Split memory (Harvard) model - single cycle operation Simplified to contain only the instructions: memory-reference instructions: lw, sw arithmetic-logical instructions:

More information

Systems Architecture

Systems Architecture Systems Architecture Lecture 15: A Simple Implementation of MIPS Jeremy R. Johnson Anatole D. Ruslanov William M. Mongan Some or all figures from Computer Organization and Design: The Hardware/Software

More information

CS 61C: Great Ideas in Computer Architecture Introduction to Assembly Language and MIPS Instruction Set Architecture

CS 61C: Great Ideas in Computer Architecture Introduction to Assembly Language and MIPS Instruction Set Architecture CS 61C: Great Ideas in Computer Architecture Introduction to Assembly Language and MIPS Instruction Set Architecture Instructors: Bernhard Boser & Randy H. Katz http://inst.eecs.berkeley.edu/~cs61c/fa16

More information

CSEE W3827 Fundamentals of Computer Systems Homework Assignment 5 Solutions

CSEE W3827 Fundamentals of Computer Systems Homework Assignment 5 Solutions CSEE W3827 Fundamentals of Computer Systems Homework Assignment 5 Solutions Profs. Stephen A. Edwards & Martha Kim Columbia University Due December 10th, 2012 at 5:00 PM Turn in at CSB 469. Write your

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware We will examine two MIPS implementations A simplified

More information

Chapter 4. The Processor

Chapter 4. The Processor Chapter 4 The Processor Introduction CPU performance factors Instruction count Determined by ISA and compiler CPI and Cycle time Determined by CPU hardware 4.1 Introduction We will examine two MIPS implementations

More information

Memory Hierarchy Computing Systems & Performance MSc Informatics Eng. Memory Hierarchy (most slides are borrowed)

Memory Hierarchy Computing Systems & Performance MSc Informatics Eng. Memory Hierarchy (most slides are borrowed) Computing Systems & Performance Memory Hierarchy MSc Informatics Eng. 2011/12 A.J.Proença Memory Hierarchy (most slides are borrowed) AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 1 2

More information

10/11/17. New-School Machine Structures. Review: Single Cycle Instruction Timing. Review: Single-Cycle RISC-V RV32I Datapath. Components of a Computer

10/11/17. New-School Machine Structures. Review: Single Cycle Instruction Timing. Review: Single-Cycle RISC-V RV32I Datapath. Components of a Computer // CS C: Great Ideas in Computer Architecture (Machine Structures) s Part Instructors: Krste Asanović & Randy H Katz http://insteecsberkeleyedu/~csc/ // Fall - Lecture # Parallel Requests Assigned to computer

More information

Memory Hierarchy Computing Systems & Performance MSc Informatics Eng. Memory Hierarchy (most slides are borrowed)

Memory Hierarchy Computing Systems & Performance MSc Informatics Eng. Memory Hierarchy (most slides are borrowed) Computing Systems & Performance Memory Hierarchy MSc Informatics Eng. 2012/13 A.J.Proença Memory Hierarchy (most slides are borrowed) AJProença, Computer Systems & Performance, MEI, UMinho, 2012/13 1 2

More information

CS 61C: Great Ideas in Computer Architecture. The Memory Hierarchy, Fully Associative Caches

CS 61C: Great Ideas in Computer Architecture. The Memory Hierarchy, Fully Associative Caches CS 61C: Great Ideas in Computer Architecture The Memory Hierarchy, Fully Associative Caches Instructor: Alan Christopher 7/09/2014 Summer 2014 -- Lecture #10 1 Review of Last Lecture Floating point (single

More information

CS 110 Computer Architecture. Pipelining. Guest Lecture: Shu Yin. School of Information Science and Technology SIST

CS 110 Computer Architecture. Pipelining. Guest Lecture: Shu Yin.   School of Information Science and Technology SIST CS 110 Computer Architecture Pipelining Guest Lecture: Shu Yin http://shtech.org/courses/ca/ School of Information Science and Technology SIST ShanghaiTech University Slides based on UC Berkley's CS61C

More information