Rippling: Heuristic Guidance for Inductive Proof (I) Alan Bundy. Automated Reasoning Rippling

Size: px
Start display at page:

Download "Rippling: Heuristic Guidance for Inductive Proof (I) Alan Bundy. Automated Reasoning Rippling"

Transcription

1 Automated Reasoning Rippling: Heuristic Guidance for Inductive Proof (I) Alan Bundy Lecture 16, page 1

2 Overview In lecture 14 we introduced induction Inductive proofs can be difficult. Problems are in: controlling rewriting in step case proofs selecting induction rules using lemmas and generalisations. In this lecture we will look at a heuristic known as rippling which can help automatically guide inductive proofs by addressing the 3 problems above. Lecture 16, page 2

3 Rippling Rippling term coined by Aubin, who noticed a pattern in the rewriting of step cases Bundy proposed rippling could be used as a heuristic to guide inductive proof Rippling gives a direction to rewriting process Central principle: aim to have IH embedded within the IC by moving differences between induction hypothesis (IH) and induction conclusion (IC) can then use strong fertilization to solve the goal We emphasise the effect by annotating the differences Lecture 16, page 3

4 Annotated Rewrite Rules H # L H # L (1) X 1 # X 2 = Y 1 # Y 2 X 1 = Y 1 X 2 = Y 2 (2) called wave-rules changing bits in orange boxes (wave-fronts) note outward movement of wave-fronts unchanging bits in red (skeleton) Lecture 16, page 4

5 Terminology (X # Z Erasure (X# Y )@ Z (X#.. ) Wave-front Y Wave-hole Z Skeleton Difference removal uses specialised annotations: Wave fronts: difference between skeleton and goal. Wave holes: identify sub-terms inside the wave front that are similar to parts of the given. Lecture 16, page 5

6 ... Rippling: Preserving Common Structure Induction Rule: P(nil) h:τ. t:list(τ). (P(t) P( h# t )) l:list(τ). P(l) Base Case: P(nil) Step Case: P(t) P( ) h# t... k( P(t) ) Progress Terminating and Preserving common structure Lecture 16, page 6

7 Another View @ z z h# t y t y t y ( h# z h# y) z h# z Before During After Lecture 16, page 7

8 Identifying Differences Mismatching Terms Annotated Goal (IC) Given (IH) Goal (X # Z Z even (s(s(x)) even(x) len(h # T) len(t) H # T) T) (X# Y Z even( s(s( X )) ) len( H # T ) H # T ) Lecture 16, page 8

9 Reducing Differences Examples: even( s(s( X )) ) even(x) (3) len( H # T ) s( len(t) ) (4) H # T ) s( T) ) (5) rot( s( N), H # T ) rot( N, (H # nil) ) (6) Definition requirements: identical skeleton on lhs and rhs terminating based on logically valid rewrite rule Sources for wave-rules: recursive definitions, associative laws, replacement laws, etc. automatically annotated Lecture 16, page 9

10 Making Wave Rules Wave rules can be made from: theorems, lemmas, definitions, equations, etc. There may be many ways to create a wave-rule, e.g: s(x) + Y = s(x + Y) could be transformed into the wave-rules: s( X ) + Y s( X + Y ) s( X + Y ) s(x) + Y Note bidirectionality of rewriting with wave-rules. does not cause non-termination. Lecture 16, page 10

11 Exhaustive Rewriting (without Rippling) Rewrite Rule: (X + Y) + Z X + (Y + Z) Given: a + b = 42 Goal: ((c + d) + a) + b = (c + d) + 42 Rewritings: ((c + d) + a) + b = c + (d + 42) (c + (d + a)) + b = (c + d) + 42 (c + d) + (a +b) = (c + d) + 42 Lecture 16, page 11

12 Selective Rewriting (with Rippling) Wave Rule: (X + Y ) + Z (X +( Y + Z ) Given: a + b = 42 Goal: ((c + d) + ) + b = Ripple: (c + d) + ( ) = Non-Ripples: a (c + d) + 42 a + b (c + d) + 42 ((c + d) + a) c + (d + a ) + b = + b = c + (d + 42 ) (c + d) + 42 Lecture 16, page 12

13 Termination of Rippling To provide rippling with a direction and ensure termination, a measure is used that decreases each time the goal is rewritten Measure is a list of natural numbers the list indicates the number of wave-fronts at each depth in the skeleton term the number of wavefronts is counted from leaf to root Decreasing measure means rewrite expresses a valid ripple step Lecture 16, page 13

14 Wave Measure Definition of wave 0 z 1 0 t y 0 0 Decrease of The wave measure of h# z can be written as a list: [0,1,0] most significant z z h# t y t y [1,0,0] > [0,1,0] > [0,0,1] Lecture 16, page 14 t y

15 Annotated Step Case Z) = Z h# z) = ( h# z by (1) 2 h# z) = h# z by (1) h# z) = h# z by (2) h = h z) = z Fertilization is possible when the wave fronts have been removed from a sub-term matching the IH. Lecture 16, page 15

16 Extending Rippling? Conjecture: x, y. P(x, y) Step Case: P(x,Y) P(, y) s( ) x... P(x,Y) P(, y) s( ) x... k( P(x,y) ) k'( P(x,q(y)) ) Fertilize with Y=y Fertilize with Y=q(y) As long as the skeleton is an instance of the hypothesis, not necessarily an exact copy We can exploit this in our proofs Lecture 16, page 16

17 Always Ripple Out? Rippling wave-fronts outside the skeleton is only one way to enable fertilization To exploit additional universal variables in the conjecture we make them free variables in the IH and arbitrary constants in the IC We call the positions of the arbitrary constants sinks We move the wave-fronts to surround the sinks The wave-fronts at the sinks are then absorbed by the free variables during fertilization To do this, we need to be able to ripple sideways and in! Lecture 16, page 17

18 Updated Rippling Sinks provide alternative wave-front destination, available when free variables are in hypothesis Wave fronts have directions: out in Rippling out tries to remove difference or to move it to the top of the term tree. Eventually strong fertilization or weak fertilization in a sub-term occurs. Rippling in tries to move a difference into a sink which would allow it to be matched by the corresponding universally quantified variable. s( N) In black and white notation write: as s( N) Lecture 16, page 18 as s( N) s( N)

19 Termination of Rippling (II) Our definition of a wave measure needs an update to take into account rippling sideways. Our measure is: a pair of lists of natural numbers that indicate the number of wave fronts outward followed by inward - at each depth of the skeleton term Outward list is formed by counting the number of outward wavefronts from leaf to root Inward list is formed by counting the number of inward wavefronts from root to leaf Measures are compared entry-wise using a lexicographical ordering as if they were a single list starting with the outward elements This restriction allows wave fronts to move from out to in but not vice-versa. Lecture 16, page 19

20 Sideways Rippling: Another View φ φ φ φ η η η η μ ν c 2 ( μ ) ν μ c 3 ( ν ) μ ν c 1 ( x ) y x y x y x c 4 ( y ) Out: [1, 0, 0, 0] Out: [0, 1, 0, 0] Out: [0, 0, 0, 0] Out: [0, 0, 0, 0] In: [0, 0, 0, 0] > In: [0, 0, 0, 0] > In: [0, 0, 1, 0] > In: [0, 0, 0, 1] Before Stage-1 Stage-2 After Lecture 16, page 20

21 Directed Wave-rules rot( s( N), H # T ) rot( N, (H # nil) ) (7) ( H # T ) (H # T (8) ( Y Z ( Z ) (9) Definition of wave-rules (revised): identical skeleton on lhs and rhs can go from to or from to can go from to but not vice-versa matching is as before, but additionally, arrows must match Lecture 16, page 21

22 Rippling Sideways and In rot( s( N), H # T ) rot( N, (H # nil) ) (10) ( H # T ) (H # T (11) ( Y Z ( Y@ Z ) (12) rot(len(t), K) = t rot(len( h# t ), h# k ) = ( h# t ) (4)+(1) rot( s( len(t) ), h# k ) = ( h# t ) (10) rot(len(t), (h # nil) ) = ( h# t ) (12)+(11) rot(len(t), (h # nil) ) = (h # t rot(len(t), (h # nil) ) = (h t Lecture 16, page 22

23 The Preconditions of Rippling 1. The induction conclusion contains a wave-front e.g. rot( s( len(t) ), h# k ) = A wave-rule applies to this wave-front e.g. rot( s( N), H # T ) Any condition is provable e.g. X H X H # T X T 1. Inserted inwards wave-fronts contain a sink or an outwards wave-front e.g. rot(len(t), (h # nil) ) =... Lecture 16, page 23

24 Advantages of Rippling Selective: not exhaustive rewriting. Bi-directional: rewriting. Termination: of any set of wave-rules, despite bidirectionality. Heuristic basis: for choosing lemmas, generalisations and inductions. Lecture 16, page 24

25 A Proof Plan for Induction Induction Strategy Induction Base Symbolic Evaluation Step Ripple Wave Fertilization Preconditions Declarative: Rippling must be possible in step cases. Procedural: Look-ahead to choose induction rule that will permit rippling. Lecture 16, page 25

26 Summary Inductive proof introduces new search problems. But also new opportunities have IH. Move differences to make IH match IC. Proof plan for induction based on rippling. Describes common pattern of proof. Rippling: selective; bidirectional; terminating and offers heuristic solution to special problems (next lecture). Lecture 16, page 26

Backtracking and Induction in ACL2

Backtracking and Induction in ACL2 Backtracking and Induction in ACL2 John Erickson University of Texas at Austin jderick@cs.utexas.edu ABSTRACT This paper presents an extension to ACL2 that allows backtracking to occur when a proof fails.

More information

Case-Analysis for Rippling and Inductive Proof

Case-Analysis for Rippling and Inductive Proof Case-Analysis for Rippling and Inductive Proof Moa Johansson 1 Joint work with Lucas Dixon 2 and Alan Bundy 2 Dipartimento di Informatica, Università degli Studi di Verona, Italy. 1 School of Informatics,

More information

7.9 Automatic Annotation Ripple Analysis The Productive Use of Fa

7.9 Automatic Annotation Ripple Analysis The Productive Use of Fa Chapter 1 The automation of proof by mathematical induction Alan Bundy Division of Informatics, University of Edinburgh Contents 1 Introduction........................................... 3 1.1 Explicit

More information

Isabelle s meta-logic. p.1

Isabelle s meta-logic. p.1 Isabelle s meta-logic p.1 Basic constructs Implication = (==>) For separating premises and conclusion of theorems p.2 Basic constructs Implication = (==>) For separating premises and conclusion of theorems

More information

To prove something about all Boolean expressions, we will need the following induction principle: Axiom 7.1 (Induction over Boolean expressions):

To prove something about all Boolean expressions, we will need the following induction principle: Axiom 7.1 (Induction over Boolean expressions): CS 70 Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 7 This lecture returns to the topic of propositional logic. Whereas in Lecture Notes 1 we studied this topic as a way of understanding

More information

Induction Schemes. Math Foundations of Computer Science

Induction Schemes. Math Foundations of Computer Science Induction Schemes Math Foundations of Computer Science Topics Induction Example Induction scheme over the naturals Termination Reduction to equational reasoning ACL2 proof General Induction Schemes Induction

More information

To prove something about all Boolean expressions, we will need the following induction principle: Axiom 7.1 (Induction over Boolean expressions):

To prove something about all Boolean expressions, we will need the following induction principle: Axiom 7.1 (Induction over Boolean expressions): CS 70 Discrete Mathematics for CS Fall 2003 Wagner Lecture 7 This lecture returns to the topic of propositional logic. Whereas in Lecture 1 we studied this topic as a way of understanding proper reasoning

More information

Foundations of Computer Science Spring Mathematical Preliminaries

Foundations of Computer Science Spring Mathematical Preliminaries Foundations of Computer Science Spring 2017 Equivalence Relation, Recursive Definition, and Mathematical Induction Mathematical Preliminaries Mohammad Ashiqur Rahman Department of Computer Science College

More information

Inference rule for Induction

Inference rule for Induction Inference rule for Induction Let P( ) be a predicate with domain the positive integers BASE CASE INDUCTIVE STEP INDUCTIVE Step: Usually a direct proof Assume P(x) for arbitrary x (Inductive Hypothesis),

More information

13.4 Deletion in red-black trees

13.4 Deletion in red-black trees The operation of Deletion in a red-black tree is similar to the operation of Insertion on the tree. That is, apply the deletion algorithm for binary search trees to delete a node z; apply node color changes

More information

Induction in Coq. Nate Foster Spring 2018

Induction in Coq. Nate Foster Spring 2018 Induction in Coq Nate Foster Spring 2018 Review Previously in 3110: Functional programming in Coq Logic in Coq Curry-Howard correspondence (proofs are programs) Today: Induction in Coq REVIEW: INDUCTION

More information

MoreIntro_annotated.v. MoreIntro_annotated.v. Printed by Zach Tatlock. Oct 04, 16 21:55 Page 1/10

MoreIntro_annotated.v. MoreIntro_annotated.v. Printed by Zach Tatlock. Oct 04, 16 21:55 Page 1/10 Oct 04, 16 21:55 Page 1/10 * Lecture 02 Infer some type arguments automatically. Set Implicit Arguments. Note that the type constructor for functions (arrow " >") associates to the right: A > B > C = A

More information

Assigning Meaning to Programs, Floyd. Proving Termination with Multiset Orderings

Assigning Meaning to Programs, Floyd. Proving Termination with Multiset Orderings Assigning Meaning to Programs, Floyd Proving Termination with Multiset Orderings Well-founded Orderings Multiset Orderings Nested Multiset Orderings Consider the following program(turing s program): r=1,u=1

More information

Computing Fundamentals 2 Introduction to CafeOBJ

Computing Fundamentals 2 Introduction to CafeOBJ Computing Fundamentals 2 Introduction to CafeOBJ Lecturer: Patrick Browne Lecture Room: K408 Lab Room: A308 Based on work by: Nakamura Masaki, João Pascoal Faria, Prof. Heinrich Hußmann. See notes on slides

More information

Joint Entity Resolution

Joint Entity Resolution Joint Entity Resolution Steven Euijong Whang, Hector Garcia-Molina Computer Science Department, Stanford University 353 Serra Mall, Stanford, CA 94305, USA {swhang, hector}@cs.stanford.edu No Institute

More information

Non-context-Free Languages. CS215, Lecture 5 c

Non-context-Free Languages. CS215, Lecture 5 c Non-context-Free Languages CS215 Lecture 5 c 2007 1 The Pumping Lemma Theorem (Pumping Lemma) Let be context-free There exists a positive integer divided into five pieces Proof for for each and Let and

More information

Inductive Definitions, continued

Inductive Definitions, continued 1 / 27 Inductive Definitions, continued Assia Mahboubi Jan 7th, 2016 2 / 27 Last lecture Introduction to Coq s inductive types: Introduction, elimination and computation rules; Twofold implementation :

More information

Reasoning About Programs Panagiotis Manolios

Reasoning About Programs Panagiotis Manolios Reasoning About Programs Panagiotis Manolios Northeastern University March 1, 2017 Version: 101 Copyright c 2017 by Panagiotis Manolios All rights reserved. We hereby grant permission for this publication

More information

Properties of red-black trees

Properties of red-black trees Red-Black Trees Introduction We have seen that a binary search tree is a useful tool. I.e., if its height is h, then we can implement any basic operation on it in O(h) units of time. The problem: given

More information

Rewriting. Andreas Rümpel Faculty of Computer Science Technische Universität Dresden Dresden, Germany.

Rewriting. Andreas Rümpel Faculty of Computer Science Technische Universität Dresden Dresden, Germany. Rewriting Andreas Rümpel Faculty of Computer Science Technische Universität Dresden Dresden, Germany s9843882@inf.tu-dresden.de ABSTRACT This is an overview paper regarding the common technologies of rewriting.

More information

Case-Analysis for Rippling and Inductive Proof

Case-Analysis for Rippling and Inductive Proof Case-Analysis for Rippling and Inductive Proof Moa Johansson 1, Lucas Dixon 2, and Alan Bundy 2 1 Dipartimento di Informatica, Università degli Studi di Verona 2 School of Informatics, University of Edinburgh

More information

Lecture 15: The subspace topology, Closed sets

Lecture 15: The subspace topology, Closed sets Lecture 15: The subspace topology, Closed sets 1 The Subspace Topology Definition 1.1. Let (X, T) be a topological space with topology T. subset of X, the collection If Y is a T Y = {Y U U T} is a topology

More information

CSE 20 DISCRETE MATH WINTER

CSE 20 DISCRETE MATH WINTER CSE 20 DISCRETE MATH WINTER 2016 http://cseweb.ucsd.edu/classes/wi16/cse20-ab/ Today's learning goals Explain the steps in a proof by (strong) mathematical induction Use (strong) mathematical induction

More information

Lecture 22 Tuesday, April 10

Lecture 22 Tuesday, April 10 CIS 160 - Spring 2018 (instructor Val Tannen) Lecture 22 Tuesday, April 10 GRAPH THEORY Directed Graphs Directed graphs (a.k.a. digraphs) are an important mathematical modeling tool in Computer Science,

More information

Outline. Definition. 2 Height-Balance. 3 Searches. 4 Rotations. 5 Insertion. 6 Deletions. 7 Reference. 1 Every node is either red or black.

Outline. Definition. 2 Height-Balance. 3 Searches. 4 Rotations. 5 Insertion. 6 Deletions. 7 Reference. 1 Every node is either red or black. Outline 1 Definition Computer Science 331 Red-Black rees Mike Jacobson Department of Computer Science University of Calgary Lectures #20-22 2 Height-Balance 3 Searches 4 Rotations 5 s: Main Case 6 Partial

More information

CSE 20 DISCRETE MATH. Winter

CSE 20 DISCRETE MATH. Winter CSE 20 DISCRETE MATH Winter 2017 http://cseweb.ucsd.edu/classes/wi17/cse20-ab/ Final exam The final exam is Saturday March 18 8am-11am. Lecture A will take the exam in GH 242 Lecture B will take the exam

More information

Overview. A Compact Introduction to Isabelle/HOL. Tobias Nipkow. System Architecture. Overview of Isabelle/HOL

Overview. A Compact Introduction to Isabelle/HOL. Tobias Nipkow. System Architecture. Overview of Isabelle/HOL Overview A Compact Introduction to Isabelle/HOL Tobias Nipkow TU München 1. Introduction 2. Datatypes 3. Logic 4. Sets p.1 p.2 System Architecture Overview of Isabelle/HOL ProofGeneral Isabelle/HOL Isabelle

More information

Trees. 3. (Minimally Connected) G is connected and deleting any of its edges gives rise to a disconnected graph.

Trees. 3. (Minimally Connected) G is connected and deleting any of its edges gives rise to a disconnected graph. Trees 1 Introduction Trees are very special kind of (undirected) graphs. Formally speaking, a tree is a connected graph that is acyclic. 1 This definition has some drawbacks: given a graph it is not trivial

More information

Lecture 1 Contracts. 1 A Mysterious Program : Principles of Imperative Computation (Spring 2018) Frank Pfenning

Lecture 1 Contracts. 1 A Mysterious Program : Principles of Imperative Computation (Spring 2018) Frank Pfenning Lecture 1 Contracts 15-122: Principles of Imperative Computation (Spring 2018) Frank Pfenning In these notes we review contracts, which we use to collectively denote function contracts, loop invariants,

More information

Trees. Arash Rafiey. 20 October, 2015

Trees. Arash Rafiey. 20 October, 2015 20 October, 2015 Definition Let G = (V, E) be a loop-free undirected graph. G is called a tree if G is connected and contains no cycle. Definition Let G = (V, E) be a loop-free undirected graph. G is called

More information

A Mechanically Checked Proof of the Correctness of the Boyer-Moore Fast String Searching Algorithm

A Mechanically Checked Proof of the Correctness of the Boyer-Moore Fast String Searching Algorithm A Mechanically Checked Proof of the Correctness of the Boyer-Moore Fast String Searching Algorithm J Strother MOORE a,1 and Matt MARTINEZ a a Department of Computer Sciences, University of Texas at Austin,

More information

Verification in Coq. Prof. Clarkson Fall Today s music: Check Yo Self by Ice Cube

Verification in Coq. Prof. Clarkson Fall Today s music: Check Yo Self by Ice Cube Verification in Coq Prof. Clarkson Fall 2017 Today s music: Check Yo Self by Ice Cube Review Previously in 3110: Functional programming in Coq Logic in Coq Curry-Howard correspondence (proofs are programs)

More information

CSE 421 Applications of DFS(?) Topological sort

CSE 421 Applications of DFS(?) Topological sort CSE 421 Applications of DFS(?) Topological sort Yin Tat Lee 1 Precedence Constraints In a directed graph, an edge (i, j) means task i must occur before task j. Applications Course prerequisite: course

More information

Theorem Proving Principles, Techniques, Applications Recursion

Theorem Proving Principles, Techniques, Applications Recursion NICTA Advanced Course Theorem Proving Principles, Techniques, Applications Recursion 1 CONTENT Intro & motivation, getting started with Isabelle Foundations & Principles Lambda Calculus Higher Order Logic,

More information

The self-minor conjecture for infinite trees

The self-minor conjecture for infinite trees The self-minor conjecture for infinite trees Julian Pott Abstract We prove Seymour s self-minor conjecture for infinite trees. 1. Introduction P. D. Seymour conjectured that every infinite graph is a proper

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Final exam The final exam is Saturday December 16 11:30am-2:30pm. Lecture A will take the exam in Lecture B will take the exam

More information

13.4 Deletion in red-black trees

13.4 Deletion in red-black trees Deletion in a red-black tree is similar to insertion. Apply the deletion algorithm for binary search trees. Apply node color changes and left/right rotations to fix the violations of RBT tree properties.

More information

QIR Specification. Romain Vernoux. January 6, Notations 2

QIR Specification. Romain Vernoux. January 6, Notations 2 QIR Specification Romain Vernoux January 6, 2017 Contents 1 Notations 2 2 Architecture 3 3 QIR data model, expressions and operators 4 3.1 QIR data model.................................... 4 3.2 QIR operators.....................................

More information

1 Problem Description

1 Problem Description Tree Isomorphism: An Exercise in Functional Programming Jayadev Misra 9/10/01 1 Problem Description The problem is to decide if two unordered trees are the same. More precisely, define a binary relation

More information

Lecture 1 Contracts : Principles of Imperative Computation (Fall 2018) Frank Pfenning

Lecture 1 Contracts : Principles of Imperative Computation (Fall 2018) Frank Pfenning Lecture 1 Contracts 15-122: Principles of Imperative Computation (Fall 2018) Frank Pfenning In these notes we review contracts, which we use to collectively denote function contracts, loop invariants,

More information

Discrete Mathematics Lecture 4. Harper Langston New York University

Discrete Mathematics Lecture 4. Harper Langston New York University Discrete Mathematics Lecture 4 Harper Langston New York University Sequences Sequence is a set of (usually infinite number of) ordered elements: a 1, a 2,, a n, Each individual element a k is called a

More information

CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer Science (Arkoudas and Musser) Section 17.1

CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer Science (Arkoudas and Musser) Section 17.1 CSCI.6962/4962 Software Verification Fundamental Proof Methods in Computer Science (Arkoudas and Musser) Section 17.1 Instructor: Carlos Varela Rensselaer Polytechnic Institute Spring 2018 CSCI.6962/4962

More information

Lecture Notes on Induction and Recursion

Lecture Notes on Induction and Recursion Lecture Notes on Induction and Recursion 15-317: Constructive Logic Frank Pfenning Lecture 7 September 19, 2017 1 Introduction At this point in the course we have developed a good formal understanding

More information

r=1 The Binomial Theorem. 4 MA095/98G Revision

r=1 The Binomial Theorem. 4 MA095/98G Revision Revision Read through the whole course once Make summary sheets of important definitions and results, you can use the following pages as a start and fill in more yourself Do all assignments again Do the

More information

Computational Geometry

Computational Geometry Windowing queries Windowing Windowing queries Zoom in; re-center and zoom in; select by outlining Windowing Windowing queries Windowing Windowing queries Given a set of n axis-parallel line segments, preprocess

More information

Finite State Automata are Limited. Let us use (context-free) grammars!

Finite State Automata are Limited. Let us use (context-free) grammars! Finite State Automata are Limited Let us use (context-free) grammars! Context Free Grammar for a n b n S ::= - a grammar rule S ::= a S b - another grammar rule Example of a derivation S => asb => a asb

More information

Context-Free Languages & Grammars (CFLs & CFGs) Reading: Chapter 5

Context-Free Languages & Grammars (CFLs & CFGs) Reading: Chapter 5 Context-Free Languages & Grammars (CFLs & CFGs) Reading: Chapter 5 1 Not all languages are regular So what happens to the languages which are not regular? Can we still come up with a language recognizer?

More information

8. Sorting II. 8.1 Heapsort. Heapsort. [Max-]Heap 6. Heapsort, Quicksort, Mergesort. Binary tree with the following properties Wurzel

8. Sorting II. 8.1 Heapsort. Heapsort. [Max-]Heap 6. Heapsort, Quicksort, Mergesort. Binary tree with the following properties Wurzel Heapsort, Quicksort, Mergesort 8. Sorting II 8.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] 9 210 Heapsort [Max-]Heap 6 Binary tree with the following properties Wurzel Inspiration from

More information

Induction and Semantics in Dafny

Induction and Semantics in Dafny 15-414 Lecture 11 1 Instructor: Matt Fredrikson Induction and Semantics in Dafny TA: Ryan Wagner Encoding the syntax of Imp Recall the abstract syntax of Imp: a AExp ::= n Z x Var a 1 + a 2 b BExp ::=

More information

CS473-Algorithms I. Lecture 14-A. Graph Searching: Breadth-First Search. Cevdet Aykanat - Bilkent University Computer Engineering Department

CS473-Algorithms I. Lecture 14-A. Graph Searching: Breadth-First Search. Cevdet Aykanat - Bilkent University Computer Engineering Department CS473-Algorithms I Lecture 14-A Graph Searching: Breadth-First Search 1 Graph Searching: Breadth-First Search Graph G =(V, E), directed or undirected with adjacency list repres. GOAL: Systematically explores

More information

The University of Nottingham

The University of Nottingham The University of Nottingham SCHOOL OF COMPUTER SCIENCE A LEVEL 2 MODULE, SPRING SEMESTER 2013-2014 G54FOP FOUNDATIONS OF PROGRAMMING Time allowed 2 hours Candidates may complete the front cover of their

More information

Lecture 8: The Traveling Salesman Problem

Lecture 8: The Traveling Salesman Problem Lecture 8: The Traveling Salesman Problem Let G = (V, E) be an undirected graph. A Hamiltonian cycle of G is a cycle that visits every vertex v V exactly once. Instead of Hamiltonian cycle, we sometimes

More information

Computer Science 236 Fall Nov. 11, 2010

Computer Science 236 Fall Nov. 11, 2010 Computer Science 26 Fall Nov 11, 2010 St George Campus University of Toronto Assignment Due Date: 2nd December, 2010 1 (10 marks) Assume that you are given a file of arbitrary length that contains student

More information

7. Sorting I. 7.1 Simple Sorting. Problem. Algorithm: IsSorted(A) 1 i j n. Simple Sorting

7. Sorting I. 7.1 Simple Sorting. Problem. Algorithm: IsSorted(A) 1 i j n. Simple Sorting Simple Sorting 7. Sorting I 7.1 Simple Sorting Selection Sort, Insertion Sort, Bubblesort [Ottman/Widmayer, Kap. 2.1, Cormen et al, Kap. 2.1, 2.2, Exercise 2.2-2, Problem 2-2 19 197 Problem Algorithm:

More information

[Draft. Please do not distribute] Online Proof-Producing Decision Procedure for Mixed-Integer Linear Arithmetic

[Draft. Please do not distribute] Online Proof-Producing Decision Procedure for Mixed-Integer Linear Arithmetic [Draft Please do not distribute] Online Proof-Producing Decision Procedure for Mixed-Integer Linear Arithmetic Sergey Berezin, Vijay Ganesh, and David L Dill Stanford University {berezin,vganesh,dill}@stanfordedu

More information

Search Trees. Undirected graph Directed graph Tree Binary search tree

Search Trees. Undirected graph Directed graph Tree Binary search tree Search Trees Undirected graph Directed graph Tree Binary search tree 1 Binary Search Tree Binary search key property: Let x be a node in a binary search tree. If y is a node in the left subtree of x, then

More information

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings On the Relationships between Zero Forcing Numbers and Certain Graph Coverings Fatemeh Alinaghipour Taklimi, Shaun Fallat 1,, Karen Meagher 2 Department of Mathematics and Statistics, University of Regina,

More information

Recall our recursive multiply algorithm:

Recall our recursive multiply algorithm: Recall our recursive multiply algorithm: PRECONDITION: x and y are both binary bit arrays of length n, n a power of 2. POSTCONDITION: Returns a binary bit array equal to the product of x and y. REC MULTIPLY

More information

Treewidth and graph minors

Treewidth and graph minors Treewidth and graph minors Lectures 9 and 10, December 29, 2011, January 5, 2012 We shall touch upon the theory of Graph Minors by Robertson and Seymour. This theory gives a very general condition under

More information

Notes 4 : Approximating Maximum Parsimony

Notes 4 : Approximating Maximum Parsimony Notes 4 : Approximating Maximum Parsimony MATH 833 - Fall 2012 Lecturer: Sebastien Roch References: [SS03, Chapters 2, 5], [DPV06, Chapters 5, 9] 1 Coping with NP-completeness Local search heuristics.

More information

CSCI 5454, CU Boulder Samriti Kanwar Lecture April 2013

CSCI 5454, CU Boulder Samriti Kanwar Lecture April 2013 1. Byzantine Agreement Problem In the Byzantine agreement problem, n processors communicate with each other by sending messages over bidirectional links in order to reach an agreement on a binary value.

More information

Chapter S:V. V. Formal Properties of A*

Chapter S:V. V. Formal Properties of A* Chapter S:V V. Formal Properties of A* Properties of Search Space Graphs Auxiliary Concepts Roadmap Completeness of A* Admissibility of A* Efficiency of A* Monotone Heuristic Functions S:V-1 Formal Properties

More information

Red-black tree. Background and terminology. Uses and advantages

Red-black tree. Background and terminology. Uses and advantages Red-black tree A red-black tree is a type of self-balancing binary search tree, a data structure used in computer science, typically used to implement associative arrays. The original structure was invented

More information

Foundations of AI. 9. Predicate Logic. Syntax and Semantics, Normal Forms, Herbrand Expansion, Resolution

Foundations of AI. 9. Predicate Logic. Syntax and Semantics, Normal Forms, Herbrand Expansion, Resolution Foundations of AI 9. Predicate Logic Syntax and Semantics, Normal Forms, Herbrand Expansion, Resolution Wolfram Burgard, Andreas Karwath, Bernhard Nebel, and Martin Riedmiller 09/1 Contents Motivation

More information

γ(ɛ) (a, b) (a, d) (d, a) (a, b) (c, d) (d, d) (e, e) (e, a) (e, e) (a) Draw a picture of G.

γ(ɛ) (a, b) (a, d) (d, a) (a, b) (c, d) (d, d) (e, e) (e, a) (e, e) (a) Draw a picture of G. MAD 3105 Spring 2006 Solutions for Review for Test 2 1. Define a graph G with V (G) = {a, b, c, d, e}, E(G) = {r, s, t, u, v, w, x, y, z} and γ, the function defining the edges, is given by the table ɛ

More information

CMPSCI 250: Introduction to Computation. Lecture #14: Induction and Recursion (Still More Induction) David Mix Barrington 14 March 2013

CMPSCI 250: Introduction to Computation. Lecture #14: Induction and Recursion (Still More Induction) David Mix Barrington 14 March 2013 CMPSCI 250: Introduction to Computation Lecture #14: Induction and Recursion (Still More Induction) David Mix Barrington 14 March 2013 Induction and Recursion Three Rules for Recursive Algorithms Proving

More information

4.8 Huffman Codes. These lecture slides are supplied by Mathijs de Weerd

4.8 Huffman Codes. These lecture slides are supplied by Mathijs de Weerd 4.8 Huffman Codes These lecture slides are supplied by Mathijs de Weerd Data Compression Q. Given a text that uses 32 symbols (26 different letters, space, and some punctuation characters), how can we

More information

Shared Variables and Interference

Shared Variables and Interference Illinois Institute of Technology Lecture 24 Shared Variables and Interference CS 536: Science of Programming, Spring 2018 A. Why Parallel programs can coordinate their work using shared variables, but

More information

Lecture 3: Graphs and flows

Lecture 3: Graphs and flows Chapter 3 Lecture 3: Graphs and flows Graphs: a useful combinatorial structure. Definitions: graph, directed and undirected graph, edge as ordered pair, path, cycle, connected graph, strongly connected

More information

The Use of Proof Planning Critics to Diagnose Errors in the Base Cases of Recursive Programs

The Use of Proof Planning Critics to Diagnose Errors in the Base Cases of Recursive Programs The Use of Proof Planning Critics to Diagnose Errors in the Base Cases of Recursive Programs Louise A. Dennis School of Computer Science and Information Technology, University of Nottingham, lad@cs.nott.ac.uk

More information

Part II. C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS

Part II. C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS Part II C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS Converting Directed to Undirected Graphs (1) Converting Directed to Undirected Graphs (2) Add extra links between

More information

Function compose, Type cut, And the Algebra of logic

Function compose, Type cut, And the Algebra of logic Function compose, Type cut, And the Algebra of logic XIE Yuheng SZDIY community xyheme@gmail.com Abstract In this paper, I demonstrate the Curry-Howard correspondence of Gentzen s sequent calculus, and

More information

Data Structure Lecture#10: Binary Trees (Chapter 5) U Kang Seoul National University

Data Structure Lecture#10: Binary Trees (Chapter 5) U Kang Seoul National University Data Structure Lecture#10: Binary Trees (Chapter 5) U Kang Seoul National University U Kang (2016) 1 In This Lecture The concept of binary tree, its terms, and its operations Full binary tree theorem Idea

More information

Introduction to dependent types in Coq

Introduction to dependent types in Coq October 24, 2008 basic use of the Coq system In Coq, you can play with simple values and functions. The basic command is called Check, to verify if an expression is well-formed and learn what is its type.

More information

CMPSCI 250: Introduction to Computation. Lecture #22: Graphs, Paths, and Trees David Mix Barrington 12 March 2014

CMPSCI 250: Introduction to Computation. Lecture #22: Graphs, Paths, and Trees David Mix Barrington 12 March 2014 CMPSCI 250: Introduction to Computation Lecture #22: Graphs, Paths, and Trees David Mix Barrington 12 March 2014 Graphs, Paths, and Trees Graph Definitions Paths and the Path Predicate Cycles, Directed

More information

A Reduction of Conway s Thrackle Conjecture

A Reduction of Conway s Thrackle Conjecture A Reduction of Conway s Thrackle Conjecture Wei Li, Karen Daniels, and Konstantin Rybnikov Department of Computer Science and Department of Mathematical Sciences University of Massachusetts, Lowell 01854

More information

Finding Strongly Connected Components

Finding Strongly Connected Components Yufei Tao ITEE University of Queensland We just can t get enough of the beautiful algorithm of DFS! In this lecture, we will use it to solve a problem finding strongly connected components that seems to

More information

Scribes: Romil Verma, Juliana Cook (2015), Virginia Williams, Date: May 1, 2017 and Seth Hildick-Smith (2016), G. Valiant (2017), M.

Scribes: Romil Verma, Juliana Cook (2015), Virginia Williams, Date: May 1, 2017 and Seth Hildick-Smith (2016), G. Valiant (2017), M. Lecture 9 Graphs Scribes: Romil Verma, Juliana Cook (2015), Virginia Williams, Date: May 1, 2017 and Seth Hildick-Smith (2016), G. Valiant (2017), M. Wootters (2017) 1 Graphs A graph is a set of vertices

More information

INCREMENTAL SOFTWARE CONSTRUCTION WITH REFINEMENT DIAGRAMS

INCREMENTAL SOFTWARE CONSTRUCTION WITH REFINEMENT DIAGRAMS INCREMENTAL SOFTWARE CONSTRUCTION WITH REFINEMENT DIAGRAMS Ralph-Johan Back Abo Akademi University July 6, 2006 Home page: www.abo.fi/~backrj Research / Current research / Incremental Software Construction

More information

Outline. Introduction. 2 Proof of Correctness. 3 Final Notes. Precondition P 1 : Inputs include

Outline. Introduction. 2 Proof of Correctness. 3 Final Notes. Precondition P 1 : Inputs include Outline Computer Science 331 Correctness of Algorithms Mike Jacobson Department of Computer Science University of Calgary Lectures #2-4 1 What is a? Applications 2 Recursive Algorithms 3 Final Notes Additional

More information

Prelim 2. CS 2110, November 20, 2014, 7:30 PM Extra Total Question True/False Short Answer

Prelim 2. CS 2110, November 20, 2014, 7:30 PM Extra Total Question True/False Short Answer Prelim 2 CS 2110, November 20, 2014, 7:30 PM 1 2 3 4 5 Extra Total Question True/False Short Answer Complexity Induction Trees Graphs Extra Credit Max 20 10 15 25 30 5 100 Score Grader The exam is closed

More information

Exact Algorithms Lecture 7: FPT Hardness and the ETH

Exact Algorithms Lecture 7: FPT Hardness and the ETH Exact Algorithms Lecture 7: FPT Hardness and the ETH February 12, 2016 Lecturer: Michael Lampis 1 Reminder: FPT algorithms Definition 1. A parameterized problem is a function from (χ, k) {0, 1} N to {0,

More information

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION Alessandro Artale UniBZ - http://www.inf.unibz.it/ artale/ SECTION 5.5 Application: Correctness of Algorithms Copyright Cengage Learning. All

More information

Logic and Computation Lecture 20 CSU 290 Spring 2009 (Pucella) Thursday, Mar 12, 2009

Logic and Computation Lecture 20 CSU 290 Spring 2009 (Pucella) Thursday, Mar 12, 2009 Logic and Computation Lecture 20 CSU 290 Spring 2009 (Pucella) Thursday, Mar 12, 2009 Note that I change the name of the functions slightly in these notes from what I used in class, to be consistent with

More information

(Re)Introduction to Graphs and Some Algorithms

(Re)Introduction to Graphs and Some Algorithms (Re)Introduction to Graphs and Some Algorithms Graph Terminology (I) A graph is defined by a set of vertices V and a set of edges E. The edge set must work over the defined vertices in the vertex set.

More information

Proving Theorems with Athena

Proving Theorems with Athena Proving Theorems with Athena David R. Musser Aytekin Vargun August 28, 2003, revised January 26, 2005 Contents 1 Introduction 1 2 Proofs about order relations 2 3 Proofs about natural numbers 7 3.1 Term

More information

Inductive data types

Inductive data types Inductive data types Assia Mahboubi 9 juin 2010 In this class, we shall present how Coq s type system allows us to define data types using inductive declarations. Generalities Inductive declarations An

More information

Solutions to In-Class Problems Week 4, Fri

Solutions to In-Class Problems Week 4, Fri Massachusetts Institute of Technology 6.042J/18.062J, Fall 02: Mathematics for Computer Science Professor Albert Meyer and Dr. Radhika Nagpal Solutions to In-Class Problems Week 4, Fri Definition: The

More information

Figure 4.1: The evolution of a rooted tree.

Figure 4.1: The evolution of a rooted tree. 106 CHAPTER 4. INDUCTION, RECURSION AND RECURRENCES 4.6 Rooted Trees 4.6.1 The idea of a rooted tree We talked about how a tree diagram helps us visualize merge sort or other divide and conquer algorithms.

More information

Solutions to the Second Midterm Exam

Solutions to the Second Midterm Exam CS/Math 240: Intro to Discrete Math 3/27/2011 Instructor: Dieter van Melkebeek Solutions to the Second Midterm Exam Problem 1 This question deals with the following implementation of binary search. Function

More information

3.4 Deduction and Evaluation: Tools Conditional-Equational Logic

3.4 Deduction and Evaluation: Tools Conditional-Equational Logic 3.4 Deduction and Evaluation: Tools 3.4.1 Conditional-Equational Logic The general definition of a formal specification from above was based on the existence of a precisely defined semantics for the syntax

More information

Week 5 Tutorial Structural Induction

Week 5 Tutorial Structural Induction Department of Computer Science, Australian National University COMP2600 / COMP6260 Formal Methods in Software Engineering Semester 2, 2016 Week 5 Tutorial Structural Induction You should hand in attempts

More information

Lecture 6: Sequential Sorting

Lecture 6: Sequential Sorting 15-150 Lecture 6: Sequential Sorting Lecture by Dan Licata February 2, 2012 Today s lecture is about sorting. Along the way, we ll learn about divide and conquer algorithms, the tree method, and complete

More information

Programming Languages Fall 2014

Programming Languages Fall 2014 Programming Languages Fall 2014 Lecture 7: Simple Types and Simply-Typed Lambda Calculus Prof. Liang Huang huang@qc.cs.cuny.edu 1 Types stuck terms? how to fix it? 2 Plan First I For today, we ll go back

More information

Lecture 10: Strongly Connected Components, Biconnected Graphs

Lecture 10: Strongly Connected Components, Biconnected Graphs 15-750: Graduate Algorithms February 8, 2016 Lecture 10: Strongly Connected Components, Biconnected Graphs Lecturer: David Witmer Scribe: Zhong Zhou 1 DFS Continued We have introduced Depth-First Search

More information

D-Separation. b) the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set C.

D-Separation. b) the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set C. D-Separation Say: A, B, and C are non-intersecting subsets of nodes in a directed graph. A path from A to B is blocked by C if it contains a node such that either a) the arrows on the path meet either

More information

Approximation Algorithms

Approximation Algorithms Approximation Algorithms Lecture 14 01/25/11 1 - Again Problem: Steiner Tree. Given an undirected graph G=(V,E) with non-negative edge costs c : E Q + whose vertex set is partitioned into required vertices

More information

Shared Variables and Interference

Shared Variables and Interference Solved Shared Variables and Interference CS 536: Science of Programming, Fall 2018 A. Why Parallel programs can coordinate their work using shared variables, but it s important for threads to not interfere

More information

Introduction to Machine Learning Lecture 4. Mehryar Mohri Courant Institute and Google Research

Introduction to Machine Learning Lecture 4. Mehryar Mohri Courant Institute and Google Research Introduction to Machine Learning Lecture 4 Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu Nearest-Neighbor Algorithms Nearest Neighbor Algorithms Definition: fix k 1, given a labeled

More information

CHAPTER 10 GRAPHS AND TREES. Alessandro Artale UniBZ - artale/

CHAPTER 10 GRAPHS AND TREES. Alessandro Artale UniBZ -  artale/ CHAPTER 10 GRAPHS AND TREES Alessandro Artale UniBZ - http://www.inf.unibz.it/ artale/ SECTION 10.5 Trees Copyright Cengage Learning. All rights reserved. Trees In mathematics, a tree is a connected graph

More information