Discrete Mathematics Lecture 4. Harper Langston New York University

Size: px
Start display at page:

Download "Discrete Mathematics Lecture 4. Harper Langston New York University"

Transcription

1 Discrete Mathematics Lecture 4 Harper Langston New York University

2 Sequences Sequence is a set of (usually infinite number of) ordered elements: a 1, a 2,, a n, Each individual element a k is called a term, where k is called an index Sequences can be computed using an explicit formula: a k = k * (k + 1) for k > 1 Alternate sign sequences Finding an explicit formula given initial terms of the sequence: 1, -1/4, 1/9, -1/16, 1/25, -1/36, Sequence is (most often) represented in a computer program as a single-dimensional array

3 Sequence Operations Summation: Σ, expanded form, limits (lower, upper) of summation, dummy index Change of index inside summation Product: Π, expanded form, limits (lower, upper) of product, dummy index Factorial: n!, n! = n * (n 1)!

4 Review Mathematical Induction Principle of Mathematical Induction: Let P(n) be a predicate that is defined for integers n and let a be some integer. If the following two premises are true: P(a) is a true k a, P(k) P(k + 1) then the following conclusion is true as well P(n) is true for all n a

5 Applications of Mathematical Induction Show that n = n * (n + 1) / 2 (Prove on board) Sum of geometric series: r 0 + r r n = (r n+1 1) / (r 1) (Prove on board)

6 Examples that Can be Proved with Mathematical Induction Show that 2 2n 1 is divisible by 3 (in book) Show (on board) that for n > 2: 2n + 1 < 2 n Show that x n y n is divisible by x y Show that n 3 n is divisible by 6 (similar to book problem)

7 Strong Mathematical Induction Utilization of predicates P(a), P(a + 1),, P(n) to show P(n + 1). Variation of normal M.I., but basis may contain several proofs and in assumption, truth assumed for all values through from base to k. Examples: Any integer greater than 1 is divisible by a prime Existence and Uniqueness of binary integer representation (Read in book)

8 Well-Ordering Principle Well-ordering principle for integers: a set of integers that are bounded from below (all elements are greater than a fixed integer) contains a least element Example: Existence of quotient-remainder representation of an integer n against integer d

9 Stepping back: Algorithms Last lecture we talked about some elementary number theory such as the Quotient Remainder Theorem (pg 157) Algorithm is step-by-step method for performing some action (such as finding remainder in Q.R.) Cost of statements execution Simple statements Conditional statements Iterative statements

10 Example: Division Algorithm Input: integers a and d Output: quotient q and remainder r Body: r = a; q = 0; while (r >= d) r = r d; q = q + 1; end while

11 Greatest Common Divisor The greatest common divisor of two integers a and b is another integer d with the following two properties: d a and d b if c a and c b, then c d Lemma 1: gcd(r, 0) = r Lemma 2: if a = b * q + r, then gcd(a, b) = gcd(b, r)

12 Euclidean Algorithm Input: integers a and b (a>b>=0) Output: greatest common divisor gcd Body: r = b; while (b > 0) r = a mod b; a = b; b = r; end while gcd = a;

13 Exercise Least common multiple: lcm Prove that for all positive integers a and b, gcd(a, b) = lcm(a, b) iff a = b

14 Correctness of Algorithms Assertions Pre-condition is a predicate describing initial state before an algorithm is executed Post-condition is a predicate describing final state after an algorithm is executed Loop guard Loop is defined as correct with respect to its preand post- conditions, if whenever the algorithm variables satisfy the pre-conditions and the loop is executed, then the algorithm satisfies the post-conditions as well

15 Loop Invariant Theorem Let a while loop with guard G be given together with its pre- and post- conditions. Let predicate I(n) describing loop invariant be given. If the following 4 properties hold, then the loop is correct: Basis Property: I(0) is true before the first iteration of the loop Inductive Property: If G and I(k) is true, then I(k + 1) is true Eventual Falsity of the Guard: After finite number of iterations, G becomes false Correctness of the Post-condition: If N is the least number of iterations after which G becomes false and I(N) is true, then post-conditions are true as well

16 Correctness of Some Algorithms Product Algorithm: pre-conditions: m 0, i = 0, product = 0 while (i < m) { product += x; i++; } post-condition: product = m * x

17 Correctness of Some Division Algorithm Algorithms pre-conditions: a 0, d > 0, r = a, q = 0 while (r d) { r -= d; } q++; post-conditions: a = q * d + r, 0 r < d

18 Correctness of Some Euclidean Algorithm Algorithms pre-conditions: a > b 0, r = b while (b > 0) { } r = a mod b; a = b; b = r; post-condition: a = gcd(a, b)

19 Basics of Set Theory Set and element are undefined notions in the set theory and are taken for granted Set notation: {1, 2, 3}, {{1, 2}, {3}, {1, 2, 3}}, {1, 2, 3, },, {x R -3 < x < 6} Set A is called a subset of set B, written as A B, when x, x A x B. What is negation? A is a proper subset of B, when A is a subset of B and x B and x A Visual representation of the sets Distinction between and

20 Set Operations Set a equals set B, iff every element of set A is in set B and vice versa. (A = B A B /\ B A) Proof technique for showing sets equality (example) Union of two sets is a set of all elements that belong to at least one of the sets (notation on board) Intersection of two sets is a set of all elements that belong to both sets (notation on board) Difference of two sets is a set of elements in one set, but not the other (notation on board) Complement of a set is a difference between universal set and a given set (notation on board) Examples

21 Empty Set S = {x R, x 2 = -1} X = {1, 3}, Y = {2, 4}, C = X Y (X and Y are disjoint) Empty set has no elements Empty set is a subset of any set There is exactly one empty set Properties of empty set: A = A, A = A A c =, A A c = U U c =, c = U

22 Set Partitioning Two sets are called disjoint if they have no elements in common Theorem: A B and B are disjoint A collection of sets A 1, A 2,, A n is called mutually disjoint when any pair of sets from this collection is disjoint A collection of non-empty sets {A 1, A 2,, A n } is called a partition of a set A when the union of these sets is A and this collection consists of mutually disjoint sets

23 Power Set Power set of A is the set of all subsets of A Example on board Theorem: if A B, then P(A) P(B) Theorem: If set X has n elements, then P(X) has 2 n elements (proof in Section 5.3 will show if have time)

24 Cartesian Products Ordered n-tuple is a set of ordered n elements. Equality of n-tuples Cartesian product of n sets is a set of n- tuples, where each element in the n-tuple belongs to the respective set participating in the product

25 Set Properties Inclusion of Intersection: A B A and A B B Inclusion in Union: A A B and B A B Transitivity of Inclusion: (A B B C) A C Set Definitions: x X Y x X y Y x X Y x X y Y x X Y x X y Y x X c x X (x, y) X Y x X y Y

26 Set Identities Commutative Laws: A B = A B and A B = B A Associative Laws: (A B) C = A (B C) and (A B) C = A (B C) Distributive Laws: A (B C) = (A B) (A C) and A (B C) = (A B) (A C) Intersection and Union with universal set: A U = A and A U = U Double Complement Law: (A c ) c = A Idempotent Laws: A A = A and A A = A De Morgan s Laws: (A B) c = A c B c and (A B) c = A c B c Absorption Laws: A (A B) = A and A (A B) = A Alternate Representation for Difference: A B = A B c Intersection and Union with a subset: if A B, then A B = A and A B = B

27 Proving Equality First show that one set is a subset of another (what we did with examples before) To show this, choose an arbitrary particular element as with direct proofs (call it x), and show that if x is in A then x is in B to show that A is a subset of B Example (step through all cases)

28 Disproofs, Counterexamples and Algebraic Proofs Is is true that (A B) (B C) = A C? (No via counterexample) Show that (A B) C = (A C) (B C) (Can do with an algebraic proof, slightly different)

29 Boolean Algebra A Boolean Algebra is a set of elements together with two operations denoted as + and * and satisfying the following properties: Commutative: a + b = b + a, a * b = b * a Associative: (a + b) + c = a + (b + c), (a * b) *c = a * (b * c) Distributive: a + (b * c) = (a + b) * (a + c), a * (b + c) = (a * b) + (a * c) Identity: a + 0 = a, a * 1 = a for some distinct unique 0 and 1 Complement: a + ã = 1, a * ã = 0

30 Russell s Paradox Set of all integers, set of all abstract ideas Consider S = {A, A is a set and A A} Is S an element of S? Barber puzzle: a male barber shaves all those men who do not shave themselves. Does the barber shave himself? Consider S = {A U, A A}. Is S S? Godel: No way to rigorously prove that mathematics is free of contradictions. ( This statement is not provable is true but not provable) (consistency of an axiomatic system is not provable within that system)

31 Halting Problem There is no computer algorithm that will accept any algorithm X and data set D as input and then will output halts or loops forever to indicate whether X terminates in a finite number of steps when X is run with data set D. Proof is by contradiction

CSC Discrete Math I, Spring Sets

CSC Discrete Math I, Spring Sets CSC 125 - Discrete Math I, Spring 2017 Sets Sets A set is well-defined, unordered collection of objects The objects in a set are called the elements, or members, of the set A set is said to contain its

More information

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics

[Ch 6] Set Theory. 1. Basic Concepts and Definitions. 400 lecture note #4. 1) Basics 400 lecture note #4 [Ch 6] Set Theory 1. Basic Concepts and Definitions 1) Basics Element: ; A is a set consisting of elements x which is in a/another set S such that P(x) is true. Empty set: notated {

More information

CSE 215: Foundations of Computer Science Recitation Exercises Set #9 Stony Brook University. Name: ID#: Section #: Score: / 4

CSE 215: Foundations of Computer Science Recitation Exercises Set #9 Stony Brook University. Name: ID#: Section #: Score: / 4 CSE 215: Foundations of Computer Science Recitation Exercises Set #9 Stony Brook University Name: ID#: Section #: Score: / 4 Unit 14: Set Theory: Definitions and Properties 1. Let C = {n Z n = 6r 5 for

More information

Chapter 3. Set Theory. 3.1 What is a Set?

Chapter 3. Set Theory. 3.1 What is a Set? Chapter 3 Set Theory 3.1 What is a Set? A set is a well-defined collection of objects called elements or members of the set. Here, well-defined means accurately and unambiguously stated or described. Any

More information

Summary of Course Coverage

Summary of Course Coverage CS-227, Discrete Structures I Spring 2006 Semester Summary of Course Coverage 1) Propositional Calculus a) Negation (logical NOT) b) Conjunction (logical AND) c) Disjunction (logical inclusive-or) d) Inequalities

More information

This Lecture. We will first introduce some basic set theory before we do counting. Basic Definitions. Operations on Sets.

This Lecture. We will first introduce some basic set theory before we do counting. Basic Definitions. Operations on Sets. Sets A B C This Lecture We will first introduce some basic set theory before we do counting. Basic Definitions Operations on Sets Set Identities Defining Sets Definition: A set is an unordered collection

More information

DISCRETE MATHEMATICS

DISCRETE MATHEMATICS DISCRETE MATHEMATICS WITH APPLICATIONS THIRD EDITION SUSANNA S. EPP DePaul University THOIVISON * BROOKS/COLE Australia Canada Mexico Singapore Spain United Kingdom United States CONTENTS Chapter 1 The

More information

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION Copyright Cengage Learning. All rights reserved. SECTION 5.5 Application: Correctness of Algorithms Copyright Cengage Learning. All rights reserved.

More information

Integers and Mathematical Induction

Integers and Mathematical Induction IT Program, NTUT, Fall 07 Integers and Mathematical Induction Chuan-Ming Liu Computer Science and Information Engineering National Taipei University of Technology TAIWAN 1 Learning Objectives Learn about

More information

Math Introduction to Advanced Mathematics

Math Introduction to Advanced Mathematics Math 215 - Introduction to Advanced Mathematics Number Theory Fall 2017 The following introductory guide to number theory is borrowed from Drew Shulman and is used in a couple of other Math 215 classes.

More information

1 Elementary number theory

1 Elementary number theory Math 215 - Introduction to Advanced Mathematics Spring 2019 1 Elementary number theory We assume the existence of the natural numbers and the integers N = {1, 2, 3,...} Z = {..., 3, 2, 1, 0, 1, 2, 3,...},

More information

Introduction to Sets and Logic (MATH 1190)

Introduction to Sets and Logic (MATH 1190) Introduction to Sets and Logic () Instructor: Email: shenlili@yorku.ca Department of Mathematics and Statistics York University Dec 4, 2014 Outline 1 2 3 4 Definition A relation R from a set A to a set

More information

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright Cengage Learning. All rights reserved. SECTION 4.8 Application: Algorithms Copyright Cengage Learning. All rights reserved. Application:

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Final exam The final exam is Saturday December 16 11:30am-2:30pm. Lecture A will take the exam in Lecture B will take the exam

More information

CSE 20 DISCRETE MATH. Winter

CSE 20 DISCRETE MATH. Winter CSE 20 DISCRETE MATH Winter 2017 http://cseweb.ucsd.edu/classes/wi17/cse20-ab/ Final exam The final exam is Saturday March 18 8am-11am. Lecture A will take the exam in GH 242 Lecture B will take the exam

More information

1 of 7 7/15/2009 3:40 PM Virtual Laboratories > 1. Foundations > 1 2 3 4 5 6 7 8 9 1. Sets Poincaré's quote, on the title page of this chapter could not be more wrong (what was he thinking?). Set theory

More information

Review of Sets. Review. Philippe B. Laval. Current Semester. Kennesaw State University. Philippe B. Laval (KSU) Sets Current Semester 1 / 16

Review of Sets. Review. Philippe B. Laval. Current Semester. Kennesaw State University. Philippe B. Laval (KSU) Sets Current Semester 1 / 16 Review of Sets Review Philippe B. Laval Kennesaw State University Current Semester Philippe B. Laval (KSU) Sets Current Semester 1 / 16 Outline 1 Introduction 2 Definitions, Notations and Examples 3 Special

More information

Chapter Summary. Mathematical Induction Recursive Definitions Structural Induction Recursive Algorithms

Chapter Summary. Mathematical Induction Recursive Definitions Structural Induction Recursive Algorithms Chapter Summary Mathematical Induction Recursive Definitions Structural Induction Recursive Algorithms Section 5.1 Sec.on Summary Mathematical Induction Examples of Proof by Mathematical Induction Mistaken

More information

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION

SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION CHAPTER 5 SEQUENCES, MATHEMATICAL INDUCTION, AND RECURSION Alessandro Artale UniBZ - http://www.inf.unibz.it/ artale/ SECTION 5.5 Application: Correctness of Algorithms Copyright Cengage Learning. All

More information

2.1 Sets 2.2 Set Operations

2.1 Sets 2.2 Set Operations CSC2510 Theoretical Foundations of Computer Science 2.1 Sets 2.2 Set Operations Introduction to Set Theory A set is a structure, representing an unordered collection (group, plurality) of zero or more

More information

2.2 Set Operations. Introduction DEFINITION 1. EXAMPLE 1 The union of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 2, 3, 5}; that is, EXAMPLE 2

2.2 Set Operations. Introduction DEFINITION 1. EXAMPLE 1 The union of the sets {1, 3, 5} and {1, 2, 3} is the set {1, 2, 3, 5}; that is, EXAMPLE 2 2.2 Set Operations 127 2.2 Set Operations Introduction Two, or more, sets can be combined in many different ways. For instance, starting with the set of mathematics majors at your school and the set of

More information

CSE 20 DISCRETE MATH WINTER

CSE 20 DISCRETE MATH WINTER CSE 20 DISCRETE MATH WINTER 2016 http://cseweb.ucsd.edu/classes/wi16/cse20-ab/ Today's learning goals Explain the steps in a proof by (strong) mathematical induction Use (strong) mathematical induction

More information

2 Review of Set Theory

2 Review of Set Theory 2 Review of Set Theory Example 2.1. Let Ω = {1, 2, 3, 4, 5, 6} 2.2. Venn diagram is very useful in set theory. It is often used to portray relationships between sets. Many identities can be read out simply

More information

COMP Logic for Computer Scientists. Lecture 17

COMP Logic for Computer Scientists. Lecture 17 COMP 1002 Logic for Computer Scientists Lecture 17 5 2 J Puzzle: the barber In a certain village, there is a (male) barber who shaves all and only those men of the village who do not shave themselves.

More information

r=1 The Binomial Theorem. 4 MA095/98G Revision

r=1 The Binomial Theorem. 4 MA095/98G Revision Revision Read through the whole course once Make summary sheets of important definitions and results, you can use the following pages as a start and fill in more yourself Do all assignments again Do the

More information

9.5 Equivalence Relations

9.5 Equivalence Relations 9.5 Equivalence Relations You know from your early study of fractions that each fraction has many equivalent forms. For example, 2, 2 4, 3 6, 2, 3 6, 5 30,... are all different ways to represent the same

More information

1.1 - Introduction to Sets

1.1 - Introduction to Sets 1.1 - Introduction to Sets Math 166-502 Blake Boudreaux Department of Mathematics Texas A&M University January 18, 2018 Blake Boudreaux (Texas A&M University) 1.1 - Introduction to Sets January 18, 2018

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics Lecture 2: Basic Structures: Set Theory MING GAO DaSE@ ECNU (for course related communications) mgao@dase.ecnu.edu.cn Sep. 18, 2017 Outline 1 Set Concepts 2 Set Operations 3 Application

More information

MATH 139 W12 Review 1 Checklist 1. Exam Checklist. 1. Introduction to Predicates and Quantified Statements (chapters ).

MATH 139 W12 Review 1 Checklist 1. Exam Checklist. 1. Introduction to Predicates and Quantified Statements (chapters ). MATH 139 W12 Review 1 Checklist 1 Exam Checklist 1. Introduction to Predicates and Quantified Statements (chapters 3.1-3.4). universal and existential statements truth set negations of universal and existential

More information

CHAPTER 8. Copyright Cengage Learning. All rights reserved.

CHAPTER 8. Copyright Cengage Learning. All rights reserved. CHAPTER 8 RELATIONS Copyright Cengage Learning. All rights reserved. SECTION 8.3 Equivalence Relations Copyright Cengage Learning. All rights reserved. The Relation Induced by a Partition 3 The Relation

More information

Lectures on Order and Topology

Lectures on Order and Topology Lectures on Order and Topology Antonino Salibra 17 November 2014 1 Topology: main definitions and notation Definition 1.1 A topological space X is a pair X = ( X, OX) where X is a nonempty set and OX is

More information

A set with only one member is called a SINGLETON. A set with no members is called the EMPTY SET or 2 N

A set with only one member is called a SINGLETON. A set with no members is called the EMPTY SET or 2 N Mathematical Preliminaries Read pages 529-540 1. Set Theory 1.1 What is a set? A set is a collection of entities of any kind. It can be finite or infinite. A = {a, b, c} N = {1, 2, 3, } An entity is an

More information

CS100: DISCRETE STRUCTURES

CS100: DISCRETE STRUCTURES CS: DISCRETE STRUCTURES Computer Science Department Lecture : Set and Sets Operations (Ch2) Lecture Contents 2 Sets Definition. Some Important Sets. Notation used to describe membership in sets. How to

More information

Interpretations and Models. Chapter Axiomatic Systems and Incidence Geometry

Interpretations and Models. Chapter Axiomatic Systems and Incidence Geometry Interpretations and Models Chapter 2.1-2.4 - Axiomatic Systems and Incidence Geometry Axiomatic Systems in Mathematics The gold standard for rigor in an area of mathematics Not fully achieved in most areas

More information

The set consisting of all natural numbers that are in A and are in B is the set f1; 3; 5g;

The set consisting of all natural numbers that are in A and are in B is the set f1; 3; 5g; Chapter 5 Set Theory 5.1 Sets and Operations on Sets Preview Activity 1 (Set Operations) Before beginning this section, it would be a good idea to review sets and set notation, including the roster method

More information

Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103. Chapter 2. Sets

Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103. Chapter 2. Sets Taibah University College of Computer Science & Engineering Course Title: Discrete Mathematics Code: CS 103 Chapter 2 Sets Slides are adopted from Discrete Mathematics and It's Applications Kenneth H.

More information

2. Sets. 2.1&2.2: Sets and Subsets. Combining Sets. c Dr Oksana Shatalov, Fall

2. Sets. 2.1&2.2: Sets and Subsets. Combining Sets. c Dr Oksana Shatalov, Fall c Dr Oksana Shatalov, Fall 2014 1 2. Sets 2.1&2.2: Sets and Subsets. Combining Sets. Set Terminology and Notation DEFINITIONS: Set is well-defined collection of objects. Elements are objects or members

More information

1 Elementary number theory

1 Elementary number theory 1 Elementary number theory We assume the existence of the natural numbers and the integers N = {1, 2, 3,...} Z = {..., 3, 2, 1, 0, 1, 2, 3,...}, along with their most basic arithmetical and ordering properties.

More information

Number System. Introduction. Natural Numbers (N) Whole Numbers (W) Integers (Z) Prime Numbers (P) Face Value. Place Value

Number System. Introduction. Natural Numbers (N) Whole Numbers (W) Integers (Z) Prime Numbers (P) Face Value. Place Value 1 Number System Introduction In this chapter, we will study about the number system and number line. We will also learn about the four fundamental operations on whole numbers and their properties. Natural

More information

Sets. Mukulika Ghosh. Fall Based on slides by Dr. Hyunyoung Lee

Sets. Mukulika Ghosh. Fall Based on slides by Dr. Hyunyoung Lee Sets Mukulika Ghosh Fall 2018 Based on slides by Dr. Hyunyoung Lee Sets Sets A set is an unordered collection of objects, called elements, without duplication. We write a A to denote that a is an element

More information

Relational Database: The Relational Data Model; Operations on Database Relations

Relational Database: The Relational Data Model; Operations on Database Relations Relational Database: The Relational Data Model; Operations on Database Relations Greg Plaxton Theory in Programming Practice, Spring 2005 Department of Computer Science University of Texas at Austin Overview

More information

11 Sets II Operations

11 Sets II Operations 11 Sets II Operations Tom Lewis Fall Term 2010 Tom Lewis () 11 Sets II Operations Fall Term 2010 1 / 12 Outline 1 Union and intersection 2 Set operations 3 The size of a union 4 Difference and symmetric

More information

Today s Topics. What is a set?

Today s Topics. What is a set? Today s Topics Introduction to set theory What is a set? Set notation Basic set operations What is a set? Definition: A set is an unordered collection of objects Examples: Sets can contain items of mixed

More information

Scan Scheduling Specification and Analysis

Scan Scheduling Specification and Analysis Scan Scheduling Specification and Analysis Bruno Dutertre System Design Laboratory SRI International Menlo Park, CA 94025 May 24, 2000 This work was partially funded by DARPA/AFRL under BAE System subcontract

More information

c) the set of students at your school who either are sophomores or are taking discrete mathematics

c) the set of students at your school who either are sophomores or are taking discrete mathematics Exercises Exercises Page 136 1. Let A be the set of students who live within one mile of school and let B be the set of students who walk to classes. Describe the students in each of these sets. a) A B

More information

Know the Well-ordering principle: Any set of positive integers which has at least one element contains a smallest element.

Know the Well-ordering principle: Any set of positive integers which has at least one element contains a smallest element. The first exam will be on Wednesday, September 22, 2010. The syllabus will be sections 1.1 and 1.2 in Lax, and the number theory handout found on the class web site, plus the handout on the method of successive

More information

9/19/12. Why Study Discrete Math? What is discrete? Sets (Rosen, Chapter 2) can be described by discrete math TOPICS

9/19/12. Why Study Discrete Math? What is discrete? Sets (Rosen, Chapter 2) can be described by discrete math TOPICS What is discrete? Sets (Rosen, Chapter 2) TOPICS Discrete math Set Definition Set Operations Tuples Consisting of distinct or unconnected elements, not continuous (calculus) Helps us in Computer Science

More information

Copyright 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Chapter 6 Outline. Unary Relational Operations: SELECT and

Copyright 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley. Chapter 6 Outline. Unary Relational Operations: SELECT and Chapter 6 The Relational Algebra and Relational Calculus Copyright 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Chapter 6 Outline Unary Relational Operations: SELECT and PROJECT Relational

More information

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions.

THREE LECTURES ON BASIC TOPOLOGY. 1. Basic notions. THREE LECTURES ON BASIC TOPOLOGY PHILIP FOTH 1. Basic notions. Let X be a set. To make a topological space out of X, one must specify a collection T of subsets of X, which are said to be open subsets of

More information

Mathematical Induction

Mathematical Induction Mathematical Induction Victor Adamchik Fall of 2005 Lecture 3 (out of three) Plan 1. Recursive Definitions 2. Recursively Defined Sets 3. Program Correctness Recursive Definitions Sometimes it is easier

More information

STABILITY AND PARADOX IN ALGORITHMIC LOGIC

STABILITY AND PARADOX IN ALGORITHMIC LOGIC STABILITY AND PARADOX IN ALGORITHMIC LOGIC WAYNE AITKEN, JEFFREY A. BARRETT Abstract. Algorithmic logic is the logic of basic statements concerning algorithms and the algorithmic rules of deduction between

More information

Logic and Discrete Mathematics. Section 2.5 Equivalence relations and partitions

Logic and Discrete Mathematics. Section 2.5 Equivalence relations and partitions Logic and Discrete Mathematics Section 2.5 Equivalence relations and partitions Slides version: January 2015 Equivalence relations Let X be a set and R X X a binary relation on X. We call R an equivalence

More information

Introduction II. Sets. Terminology III. Definition. Definition. Definition. Example

Introduction II. Sets. Terminology III. Definition. Definition. Definition. Example Sets Slides by Christopher M. ourke Instructor: erthe Y. Choueiry Spring 2006 Computer Science & Engineering 235 Introduction to Discrete Mathematics Sections 1.6 1.7 of Rosen cse235@cse.unl.edu Introduction

More information

A Survey of Mathematics with Applications 8 th Edition, 2009

A Survey of Mathematics with Applications 8 th Edition, 2009 A Correlation of A Survey of Mathematics with Applications 8 th Edition, 2009 South Carolina Discrete Mathematics Sample Course Outline including Alternate Topics and Related Objectives INTRODUCTION This

More information

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright Cengage Learning. All rights reserved. SECTION 4.3 Direct Proof and Counterexample III: Divisibility Copyright Cengage Learning. All rights

More information

Lecture 1. 1 Notation

Lecture 1. 1 Notation Lecture 1 (The material on mathematical logic is covered in the textbook starting with Chapter 5; however, for the first few lectures, I will be providing some required background topics and will not be

More information

Ch 3.4 The Integers and Division

Ch 3.4 The Integers and Division Integers and Division 1 Ch 3.4 The Integers and Division This area of discrete mathematics belongs to the area of Number Theory. Some applications of the concepts in this section include generating pseudorandom

More information

Section 6.3: Further Rules for Counting Sets

Section 6.3: Further Rules for Counting Sets Section 6.3: Further Rules for Counting Sets Often when we are considering the probability of an event, that event is itself a union of other events. For example, suppose there is a horse race with three

More information

CSC 501 Semantics of Programming Languages

CSC 501 Semantics of Programming Languages CSC 501 Semantics of Programming Languages Subtitle: An Introduction to Formal Methods. Instructor: Dr. Lutz Hamel Email: hamel@cs.uri.edu Office: Tyler, Rm 251 Books There are no required books in this

More information

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF

ELEMENTARY NUMBER THEORY AND METHODS OF PROOF CHAPTER 4 ELEMENTARY NUMBER THEORY AND METHODS OF PROOF Copyright Cengage Learning. All rights reserved. SECTION 4.3 Direct Proof and Counterexample III: Divisibility Copyright Cengage Learning. All rights

More information

1KOd17RMoURxjn2 CSE 20 DISCRETE MATH Fall

1KOd17RMoURxjn2 CSE 20 DISCRETE MATH Fall CSE 20 https://goo.gl/forms/1o 1KOd17RMoURxjn2 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Today's learning goals Explain the steps in a proof by mathematical and/or structural

More information

Introduction to Programming in C Department of Computer Science and Engineering\ Lecture No. #02 Introduction: GCD

Introduction to Programming in C Department of Computer Science and Engineering\ Lecture No. #02 Introduction: GCD Introduction to Programming in C Department of Computer Science and Engineering\ Lecture No. #02 Introduction: GCD In this session, we will write another algorithm to solve a mathematical problem. If you

More information

SETS. Sets are of two sorts: finite infinite A system of sets is a set, whose elements are again sets.

SETS. Sets are of two sorts: finite infinite A system of sets is a set, whose elements are again sets. SETS A set is a file of objects which have at least one property in common. The objects of the set are called elements. Sets are notated with capital letters K, Z, N, etc., the elements are a, b, c, d,

More information

THEORY OF COMPUTATION

THEORY OF COMPUTATION THEORY OF COMPUTATION UNIT-1 INTRODUCTION Overview This chapter begins with an overview of those areas in the theory of computation that are basic foundation of learning TOC. This unit covers the introduction

More information

Sets 1. The things in a set are called the elements of it. If x is an element of the set S, we say

Sets 1. The things in a set are called the elements of it. If x is an element of the set S, we say Sets 1 Where does mathematics start? What are the ideas which come first, in a logical sense, and form the foundation for everything else? Can we get a very small number of basic ideas? Can we reduce it

More information

Set and Set Operations

Set and Set Operations Set and Set Operations Introduction A set is a collection of objects. The objects in a set are called elements of the set. A well defined set is a set in which we know for sure if an element belongs to

More information

Mathematically Rigorous Software Design Review of mathematical prerequisites

Mathematically Rigorous Software Design Review of mathematical prerequisites Mathematically Rigorous Software Design 2002 September 27 Part 1: Boolean algebra 1. Define the Boolean functions and, or, not, implication ( ), equivalence ( ) and equals (=) by truth tables. 2. In an

More information

Characterization of Boolean Topological Logics

Characterization of Boolean Topological Logics Characterization of Boolean Topological Logics Short Form: Boolean Topological Logics Anthony R. Fressola Denison University Granville, OH 43023 University of Illinois Urbana-Champaign, IL USA 61801-61802

More information

Discrete Mathematics SECOND EDITION OXFORD UNIVERSITY PRESS. Norman L. Biggs. Professor of Mathematics London School of Economics University of London

Discrete Mathematics SECOND EDITION OXFORD UNIVERSITY PRESS. Norman L. Biggs. Professor of Mathematics London School of Economics University of London Discrete Mathematics SECOND EDITION Norman L. Biggs Professor of Mathematics London School of Economics University of London OXFORD UNIVERSITY PRESS Contents PART I FOUNDATIONS Statements and proofs. 1

More information

Solutions to the Second Midterm Exam

Solutions to the Second Midterm Exam CS/Math 240: Intro to Discrete Math 3/27/2011 Instructor: Dieter van Melkebeek Solutions to the Second Midterm Exam Problem 1 This question deals with the following implementation of binary search. Function

More information

On the packing chromatic number of some lattices

On the packing chromatic number of some lattices On the packing chromatic number of some lattices Arthur S. Finbow Department of Mathematics and Computing Science Saint Mary s University Halifax, Canada BH C art.finbow@stmarys.ca Douglas F. Rall Department

More information

About the Author. Dependency Chart. Chapter 1: Logic and Sets 1. Chapter 2: Relations and Functions, Boolean Algebra, and Circuit Design

About the Author. Dependency Chart. Chapter 1: Logic and Sets 1. Chapter 2: Relations and Functions, Boolean Algebra, and Circuit Design Preface About the Author Dependency Chart xiii xix xxi Chapter 1: Logic and Sets 1 1.1: Logical Operators: Statements and Truth Values, Negations, Conjunctions, and Disjunctions, Truth Tables, Conditional

More information

(d) If the moon shares nothing and the sun does not share our works, then the earth is alive with creeping men.

(d) If the moon shares nothing and the sun does not share our works, then the earth is alive with creeping men. Math 15 - Spring 17 Chapters 1 and 2 Test Solutions 1. Consider the declaratives statements, P : The moon shares nothing. Q: It is the sun that shares our works. R: The earth is alive with creeping men.

More information

Final Test in MAT 410: Introduction to Topology Answers to the Test Questions

Final Test in MAT 410: Introduction to Topology Answers to the Test Questions Final Test in MAT 410: Introduction to Topology Answers to the Test Questions Stefan Kohl Question 1: Give the definition of a topological space. (3 credits) A topological space (X, τ) is a pair consisting

More information

Complexity Theory. Compiled By : Hari Prasad Pokhrel Page 1 of 20. ioenotes.edu.np

Complexity Theory. Compiled By : Hari Prasad Pokhrel Page 1 of 20. ioenotes.edu.np Chapter 1: Introduction Introduction Purpose of the Theory of Computation: Develop formal mathematical models of computation that reflect real-world computers. Nowadays, the Theory of Computation can be

More information

CMSC Honors Discrete Mathematics

CMSC Honors Discrete Mathematics CMSC 27130 Honors Discrete Mathematics Lectures by Alexander Razborov Notes by Justin Lubin The University of Chicago, Autumn 2017 1 Contents I Number Theory 4 1 The Euclidean Algorithm 4 2 Mathematical

More information

CSE101: Design and Analysis of Algorithms. Ragesh Jaiswal, CSE, UCSD

CSE101: Design and Analysis of Algorithms. Ragesh Jaiswal, CSE, UCSD Recap. Growth rates: Arrange the following functions in ascending order of growth rate: n 2 log n n log n 2 log n n/ log n n n Introduction Algorithm: A step-by-step way of solving a problem. Design of

More information

Sets and set operations

Sets and set operations CS 44 Discrete Mathematics for CS Lecture Sets and set operations Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Course administration Homework 3: Due today Homework 4: Due next week on Friday,

More information

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Discrete Mathematics

About the Tutorial. Audience. Prerequisites. Copyright & Disclaimer. Discrete Mathematics About the Tutorial Discrete Mathematics is a branch of mathematics involving discrete elements that uses algebra and arithmetic. It is increasingly being applied in the practical fields of mathematics

More information

To prove something about all Boolean expressions, we will need the following induction principle: Axiom 7.1 (Induction over Boolean expressions):

To prove something about all Boolean expressions, we will need the following induction principle: Axiom 7.1 (Induction over Boolean expressions): CS 70 Discrete Mathematics for CS Spring 2005 Clancy/Wagner Notes 7 This lecture returns to the topic of propositional logic. Whereas in Lecture Notes 1 we studied this topic as a way of understanding

More information

UNIT-II NUMBER THEORY

UNIT-II NUMBER THEORY UNIT-II NUMBER THEORY An integer n is even if, and only if, n equals twice some integer. i.e. if n is an integer, then n is even an integer k such that n =2k An integer n is odd if, and only if, n equals

More information

Introductory logic and sets for Computer scientists

Introductory logic and sets for Computer scientists Introductory logic and sets for Computer scientists Nimal Nissanke University of Reading ADDISON WESLEY LONGMAN Harlow, England II Reading, Massachusetts Menlo Park, California New York Don Mills, Ontario

More information

Lecture 6,

Lecture 6, Lecture 6, 4.16.2009 Today: Review: Basic Set Operation: Recall the basic set operator,!. From this operator come other set quantifiers and operations:!,!,!,! \ Set difference (sometimes denoted, a minus

More information

Sets. {1, 2, 3, Calvin}.

Sets. {1, 2, 3, Calvin}. ets 2-24-2007 Roughly speaking, a set is a collection of objects. he objects are called the members or the elements of the set. et theory is the basis for mathematics, and there are a number of axiom systems

More information

1 Sets, Fields, and Events

1 Sets, Fields, and Events CHAPTER 1 Sets, Fields, and Events B 1.1 SET DEFINITIONS The concept of sets play an important role in probability. We will define a set in the following paragraph. Definition of Set A set is a collection

More information

A.1 Numbers, Sets and Arithmetic

A.1 Numbers, Sets and Arithmetic 522 APPENDIX A. MATHEMATICS FOUNDATIONS A.1 Numbers, Sets and Arithmetic Numbers started as a conceptual way to quantify count objects. Later, numbers were used to measure quantities that were extensive,

More information

Discrete mathematics , Fall Instructor: prof. János Pach

Discrete mathematics , Fall Instructor: prof. János Pach Discrete mathematics 2016-2017, Fall Instructor: prof. János Pach - covered material - Lecture 1. Counting problems To read: [Lov]: 1.2. Sets, 1.3. Number of subsets, 1.5. Sequences, 1.6. Permutations,

More information

LATIN SQUARES AND TRANSVERSAL DESIGNS

LATIN SQUARES AND TRANSVERSAL DESIGNS LATIN SQUARES AND TRANSVERSAL DESIGNS *Shirin Babaei Department of Mathematics, University of Zanjan, Zanjan, Iran *Author for Correspondence ABSTRACT We employ a new construction to show that if and if

More information

To prove something about all Boolean expressions, we will need the following induction principle: Axiom 7.1 (Induction over Boolean expressions):

To prove something about all Boolean expressions, we will need the following induction principle: Axiom 7.1 (Induction over Boolean expressions): CS 70 Discrete Mathematics for CS Fall 2003 Wagner Lecture 7 This lecture returns to the topic of propositional logic. Whereas in Lecture 1 we studied this topic as a way of understanding proper reasoning

More information

Content Development for Distance Education in Advanced University Mathematics Using Mizar

Content Development for Distance Education in Advanced University Mathematics Using Mizar Content Development for Distance Education in Advanced University Mathematics Using Mizar Takaya IDO 1, Hiroyuki OKAZAKI 1, Hiroshi YAMAZAKI 1, Pauline Naomi KAWAMOTO 1, Katsumi WASAKI 1, and Yasunari

More information

Lecture 15: The subspace topology, Closed sets

Lecture 15: The subspace topology, Closed sets Lecture 15: The subspace topology, Closed sets 1 The Subspace Topology Definition 1.1. Let (X, T) be a topological space with topology T. subset of X, the collection If Y is a T Y = {Y U U T} is a topology

More information

Assertions & Verification & Example Loop Invariants Example Exam Questions

Assertions & Verification & Example Loop Invariants Example Exam Questions 2014 November 27 1. Assertions & Verification & Example Loop Invariants Example Exam Questions 2. A B C Give a general template for refining an operation into a sequence and state what questions a designer

More information

Maximal Monochromatic Geodesics in an Antipodal Coloring of Hypercube

Maximal Monochromatic Geodesics in an Antipodal Coloring of Hypercube Maximal Monochromatic Geodesics in an Antipodal Coloring of Hypercube Kavish Gandhi April 4, 2015 Abstract A geodesic in the hypercube is the shortest possible path between two vertices. Leader and Long

More information

1. [5 points each] True or False. If the question is currently open, write O or Open.

1. [5 points each] True or False. If the question is currently open, write O or Open. University of Nevada, Las Vegas Computer Science 456/656 Spring 2018 Practice for the Final on May 9, 2018 The entire examination is 775 points. The real final will be much shorter. Name: No books, notes,

More information

MA651 Topology. Lecture 4. Topological spaces 2

MA651 Topology. Lecture 4. Topological spaces 2 MA651 Topology. Lecture 4. Topological spaces 2 This text is based on the following books: Linear Algebra and Analysis by Marc Zamansky Topology by James Dugundgji Fundamental concepts of topology by Peter

More information

Topology notes. Basic Definitions and Properties.

Topology notes. Basic Definitions and Properties. Topology notes. Basic Definitions and Properties. Intuitively, a topological space consists of a set of points and a collection of special sets called open sets that provide information on how these points

More information

Sets. Margaret M. Fleck. 15 September 2010

Sets. Margaret M. Fleck. 15 September 2010 Sets Margaret M. Fleck 15 September 2010 These notes cover set notation, operations on sets, and how to prove claims involving sets (Rosen sections 2.1 and 2.2). They also cover some logic subtleties that

More information

3. According to universal addressing, what is the address of vertex d? 4. According to universal addressing, what is the address of vertex f?

3. According to universal addressing, what is the address of vertex d? 4. According to universal addressing, what is the address of vertex f? 1. Prove: A full m-ary tree with i internal vertices contains n = mi + 1 vertices. 2. For a full m-ary tree with n vertices, i internal vertices, and l leaves, prove: (i) i = (n 1)/m and l = [(m 1)n +

More information

CS 3512, Spring Instructor: Doug Dunham. Textbook: James L. Hein, Discrete Structures, Logic, and Computability, 3rd Ed. Jones and Barlett, 2010

CS 3512, Spring Instructor: Doug Dunham. Textbook: James L. Hein, Discrete Structures, Logic, and Computability, 3rd Ed. Jones and Barlett, 2010 CS 3512, Spring 2011 Instructor: Doug Dunham Textbook: James L. Hein, Discrete Structures, Logic, and Computability, 3rd Ed. Jones and Barlett, 2010 Prerequisites: Calc I, CS2511 Rough course outline:

More information

Cantor s Diagonal Argument for Different Levels of Infinity

Cantor s Diagonal Argument for Different Levels of Infinity JANUARY 2015 1 Cantor s Diagonal Argument for Different Levels of Infinity Michael J. Neely University of Southern California http://www-bcf.usc.edu/ mjneely Abstract These notes develop the classic Cantor

More information