A Method for Estimating Criticality Lower Limit Multiplication Factor. Yoshitaka NAITO NAIS Co., Ltd.

Size: px
Start display at page:

Download "A Method for Estimating Criticality Lower Limit Multiplication Factor. Yoshitaka NAITO NAIS Co., Ltd."

Transcription

1 A Method for Estimating Criticality Lower Limit Multiplication Factor Yoshitaka NAITO NAIS Co., Ltd.

2 Progress Grade up of computer performance Sub-criticality becomes to be decided using computed results Necessity to determine K limit (Criticality Lower Limit Multiplication Factor) If a computed keff is less than K limit, the system is determined to be sub-critical. The keff value 0.95 has been often used for K limit. In Japanese Criticality Safety Handbook published in 1988, the value K limit s are shown for several nuclear fuel types. Here, I will show you the way to obtain the K limit and the possibility.

3 Introduction of Fundamental Eq. Luebill Eq. (Conservation low of particle density in phase space) Q.M. Area Assumption: a) Truncation of collision area, b) binary collisions, c) molecular chaos, d) slow variation of distribution function Mass density distribution of the Boltzmann Eq. f Approximate the collision term with neutron cross section, 1 f ( E, Ω) = Ω gradf ( E, Ω) f ( E, Ω) { s( E) + a( E) } + S( E, Ω) where + ξ f t Born Appr. = x1 1 m v t de dω f, { f ( ξ1) f ( ξ 2) f ( ξ1) f ( ξ 2)} Vdωdξ 2 ( E, Ω ) s( E E Ω Ω) ( E, Ω) = X ( E) keff v f ( E Ω ) S f, de dω (1) Eigen value Keff is a function of macroscopic cross sections,which are composed of microscopic cross sections and atomic number densities. + (2) (3)

4 Dependency of computed Keff s of ICSBEP-THERM-004 on nuclear data files and computer codes C / E (Keff) MVP(JENDL-3.3) MVP(JEFF-3.0) MVP(ENDF/B-VI) C / E (Keff) MVP (ENDF/B-VI) MCNP4C (ENDF/B-VI) H / (heavy metal) H / (heavy metal) Fig.1 Comparison of computed Keff s with three kinds of nuclear data files, and the MVP code Fig.2 Comparison of computed Keff s with MVP and MCNP, and a nuclear data file ENDF/B-VI Computed Keff s depend strongly upon nuclear data files and weakly upon computer codes

5 Sample Calculation Identification Main purpose Benchmark keff Benchmark keff uncertainty (1 sigma) Confidence interval Code Name Library Calc. Keff Keff uncertainty (1 sigma) LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous LEU-COMP-THERM Transport unknown MCNP ENDF/B-V Continuous averaged Keff standard deviation of Keff number of cases

6 A sample of computed results on ICSBEP data by MCNP with ENDF/B-V (Benchmark Keff=1.0) Identification Bechmark Keff Calc. Keff Keff uncertainty (1σ) uncertainty LEU-COMP-THERM LEU-COMP-THERM : LEU-COMP-THERM LEU-COMP-THERM : LEU-COMP-THERM average Keff standard deviation of Keff number of cases 36

7 Histogram on benchmark calculation results number of cases sigma number of cases : 36 averaged keff : standard deviation : calculated keff K limit 1.02 Fig.3 Histogram of benchmark calculation results Calculated by MCNP with ENDF/B-V

8 Concluding Remarks Standard deviation of the histogram is affected by the following four factors, (1) errors of microscopic cross sections of nuclides, (2) errors of benchmark data such as uncertainties of atomic number density and geometrical dimension, (3) errors from Monte Carlo calculation such as statistical deviation and source convergence criterion, (4) errors of measurement on criticality conditions such as critical water level.

9 Characteristics of the error (1),(2),(3) and (4) are as follow. The errors of (1) are expressed in covariance files of nuclear data and affect to reactivity according to neutron energy spectrum in each benchmark problem. That is, the reactivity error of each benchmark problem depends upon nuclide compositions and neutron energy spectrum. The reactivity effect may be expressed by some sensitivity coefficients such as those of the TSUNAMI code. With these sensitivity coefficients, benchmark data will be grouped. In each group, the quantity of reactivity error due to cross section errors is almost same and the dependency on spectrum index will be weak.. The errors of (2) are random errors and reactivity errors due to them may be expressed statistically. The errors of (3) and (4) are specified by input data for the calculation and by reports on benchmark data

10 I propose a following procedure to obtain criticality lower limit multiplication factor in each group. Step1. Analyze many benchmark problems. Step2. Group them into several categories. Step3. Obtain an average keff and a standard deviation in each group. Step4. Obtain a criticality lower limit multiplication factor

11 Procedure for sub-criticality assessment for an object Step1. Identify the object to a group and find the criticality lower limit multiplication factor. Step2. Calculate the multiplication factor and, obtain the criterion. statistical deviation and source convergence With these results, an estimated lower limit of calculation multiplication factor. Step3. Assess calculated keff of the object comparing it with the lower limit of calculated multiplication factor of

WPEC - SG45: procedure for the validation of IRSN criticality input decks

WPEC - SG45: procedure for the validation of IRSN criticality input decks WPEC - SG45: procedure for the validation of IRSN criticality input decks LECLAIRE Nicolas IRSN May, 14 th 2018 Contents 1. IRSN calculations with MC codes 2. Validation database 3. Procedure a) Construction

More information

Status of the Serpent criticality safety validation package

Status of the Serpent criticality safety validation package VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD Status of the Serpent criticality safety validation package Serpent UGM 2017 Riku Tuominen and Ville Valtavirta, VTT Outline Criticality Safety Evaluation What

More information

OECD/NEA EXPERT GROUP ON UNCERTAINTY ANALYSIS FOR CRITICALITY SAFETY ASSESSMENT: CURRENT ACTIVITIES

OECD/NEA EXPERT GROUP ON UNCERTAINTY ANALYSIS FOR CRITICALITY SAFETY ASSESSMENT: CURRENT ACTIVITIES OECD/NEA EXPERT GROUP ON UNCERTAINTY ANALYSIS FOR CRITICALITY SAFETY ASSESSMENT: CURRENT ACTIVITIES Tatiana Ivanova WPEC Subgroup 33 Meeting Issy-les-Moulineaux May 11, 2011 EG UACSA: Objectives Expert

More information

Dosimetry Simulations with the UF-B Series Phantoms using the PENTRAN-MP Code System

Dosimetry Simulations with the UF-B Series Phantoms using the PENTRAN-MP Code System Dosimetry Simulations with the UF-B Series Phantoms using the PENTRAN-MP Code System A. Al-Basheer, M. Ghita, G. Sjoden, W. Bolch, C. Lee, and the ALRADS Group Computational Medical Physics Team Nuclear

More information

Modeling the ORTEC EX-100 Detector using MCNP

Modeling the ORTEC EX-100 Detector using MCNP Modeling the ORTEC EX-100 Detector using MCNP MCNP is a general-purpose Monte Carlo radiation transport code for modeling the interaction of radiation with materials based on composition and density. MCNP

More information

Application of MCNP Code in Shielding Design for Radioactive Sources

Application of MCNP Code in Shielding Design for Radioactive Sources Application of MCNP Code in Shielding Design for Radioactive Sources Ibrahim A. Alrammah Abstract This paper presents three tasks: Task 1 explores: the detected number of as a function of polythene moderator

More information

SERPENT Cross Section Generation for the RBWR

SERPENT Cross Section Generation for the RBWR SERPENT Cross Section Generation for the RBWR Andrew Hall Thomas Downar 9/19/2012 Outline RBWR Motivation and Design Why use Serpent Cross Sections? Modeling the RBWR Generating an Equilibrium Cycle RBWR

More information

IMPROVEMENTS TO MONK & MCBEND ENABLING COUPLING & THE USE OF MONK CALCULATED ISOTOPIC COMPOSITIONS IN SHIELDING & CRITICALITY

IMPROVEMENTS TO MONK & MCBEND ENABLING COUPLING & THE USE OF MONK CALCULATED ISOTOPIC COMPOSITIONS IN SHIELDING & CRITICALITY IMPROVEMENTS TO MONK & MCBEND ENABLING COUPLING & THE USE OF MONK CALCULATED ISOTOPIC COMPOSITIONS IN SHIELDING & CRITICALITY N. Davies, M.J. Armishaw, S.D. Richards and G.P.Dobson Serco Technical Consulting

More information

Monte Carlo simulation of photon and electron transport

Monte Carlo simulation of photon and electron transport First Barcelona Techno Week Course on semiconductor detectors ICCUB, 11-15th July 2016 Monte Carlo simulation of photon and electron transport Francesc Salvat Monte Carlo 1 Simulations performed with the

More information

MCNP Monte Carlo & Advanced Reactor Simulations. Forrest Brown. NEAMS Reactor Simulation Workshop ANL, 19 May Title: Author(s): Intended for:

MCNP Monte Carlo & Advanced Reactor Simulations. Forrest Brown. NEAMS Reactor Simulation Workshop ANL, 19 May Title: Author(s): Intended for: LA-UR- 09-03055 Approved for public release; distribution is unlimited. Title: MCNP Monte Carlo & Advanced Reactor Simulations Author(s): Forrest Brown Intended for: NEAMS Reactor Simulation Workshop ANL,

More information

DETERMINISTIC 3D RADIATION TRANSPORT SIMULATION FOR DOSE DISTRIBUTION AND ORGAN DOSE EVALUATION IN DIAGNOSTIC CT

DETERMINISTIC 3D RADIATION TRANSPORT SIMULATION FOR DOSE DISTRIBUTION AND ORGAN DOSE EVALUATION IN DIAGNOSTIC CT DETERMINISTIC 3D RADIATION TRANSPORT SIMULATION FOR DOSE DISTRIBUTION AND ORGAN DOSE EVALUATION IN DIAGNOSTIC CT Monica Ghita,, Glenn Sjoden, Manuel Arreola, Ahmad Al-Basheer Basheer, Choonsik Lee, Wesley

More information

Nuclear Data Capabilities Supported by the DOE NCSP

Nuclear Data Capabilities Supported by the DOE NCSP Nuclear Data Capabilities Supported by the DOE NCSP Symposium on Nuclear Data for Criticality Safety and Reactor Applications Rensselaer Polytechnic Institute April 27, 2011 The NCSP Mission & Vision 2

More information

State of the art of Monte Carlo technics for reliable activated waste evaluations

State of the art of Monte Carlo technics for reliable activated waste evaluations State of the art of Monte Carlo technics for reliable activated waste evaluations Matthieu CULIOLI a*, Nicolas CHAPOUTIER a, Samuel BARBIER a, Sylvain JANSKI b a AREVA NP, 10-12 rue Juliette Récamier,

More information

PSG2 / Serpent a Monte Carlo Reactor Physics Burnup Calculation Code. Jaakko Leppänen

PSG2 / Serpent a Monte Carlo Reactor Physics Burnup Calculation Code. Jaakko Leppänen PSG2 / Serpent a Monte Carlo Reactor Physics Burnup Calculation Code Jaakko Leppänen Outline Background History The Serpent code: Neutron tracking Physics and interaction data Burnup calculation Output

More information

ELECTRON DOSE KERNELS TO ACCOUNT FOR SECONDARY PARTICLE TRANSPORT IN DETERMINISTIC SIMULATIONS

ELECTRON DOSE KERNELS TO ACCOUNT FOR SECONDARY PARTICLE TRANSPORT IN DETERMINISTIC SIMULATIONS Computational Medical Physics Working Group Workshop II, Sep 30 Oct 3, 2007 University of Florida (UF), Gainesville, Florida USA on CD-ROM, American Nuclear Society, LaGrange Park, IL (2007) ELECTRON DOSE

More information

OPTIMIZATION OF MONTE CARLO TRANSPORT SIMULATIONS IN STOCHASTIC MEDIA

OPTIMIZATION OF MONTE CARLO TRANSPORT SIMULATIONS IN STOCHASTIC MEDIA PHYSOR 2012 Advances in Reactor Physics Linking Research, Industry, and Education Knoxville, Tennessee, USA, April 15-20, 2012, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2010) OPTIMIZATION

More information

MCNP CLASS SERIES (SAMPLE MCNP INPUT) Jongsoon Kim

MCNP CLASS SERIES (SAMPLE MCNP INPUT) Jongsoon Kim MCNP CLASS SERIES (SAMPLE MCNP INPUT) Jongsoon Kim Basic constants in MCNP Lengths in cm Energies in MeV Times in shakes (10-8 sec) Atomic densities in units of atoms/barn*-cm Mass densities in g/cm 3

More information

A COARSE MESH RADIATION TRANSPORT METHOD FOR PRISMATIC BLOCK THERMAL REACTORS IN TWO DIMENSIONS

A COARSE MESH RADIATION TRANSPORT METHOD FOR PRISMATIC BLOCK THERMAL REACTORS IN TWO DIMENSIONS A COARSE MESH RADIATION TRANSPORT METHOD FOR PRISMATIC BLOCK THERMAL REACTORS IN TWO DIMENSIONS A Thesis Presented to The Academic Faculty By Kevin John Connolly In Partial Fulfillment Of the Requirements

More information

Click to edit Master title style

Click to edit Master title style New features in Serpent 2 for fusion neutronics 5th International Serpent UGM, Knoxville, TN, Oct. 13-16, 2015 Jaakko Leppänen VTT Technical Research Center of Finland Click to edit Master title Outline

More information

Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.

Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. DXRaySMCS First User Friendly Interface Developed for Prediction of Diagnostic Radiology X-Ray Spectra Produced by Monte Carlo (MCNP-4C) Simulation in Iran M.T. Bahreyni Toosi a*, H. Moradi b, H. Zare

More information

Application of the ROSFOND Evaluated Nuclear Data Library for Criticality Calculations in Continuous-Energy Approximation with SCALE-6.

Application of the ROSFOND Evaluated Nuclear Data Library for Criticality Calculations in Continuous-Energy Approximation with SCALE-6. Application of the ROSFOND Evaluated Nuclear Data Library for Criticality Calculations in Continuous-Energy Approximation with SCALE-6.2 E.Rozhikhin, V.Koscheev, A.Yakunin, A.Peregudov Institute of Physics

More information

Evaluation of RAPID for a UNF cask benchmark problem

Evaluation of RAPID for a UNF cask benchmark problem Evaluation of RAPID for a UNF cask benchmark problem Valerio Mascolino 1,a, Alireza Haghighat 1,b, and Nathan J. Roskoff 1,c 1 Nuclear Science & Engineering Lab (NSEL), Virginia Tech, 900 N Glebe Rd.,

More information

Simulation of Radiographic Testing for POD Assessment

Simulation of Radiographic Testing for POD Assessment 4th European-American Workshop on Reliability of NDE - Th.5.B.2 Simulation of Radiographic Testing for POD Assessment Gerd-Rüdiger JAENISCH, Carsten BELLON, Uwe EWERT, BAM, Berlin, Germany Abstract. Efficient

More information

A premilinary study of the OECD/NEA 3D transport problem using the lattice code DRAGON

A premilinary study of the OECD/NEA 3D transport problem using the lattice code DRAGON A premilinary study of the OECD/NEA 3D transport problem using the lattice code DRAGON Nicolas Martin, Guy Marleau, Alain Hébert Institut de Génie Nucléaire École Polytechnique de Montréal 28 CNS Symposium

More information

Neutronics Analysis of TRIGA Mark II Research Reactor. R. Khan, S. Karimzadeh, H. Böck Vienna University of Technology Atominstitute

Neutronics Analysis of TRIGA Mark II Research Reactor. R. Khan, S. Karimzadeh, H. Böck Vienna University of Technology Atominstitute Neutronics Analysis of TRIGA Mark II Research Reactor R. Khan, S. Karimzadeh, H. Böck Vienna University of Technology Atominstitute 23-03-2010 TRIGA Mark II reactor MCNP radiation transport code MCNP model

More information

OPTIMIZATION OF MONTE CARLO TRANSPORT SIMULATIONS IN STOCHASTIC MEDIA

OPTIMIZATION OF MONTE CARLO TRANSPORT SIMULATIONS IN STOCHASTIC MEDIA PHYSOR 2012 Advances in Reactor Physics Linking Research, Industry, and Education Knoxville, Tennessee, USA, April 15-20, 2012, on CD-ROM, American Nuclear Society, LaGrange Park, IL (2012) OPTIMIZATION

More information

Deliverable D10.2. WP10 JRA04 INDESYS Innovative solutions for nuclear physics detectors

Deliverable D10.2. WP10 JRA04 INDESYS Innovative solutions for nuclear physics detectors MS116 Characterization of light production, propagation and collection for both organic and inorganic scintillators D10.2 R&D on new and existing scintillation materials: Report on the light production,

More information

Experience in Neutronic/Thermal-hydraulic Coupling in Ciemat

Experience in Neutronic/Thermal-hydraulic Coupling in Ciemat Madrid 2012 Experience in Neutronic/Thermal-hydraulic Coupling in Ciemat Miriam Vazquez (Ciemat) Francisco Martín-Fuertes (Ciemat) Aleksandar Ivanov (INR-KIT) Outline 1. Introduction 2. Coupling scheme

More information

Evaluation of RayXpert for shielding design of medical facilities

Evaluation of RayXpert for shielding design of medical facilities Evaluation of Raypert for shielding design of medical facilities Sylvie Derreumaux 1,*, Sophie Vecchiola 1, Thomas Geoffray 2, and Cécile Etard 1 1 Institut for radiation protection and nuclear safety,

More information

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 05: QUALITY ASSURANCE AND CALIBRATION METHODS

Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 05: QUALITY ASSURANCE AND CALIBRATION METHODS Harris: Quantitative Chemical Analysis, Eight Edition CHAPTER 05: QUALITY ASSURANCE AND CALIBRATION METHODS 5-0. International Measurement Evaluation Program Sample: Pb in river water (blind sample) :

More information

2-D Reflector Modelling for VENUS-2 MOX Core Benchmark

2-D Reflector Modelling for VENUS-2 MOX Core Benchmark 2-D Reflector Modelling for VENUS-2 MOX Core Benchmark Dušan Ćalić ZEL-EN d.o.o. Vrbina 18 8270, Krsko, Slovenia dusan.calic@zel-en.si ABSTRACT The choice of the reflector model is an important issue in

More information

Evaluation of PBMR control rod worth using full three-dimensional deterministic transport methods

Evaluation of PBMR control rod worth using full three-dimensional deterministic transport methods Available online at www.sciencedirect.com annals of NUCLEAR ENERGY Annals of Nuclear Energy 35 (28) 5 55 www.elsevier.com/locate/anucene Evaluation of PBMR control rod worth using full three-dimensional

More information

CALCULATION OF THE ACTIVITY INVENTORY FOR THE TRIGA REACTOR AT THE MEDICAL UNIVERSITY OF HANNOVER (MHH) IN PREPARATION FOR DISMANTLING THE FACILITY

CALCULATION OF THE ACTIVITY INVENTORY FOR THE TRIGA REACTOR AT THE MEDICAL UNIVERSITY OF HANNOVER (MHH) IN PREPARATION FOR DISMANTLING THE FACILITY CALCULATION OF THE ACTIVITY INVENTORY FOR THE TRIGA REACTOR AT THE MEDICAL UNIVERSITY OF HANNOVER (MHH) IN PREPARATION FOR DISMANTLING THE FACILITY Gabriele Hampel, Friedemann Scheller, Medical University

More information

ABSTRACT. W. T. Urban', L. A. Crotzerl, K. B. Spinney', L. S. Waters', D. K. Parsons', R. J. Cacciapouti2, and R. E. Alcouffel. 1.

ABSTRACT. W. T. Urban', L. A. Crotzerl, K. B. Spinney', L. S. Waters', D. K. Parsons', R. J. Cacciapouti2, and R. E. Alcouffel. 1. COMPARISON OF' THREE-DIMENSIONAL NEUTRON FLUX CALCULATIONS FOR MAINE YANKEE W. T. Urban', L. A. Crotzerl, K. B. Spinney', L. S. Waters', D. K. Parsons', R. J. Cacciapouti2, and R. E. Alcouffel ABSTRACT

More information

Development of a Radiation Shielding Monte Carlo Code: RShieldMC

Development of a Radiation Shielding Monte Carlo Code: RShieldMC Development of a Radiation Shielding Monte Carlo Code: RShieldMC Shenshen GAO 1,2, Zhen WU 1,3, Xin WANG 1,2, Rui QIU 1,2, Chunyan LI 1,3, Wei LU 1,2, Junli LI 1,2*, 1.Department of Physics Engineering,

More information

A fast and accurate GPU-based proton transport Monte Carlo simulation for validating proton therapy treatment plans

A fast and accurate GPU-based proton transport Monte Carlo simulation for validating proton therapy treatment plans A fast and accurate GPU-based proton transport Monte Carlo simulation for validating proton therapy treatment plans H. Wan Chan Tseung 1 J. Ma C. Beltran PTCOG 2014 13 June, Shanghai 1 wanchantseung.hok@mayo.edu

More information

Code characteristics

Code characteristics The PENELOPE Computer code M.J. Anagnostakis Nuclear Engineering Department National Technical University of Athens The PENELOPE code system PENetration and Energy LOss of Positrons and Electrons in matter

More information

Continuum-Microscopic Models

Continuum-Microscopic Models Scientific Computing and Numerical Analysis Seminar October 1, 2010 Outline Heterogeneous Multiscale Method Adaptive Mesh ad Algorithm Refinement Equation-Free Method Incorporates two scales (length, time

More information

HELIOS CALCULATIONS FOR UO2 LATTICE BENCHMARKS

HELIOS CALCULATIONS FOR UO2 LATTICE BENCHMARKS M-UR- 98-22. Title: Author@): Submitted to: HELOS CALCULATONS FOR UO2 LATTCE BENCHMARKS R. D. Mosteller nt'l Conf. on Physics of Nuclear Science & Technology slandia, Long sland, NY October 5-8, 1998 Los

More information

CHARACTERIZATION OF THE POWDER PARTICLES SHAPES AND PROPERTIES USING THE FRACTAL THEORY

CHARACTERIZATION OF THE POWDER PARTICLES SHAPES AND PROPERTIES USING THE FRACTAL THEORY CHARACTERIZATION OF THE POWDER PARTICLES SHAPES AND PROPERTIES USING THE FRACTAL THEORY *M.Bodea, *N.Jumate, **M.Danca * Technical University of Cluj, ** Department of Mathematics Tehnofrig Technical College

More information

CHAPTER 11: UNCERTAINTY ANALYSIS IN MCNP

CHAPTER 11: UNCERTAINTY ANALYSIS IN MCNP =..;'r"-.:e=sain=::...:.:h=us""se,=in"--- ----'-'78~..:..:.Mo=n=te::...:::::Ca=r=10::...o..::.Par.ticle Transport with MCNP CHAPTER 11: UNCERTAINTY ANALYSIS IN MCNP t is important to keep in mind that

More information

!Title:!!MCNP Progress & Performance Improvements!

!Title:!!MCNP Progress & Performance Improvements! Approved for public release; distribution is unlimited. Title: MCNP Progress & Performance Improvements Author(s): Brown, Forrest B. Bull, Jeffrey S. Rising, Michael Intended for: Issued: 2015-03-14 DOE

More information

Shielding factors for traditional safety glasses

Shielding factors for traditional safety glasses Shielding factors for traditional safety glasses Malcolm McEwen, Hong Shen and Ernesto Mainegra-Hing Ionizing Radiation Standards, National Research Council Canada Alan DuSautoy, Radiation and Health Sciences

More information

Monte Carlo Method for Solving Inverse Problems of Radiation Transfer

Monte Carlo Method for Solving Inverse Problems of Radiation Transfer INVERSE AND ILL-POSED PROBLEMS SERIES Monte Carlo Method for Solving Inverse Problems of Radiation Transfer V.S.Antyufeev. ///VSP/// UTRECHT BOSTON KÖLN TOKYO 2000 Contents Chapter 1. Monte Carlo modifications

More information

MC21 v.6.0 A Continuous-Energy Monte Carlo Particle Transport Code with Integrated Reactor Feedback Capabilities

MC21 v.6.0 A Continuous-Energy Monte Carlo Particle Transport Code with Integrated Reactor Feedback Capabilities Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo 2013 (SNA + MC 2013) La Cité des Sciences et de l Industrie, Paris, France, October 27-31, 2013 MC21 v.6.0 A Continuous-Energy

More information

The Need for Nuclear Data

The Need for Nuclear Data The Need for Nuclear Data RA Forrest Nuclear Data Section Department of Nuclear Sciences and Applications Themes Nuclear Data underpin all of Nuclear Science and Technology Nuclear Physics Nuclear Data

More information

Monte Carlo simulations

Monte Carlo simulations MC simulations Monte Carlo simulations Eirik Malinen Simulations of stochastic processes Interactions are stochastic: the path of a single ioniing particle may not be predicted Interactions are quantified

More information

ANGULAR ANISOTROPY OF CORRELATED NEUTRONS IN LAB FRAME OF REFERENCE AND APPLICATION TO DETECTION AND VERIFICATION. A Thesis LAURA CYNTHIA HOLEWA

ANGULAR ANISOTROPY OF CORRELATED NEUTRONS IN LAB FRAME OF REFERENCE AND APPLICATION TO DETECTION AND VERIFICATION. A Thesis LAURA CYNTHIA HOLEWA ANGULAR ANISOTROPY OF CORRELATED NEUTRONS IN LAB FRAME OF REFERENCE AND APPLICATION TO DETECTION AND VERIFICATION A Thesis by LAURA CYNTHIA HOLEWA Submitted to the Office of Graduate Studies of Texas A&M

More information

Comparison of internal and external dose conversion factors using ICRP adult male and MEET Man voxel model phantoms.

Comparison of internal and external dose conversion factors using ICRP adult male and MEET Man voxel model phantoms. Comparison of internal and external dose conversion factors using ICRP adult male and MEET Man voxel model phantoms. D.Leone, A.Häußler Intitute for Nuclear Waste Disposal, Karlsruhe Institute for Technology,

More information

The Monte Carlo simulation of a Package formed by the combination of three scintillators: Brillance380, Brillance350, and Prelude420.

The Monte Carlo simulation of a Package formed by the combination of three scintillators: Brillance380, Brillance350, and Prelude420. EURONS I3 506065 JRA9 RHIB Report made during stay IEM-CSIC Madrid december 2006 MINISTERIO DE ASUNTOS EXTERIORES Y DE COOPERACIÓN AECI VICESECRETARÍA GENERAL The Monte Carlo simulation of a Package formed

More information

A FLEXIBLE COUPLING SCHEME FOR MONTE CARLO AND THERMAL-HYDRAULICS CODES

A FLEXIBLE COUPLING SCHEME FOR MONTE CARLO AND THERMAL-HYDRAULICS CODES International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2011) Rio de Janeiro, RJ, Brazil, May 8-12, 2011, on CD-ROM, Latin American Section (LAS)

More information

Robustness analysis of metal forming simulation state of the art in practice. Lectures. S. Wolff

Robustness analysis of metal forming simulation state of the art in practice. Lectures. S. Wolff Lectures Robustness analysis of metal forming simulation state of the art in practice S. Wolff presented at the ICAFT-SFU 2015 Source: www.dynardo.de/en/library Robustness analysis of metal forming simulation

More information

Large Plastic Scintillation Detectors for the Nuclear Materials Identification System

Large Plastic Scintillation Detectors for the Nuclear Materials Identification System Large Plastic Scintillation Detectors for the Nuclear Materials Identification System J.S. Neal, J.T. Mihalczo, M. T. Hiatt, J. D. Edwards Oak Ridge National Laboratory P. O. Box 2008, Oak Ridge, Tennessee

More information

The Application of Monte Carlo Method for Sensitivity Analysis of Compressor Components

The Application of Monte Carlo Method for Sensitivity Analysis of Compressor Components Purdue University Purdue e-pubs International Compressor Engineering Conference School of Mechanical Engineering 2012 The Application of Monte Carlo Method for Sensitivity Analysis of Compressor Components

More information

Tutorial: Modeling Liquid Reactions in CIJR Using the Eulerian PDF transport (DQMOM-IEM) Model

Tutorial: Modeling Liquid Reactions in CIJR Using the Eulerian PDF transport (DQMOM-IEM) Model Tutorial: Modeling Liquid Reactions in CIJR Using the Eulerian PDF transport (DQMOM-IEM) Model Introduction The purpose of this tutorial is to demonstrate setup and solution procedure of liquid chemical

More information

Development of a guidance document on How to perform a shredder campaign Background information

Development of a guidance document on How to perform a shredder campaign Background information Development of a guidance document on How to perform a shredder campaign Background information Contract no. 070307/2011/603989/ETU/C2 Authors: Knut Sander, Stephanie Schilling Impressum / Imprint: ÖKOPOL

More information

Improved Detector Response Characterization Method in ISOCS and LabSOCS

Improved Detector Response Characterization Method in ISOCS and LabSOCS P Improved Detector Response Characterization Method in ISOCS and LabSOCS *1 1 1 1 1 R. VenkataramanP P, F. BronsonP P, V. AtrashkevichP P, M. FieldP P, and B.M. YoungP P. 1 PCanberra Industries, 800 Research

More information

Initialize data. read input file. particle in system? START. find the collided. photon. neutron. nuclide and its in bank? in bank? interaction.

Initialize data. read input file. particle in system? START. find the collided. photon. neutron. nuclide and its in bank? in bank? interaction. Application of EDF uclear Data for Testing a Monte-Carlo eutron and Photon Transport Code P. Siangsanan, W.Dharmavanij and S. Chongkum Physics Division, Office of Atomic Eneegy for Peace (OAEP), Ministry

More information

CE 530 Molecular Simulation

CE 530 Molecular Simulation 1 CE 530 Molecular Simulation Lecture 3 Common Elements of a Molecular Simulation David A. Kofke Department of Chemical Engineering SUNY Buffalo kofke@eng.buffalo.edu 2 Boundary Conditions Impractical

More information

Simulation and Optimization Methods for Reliability Analysis

Simulation and Optimization Methods for Reliability Analysis Simulation and Optimization Methods for Reliability Analysis M. Oberguggenberger, M. Prackwieser, M. Schwarz University of Innsbruck, Department of Engineering Science INTALES GmbH Engineering Solutions

More information

IMPROVING COMPUTATIONAL EFFICIENCY OF MONTE-CARLO SIMULATIONS WITH VARIANCE REDUCTION

IMPROVING COMPUTATIONAL EFFICIENCY OF MONTE-CARLO SIMULATIONS WITH VARIANCE REDUCTION International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C 2013), Sun Valley, Idaho, USA, May 5-9, 2013, on CD-ROM, American Nuclear Society, LaGrange

More information

Cpk: What is its Capability? By: Rick Haynes, Master Black Belt Smarter Solutions, Inc.

Cpk: What is its Capability? By: Rick Haynes, Master Black Belt Smarter Solutions, Inc. C: What is its Capability? By: Rick Haynes, Master Black Belt Smarter Solutions, Inc. C is one of many capability metrics that are available. When capability metrics are used, organizations typically provide

More information

Outline. Monte Carlo Radiation Transport Modeling Overview (MCNP5/6) Monte Carlo technique: Example. Monte Carlo technique: Introduction

Outline. Monte Carlo Radiation Transport Modeling Overview (MCNP5/6) Monte Carlo technique: Example. Monte Carlo technique: Introduction Monte Carlo Radiation Transport Modeling Overview () Lecture 7 Special Topics: Device Modeling Outline Principles of Monte Carlo modeling Radiation transport modeling with Utilizing Visual Editor (VisEd)

More information

Computing Acceleration for a Pin-by-Pin Core Analysis Method Using a Three-Dimensional Direct Response Matrix Method

Computing Acceleration for a Pin-by-Pin Core Analysis Method Using a Three-Dimensional Direct Response Matrix Method Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol., pp.4-45 (0) ARTICLE Computing Acceleration for a Pin-by-Pin Core Analysis Method Using a Three-Dimensional Direct Response Matrix Method Taeshi MITSUYASU,

More information

Hyperspectral Remote Sensing

Hyperspectral Remote Sensing Hyperspectral Remote Sensing Multi-spectral: Several comparatively wide spectral bands Hyperspectral: Many (could be hundreds) very narrow spectral bands GEOG 4110/5100 30 AVIRIS: Airborne Visible/Infrared

More information

Monte Carlo simulations. Lesson FYSKJM4710 Eirik Malinen

Monte Carlo simulations. Lesson FYSKJM4710 Eirik Malinen Monte Carlo simulations Lesson FYSKJM4710 Eirik Malinen MC simulations 1 Simulations of stochastic processes Interactions are stochastic: the path of a single ionizing particle may not be predicted Interactions

More information

Particle track plotting in Visual MCNP6 Randy Schwarz 1,*

Particle track plotting in Visual MCNP6 Randy Schwarz 1,* Particle track plotting in Visual MCNP6 Randy Schwarz 1,* 1 Visual Editor Consultants, PO Box 1308, Richland, WA 99352, USA Abstract. A visual interface for MCNP6 has been created to allow the plotting

More information

Evaluation of the Full Core VVER-440 Benchmarks Using the KARATE and MCNP Code Systems

Evaluation of the Full Core VVER-440 Benchmarks Using the KARATE and MCNP Code Systems NENE 2015 September 14-17 PORTOROŽ SLOVENIA 24th International Conference Nuclear Energy for New Europe Evaluation of the Full Core VVER-440 Benchmarks Using the KARATE and MCNP Code Systems György Hegyi

More information

THE ANSWERS CODE MONK A NEW APPROACH TO SCORING, TRACKING, MODELLING AND VISUALISATION

THE ANSWERS CODE MONK A NEW APPROACH TO SCORING, TRACKING, MODELLING AND VISUALISATION THE ANSWERS CODE MONK A NEW APPROACH TO SCORING, TRACKING, MODELLING AND VISUALISATION M.J. ARMISHAW, N.DAVIES, A.J. BIRD Serco Technical Consulting Services, Kimmeridge House, Dorset Green Technology

More information

Status of SG-B: EG-GNDS. D. Brown (BNL)

Status of SG-B: EG-GNDS. D. Brown (BNL) Status of SG-B: EG-GNDS D. Brown (BNL) EG-GNDS Agenda Welcome Introductions & identify governing board members Review minutes of previous meeting Review & Update mandate SG-38 & SG-43 reports Status of

More information

= = P. IE 434 Homework 2 Process Capability. Kate Gilland 10/2/13. Figure 1: Capability Analysis

= = P. IE 434 Homework 2 Process Capability. Kate Gilland 10/2/13. Figure 1: Capability Analysis Kate Gilland 10/2/13 IE 434 Homework 2 Process Capability 1. Figure 1: Capability Analysis σ = R = 4.642857 = 1.996069 P d 2 2.326 p = 1.80 C p = 2.17 These results are according to Method 2 in Minitab.

More information

nacthe Gaerttner LINAC Center

nacthe Gaerttner LINAC Center Thermal Neutron Scattering Measurements and Analysis Y. Danon, E. Liu, C. Wendorff, K. Ramic Rensselaer Polytechnic Institute, Troy, NY, 12180 Kick-off Meeting: WPEC SG42, Thermal Scattering Kernel S(a,b):

More information

PoS(Baldin ISHEPP XXII)134

PoS(Baldin ISHEPP XXII)134 Implementation of the cellular automaton method for track reconstruction in the inner tracking system of MPD at NICA, G.A. Ososkov and A.I. Zinchenko Joint Institute of Nuclear Research, 141980 Dubna,

More information

CVEN Computer Applications in Engineering and Construction. Programming Assignment #2 Random Number Generation and Particle Diffusion

CVEN Computer Applications in Engineering and Construction. Programming Assignment #2 Random Number Generation and Particle Diffusion CVE 0-50 Computer Applications in Engineering and Construction Programming Assignment # Random umber Generation and Particle Diffusion Date distributed: 0/06/09 Date due: 0//09 by :59 pm (submit an electronic

More information

Daedeok-daero, Yuseong-gu, Daejeon , Republic of Korea b Argonne National Laboratory (ANL)

Daedeok-daero, Yuseong-gu, Daejeon , Republic of Korea b Argonne National Laboratory (ANL) MC 2-3/TWODANT/DIF3D Analysis for the ZPPR-15 10 B(n, α) Reaction Rate Measurement Min Jae Lee a*, Donny Hartanto a, Sang Ji Kim a, and Changho Lee b a Korea Atomic Energy Research Institute (KAERI) 989-111

More information

Aerial Robotic Autonomous Exploration & Mapping in Degraded Visual Environments. Kostas Alexis Autonomous Robots Lab, University of Nevada, Reno

Aerial Robotic Autonomous Exploration & Mapping in Degraded Visual Environments. Kostas Alexis Autonomous Robots Lab, University of Nevada, Reno Aerial Robotic Autonomous Exploration & Mapping in Degraded Visual Environments Kostas Alexis Autonomous Robots Lab, University of Nevada, Reno Motivation Aerial robotic operation in GPS-denied Degraded

More information

Breaking Through the Barriers to GPU Accelerated Monte Carlo Particle Transport

Breaking Through the Barriers to GPU Accelerated Monte Carlo Particle Transport Breaking Through the Barriers to GPU Accelerated Monte Carlo Particle Transport GTC 2018 Jeremy Sweezy Scientist Monte Carlo Methods, Codes and Applications Group 3/28/2018 Operated by Los Alamos National

More information

ISOCS Characterization of Sodium Iodide Detectors for Gamma-Ray Spectrometry

ISOCS Characterization of Sodium Iodide Detectors for Gamma-Ray Spectrometry ISOCS Characterization of Sodium Iodide Detectors for Gamma-Ray Spectrometry Sasha A. Philips, Frazier Bronson, Ram Venkataraman, Brian M. Young Abstract--Activity measurements require knowledge of the

More information

THE SIGACE PACKAGE FOR GENERATING HIGH TEMPERATURE ACE FILES USER MANUAL

THE SIGACE PACKAGE FOR GENERATING HIGH TEMPERATURE ACE FILES USER MANUAL INTERNATIONAL ATOMIC ENERGY AGENCY NUCLEAR DATA SERVICES DOCUMENTATION SERIES OF THE IAEA NUCLEAR DATA SECTION IAEA-NDS-212 17 January 2005 THE SIGACE PACKAGE FOR GENERATING HIGH TEMPERATURE ACE FILES

More information

Basic Concepts And Future Directions Of Road Network Reliability Analysis

Basic Concepts And Future Directions Of Road Network Reliability Analysis Journal of Advanced Transportarion, Vol. 33, No. 2, pp. 12.5-134 Basic Concepts And Future Directions Of Road Network Reliability Analysis Yasunori Iida Background The stability of road networks has become

More information

Status and development of multi-physics capabilities in Serpent 2

Status and development of multi-physics capabilities in Serpent 2 Status and development of multi-physics capabilities in Serpent 2 V. Valtavirta VTT Technical Research Centre of Finland ville.valtavirta@vtt.fi 2014 Serpent User Group Meeting Structure Click to of edit

More information

Bootstrapping Method for 14 June 2016 R. Russell Rhinehart. Bootstrapping

Bootstrapping Method for  14 June 2016 R. Russell Rhinehart. Bootstrapping Bootstrapping Method for www.r3eda.com 14 June 2016 R. Russell Rhinehart Bootstrapping This is extracted from the book, Nonlinear Regression Modeling for Engineering Applications: Modeling, Model Validation,

More information

Image Matching Fundamentals. Presented by: Dr. Hamid Ebadi

Image Matching Fundamentals. Presented by: Dr. Hamid Ebadi Image Matching Fundamentals Presented by: Dr. Hamid Ebadi Historical Remarks Terminology, Working Definitions Conjugate Entity Matching Entity Similarity Measure Matching Method Matching Strategy Relationship

More information

Production of neutrons in laminated barriers of radiotherapy rooms: comparison between the analytical methodology and Monte Carlo simulations

Production of neutrons in laminated barriers of radiotherapy rooms: comparison between the analytical methodology and Monte Carlo simulations JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, VOLUME 15, NUMBER 6, 2014 Production of neutrons in laminated barriers of radiotherapy rooms: comparison between the analytical methodology and Monte Carlo

More information

ANSYS. DesignXplorer - Design for Six Sigma. Crane Hook

ANSYS. DesignXplorer - Design for Six Sigma. Crane Hook ANSYS DesignXplorer - Crane Hook Purpose Using the crane hook model at right we will demonstrate how the design for six sigma results can be used in DesignXplorer 8.1 Goal Our first goal is to verify that

More information

Forrest B. Brown, Yasunobu Nagaya. American Nuclear Society 2002 Winter Meeting November 17-21, 2002 Washington, DC

Forrest B. Brown, Yasunobu Nagaya. American Nuclear Society 2002 Winter Meeting November 17-21, 2002 Washington, DC LA-UR-02-3782 Approved for public release; distribution is unlimited. Title: THE MCNP5 RANDOM NUMBER GENERATOR Author(s): Forrest B. Brown, Yasunobu Nagaya Submitted to: American Nuclear Society 2002 Winter

More information

SAFETY OF ARCHES - A PROBABILISTIC APPROACH

SAFETY OF ARCHES - A PROBABILISTIC APPROACH SAFETY OF ARCHES - A PROBABILISTIC APPROACH L. Schueremans 1, P. Smars, D. Van Gemert 1 ABSTRACT Nowadays, powerful methods are available for the calculation of structural safety values. These permit to

More information

We have seen that as n increases, the length of our confidence interval decreases, the confidence interval will be more narrow.

We have seen that as n increases, the length of our confidence interval decreases, the confidence interval will be more narrow. {Confidence Intervals for Population Means} Now we will discuss a few loose ends. Before moving into our final discussion of confidence intervals for one population mean, let s review a few important results

More information

Simultaneous Perturbation Stochastic Approximation Algorithm Combined with Neural Network and Fuzzy Simulation

Simultaneous Perturbation Stochastic Approximation Algorithm Combined with Neural Network and Fuzzy Simulation .--- Simultaneous Perturbation Stochastic Approximation Algorithm Combined with Neural Networ and Fuzzy Simulation Abstract - - - - Keywords: Many optimization problems contain fuzzy information. Possibility

More information

TREAT Modeling & Simulation Using PROTEUS

TREAT Modeling & Simulation Using PROTEUS TREAT Modeling & Simulation Using PROTEUS May 24, 2016 ChanghoLee Neutronics Methods and Codes Section Nuclear Engineering Division Argonne National Laboratory Historic TREAT Experiments: Minimum Critical

More information

CPM-3 BENCHMARKING to the DOE/B&W CRITICAL EXPERIMENTS

CPM-3 BENCHMARKING to the DOE/B&W CRITICAL EXPERIMENTS CPM-3 BENCHMARKING to the DOE/B&W CRITICAL EXPERIMENTS Kenneth M. Smolinske and Rodney L. Grow Utility Resource Associates Corporation 1901 Research Boulevard, Suite 405 Rockville, Maryland 20850 ABSTRACT

More information

MCNP Progress for NCSP

MCNP Progress for NCSP MCNP Progress for NCSP LA-UR-18-22379 1 MCNP Progress for NCSP LA-UR-18-22379 Michael Rising, Forrest Brown, Jennifer Alwin Monte Carlo Methods, Codes, & Applications (XCP-3) X Computational Physics Division

More information

Electron Dose Kernels (EDK) for Secondary Particle Transport in Deterministic Simulations

Electron Dose Kernels (EDK) for Secondary Particle Transport in Deterministic Simulations Electron Dose Kernels (EDK) for Secondary Particle Transport in Deterministic Simulations A. Al-Basheer, G. Sjoden, M. Ghita Computational Medical Physics Team Nuclear & Radiological Engineering University

More information

MONTE CARLO EVALUATION OF DEFINITE INTEGRALS

MONTE CARLO EVALUATION OF DEFINITE INTEGRALS MISN-0-355 MONTE CARLO EVALUATION OF DEFINITE INTEGRALS by Robert Ehrlich MONTE CARLO EVALUATION OF DEFINITE INTEGRALS y 1. Integrals, 1-2 Dimensions a. Introduction.............................................1

More information

Design of Experiments

Design of Experiments Seite 1 von 1 Design of Experiments Module Overview In this module, you learn how to create design matrices, screen factors, and perform regression analysis and Monte Carlo simulation using Mathcad. Objectives

More information

ALEPH A Monte Carlo Burn-Up Code

ALEPH A Monte Carlo Burn-Up Code OPEN REPORT SCK CEN-BLG-1003 Rev. 0 ALEPH 1.1.2 A Monte Carlo Burn-Up Code Wim Haeck Bernard Verboomen January, 2006 SCK CEN Boeretang 200 2400 Mol Belgium OPEN REPORT OF THE BELGIAN NUCLEAR RESEARCH CENTRE

More information

An Adaptive Markov Chain Monte Carlo Method for Bayesian Finite Element Model Updating

An Adaptive Markov Chain Monte Carlo Method for Bayesian Finite Element Model Updating An Adaptive Markov Chain Monte Carlo Method for Bayesian Finite Element Model Updating I. Boulkaibet a, T. Marwala a, M. I. Friswell b, S. Adhikari b a Electrical and Electronic Engineering Department,

More information

DRAGON SOLUTIONS FOR BENCHMARK BWR LATTICE CELL PROBLEMS

DRAGON SOLUTIONS FOR BENCHMARK BWR LATTICE CELL PROBLEMS DRAGON SOLUTIONS FOR BENCHMARK BWR LATTICE CELL PROBLEMS R. Roy and G. Marleau Institut de Génie Nucléaire École Polytechnique de Montréal P.O.Box 6079, Station CV, Montreal, Canada roy@meca.polymtl.ca

More information

HPC Particle Transport Methodologies for Simulation of Nuclear Systems

HPC Particle Transport Methodologies for Simulation of Nuclear Systems HPC Particle Transport Methodologies for Simulation of Nuclear Systems Prof. Alireza Haghighat Virginia Tech Virginia Tech Transport Theory Group (VT 3 G) Director of Nuclear Engineering and Science Lab

More information

Varianzbasierte Robustheitsoptimierung

Varianzbasierte Robustheitsoptimierung DVM Workshop Zuverlässigkeit und Probabilistik München, November 2017 Varianzbasierte Robustheitsoptimierung unter Pareto Kriterien Veit Bayer Thomas Most Dynardo GmbH Weimar Robustness Evaluation 2 How

More information