Dosimetry Simulations with the UF-B Series Phantoms using the PENTRAN-MP Code System

Size: px
Start display at page:

Download "Dosimetry Simulations with the UF-B Series Phantoms using the PENTRAN-MP Code System"

Transcription

1 Dosimetry Simulations with the UF-B Series Phantoms using the PENTRAN-MP Code System A. Al-Basheer, M. Ghita, G. Sjoden, W. Bolch, C. Lee, and the ALRADS Group Computational Medical Physics Team Nuclear & Radiological Engineering University of Florida

2 Overview Dosimetry Simulations with the UF-B Series Phantoms Structure of Calculations PENTRAN-MP Code System UF Computational Phantoms Results and Discussion

3 PENTRAN-MP Code System Pre-processing GHOST-3D and DXS (3-D General Collapsing Code determines an effective phantom material distribution, DXS yields sources distributions ) PENMSH-XP (prepares mesh, source, and material distributions) CEPXS (prepares multi-groups Cross-section libraries ) Transport Calculation (Parallel Environment Neutral-particle TRANsport) Postprocessing 3D-Dose (calculate total 3D-dose distributions for all energy Group) 3DI (extracts data via a 3-D linear interpolation, and compares with reference data)

4 CT Images Simulation Methodology for Dose Computations CEPXS High Resolution Voxelized Human Phantom GHOST Voxelized Human Phantom For Transport Simulations Cross sections MCNP5 benchmarking PENMSH-XP PENTRAN PENDATA Flux distribution Built-in cross section Library (ENDF/B-VI) DXS X-Ray source generator Dose distribution Optimized Clinical Techniques

5 GHOST-3D 3-D General Collapsing Code By A. Al-Basheer & M. Ghita X-Y-Z voxel collapsing using two methodologies: Density Averaging Methodology Cubical collapsing Preset equivalent material distribution Density averaging based on ICRP46 output generation for MCNP and PENMSHxp Dominant Material Methodology Cubical collapsing Conservation of original material distribution Dominant material collapsing output generation for MCNP and PENMSHxp

6 PENMSH-xp (Yi & Haghighat) A Cartesian-based 3-D mesh generator 3-D Cartesian-based mesh generator prepares material distribution source distribution Methodology: a physical model has to be partitioned into slices along an axis (e.g., the z- axis) each z-level has to be partitioned into 2-D coarse meshes. each x-y coarse-mesh is partitioned into grids (fine meshes) of equal size Block adaptive meshing: different coarse meshes may have different grid densities.

7 The UF Computational Phantoms Series B UF Pediatric Series A phantoms developed from CT images of live patients. The UF Series B pediatric phantoms represent an extension of the UF Series A pediatric phantoms within which patient-specific in body dimensions and internal organ masses remained as viewed in the original CT images.

8 Model of Study: 11 Year Old Male Phantom This model considered up to 73 materials Matrix size [398,242,252] Voxel resolution= * * 0.6 cc Volumetric source ( cc) over the left side of the phantom chest 8 energy groups (10-90 Kev) 189,600 fine meshes divided uniformly to 30 coarse meshes unbiased quadrature sets were tested using S24, S32, and S42 Still need to investigate biased (splitting) quadrature sets

9 11 Year Old Male Phantom Cross-Sectional view UF-Series B phantom (11 years old male) with ( voxels); the corresponding PENTRAN downsampled models with ( voxels) and 66 materials, and another with ( voxels) and 72 materials

10 11 Year Old Male Phantom Cross-Sectional view UF_11yr voxel PENTRAN model - whole body

11 SELECTED IMAGE SLICES THE UF SERIES B PHANTOMS AS A PENTRAN INPUT and MATERIAL variation CT Image slice 27M voxel phantom 4-materials 189k voxel phantom 4-materials 900k voxel phantom 72-materials 900k voxel phantom

12 SELECTED IMAGE SLICES THE UF SERIES B PHANTOMS AS A PENTRAN INPUT and MATERIAL variation CT Image slice, 27M voxel phantom 4-materials 189K voxel phantom 4-materials 900K voxel phantom 72-materials 900K voxel phantom

13 SELECTED IMAGE SLICES THE UF SERIES B PHANTOMS AS A PENTRAN INPUT and MATERIAL variation Pentran discretized spatial-mesh slice, 4-materials 900k voxel Phantom CT Image slice, 27M voxel phantom

14 90 KeV source 3-D scalar flux distributions for four energy groups with S42 quadrature G1 (80-90) Kev G3 (50-60) Kev G5 (30-40) Kev G8 (80-90) Kev X-ray 3-D Group 1, 3, 5, and 8 scalar flux distribution computed by PENTRAN with the cepxs cross section library; an S42 angular quadrature (1848 directions) with P4 scattering anisotropy.

15 11 year old male phantom using 4 distinct materials Equivalent Geometry The MCNP5 model was defined to be equivalent to that used in PENTRAN model Equivalent Source spectra The Source was defined in a consistent manner with the various multi-group libraries considered Equivalent Volumetric meshtally (F4) tallies Tallies were equivalent to the discretized Sn volumes UF_11yr voxel MCNP model - whole body

16 PENTRAN/CEPXS Vs MCNP5 Flux through various parts of the model along Y axis, Model(189k voxel, 4-materials and 8 energy groups) Fig 1 Fig 2 Fig 3 Fig 4 Fig 1,2,3& 4: deterministic results using S42 angular quadrature (1848 directions) with P4 CEPXS showed an acceptable agreement with Monte Carlo

17 PENTRAN/CEPXS Vs MCNP5 Flux through various parts of the model along Y axis, Model(189k voxel, 4-materials and 8 energy groups) Fig 5 Fig 6 Fig 7 Fig 8 Fig 5,6,7& 8: deterministic results using S42 angular quadrature (1848 directions) with P4 CEPXS showed an acceptable agreement with Monte Carlo

18 PENTRAN/CEPXS Vs MCNP5 Flux through various parts of the model along Y axis, Model(189k voxel, 4-materials and 8 energy groups) Y=4.35cm X=13.0cm sigma-src<5% Y=16.6cm X=13.0cm G1-G6 sigma-src<6% sigma-5%-15% 5.00E E E E+05 Flux 4.00E E E E E E E E E E E E E E E+02 Z(cm) MC(G1) Sn42(G1)p4 MC(G3) Sn42(G3)p4 MC(G5) Sn42(G5)p4 MC(G7) Sn42(G7)p4 Flux 6.01E E E E E E E E E E E E E+02 Z(cm) MC(G1) Sn(G1) MC(G3) Sn(G5) MC(G5) Sn(G3) MC(G7) Sn(G7) Fig 1 Fig 2 Fig 1, Fig2: deterministic vs Monte Carlo results along the Z axis at Y=4.35 cm, X= 13.0 cm and at Y=16.6 cm, X= 13.0 cm both results showed acceptable agreement.

19 Simulation Methodology for Dose Computation UF_11YR Voxel Model UF Phantom As a PENTRAN Input Phantom Dose Distribution

20 SELECTED IMAGE SLICES OF THE UF SERIES B PHANTOMS COMPARED TO PENTRAN/CEPXS INPUT AND THE CORRESPONDING DOSE DISTRIBUTION CT Image slice 27M voxel phantom Corresponding dose distribution 4materials 900K voxel phantom

21 SELECTED IMAGE SLICES OF THE UF SERIES B PHANTOMS COMPARED TO PENTRAN/CEPXS INPUT AND THE CORRESPONDING DOSE DISTRIBUTION CT Image slice 27M voxel phantom Corresponding dose distribution 72-materials 900K voxel phantom

22 SELECTED IMAGE SLICES OF THE UF SERIES B PHANTOMS COMPARED TO PENTRAN/CEPXS INPUT AND THE CORRESPONDING DOSE DISTRIBUTION CT Image slice 27M voxel phantom Corresponding dose distribution 4materials 900K voxel phantom

23 Individual Organ dose is readily obtainable via post processing

24 Dose Volume Histograms (DVH) Left lung (organ in the radiation field). Liver (organ is partially in the radiation field) Right lung (organ is out side the radiation field where MC didn t converge).

25 Parallel PENTRAN Decomposition for Sn, Model (189k voxel and 8 energy groups) quadrature level (directions ratio*) Processors # Decomposition A E S S24 (1.0) ,21,24, S32 (1.74) ,21,24, S42 (2.96) ,21,24, Cumulative time** and memory requirements for four quadrature sets Phantom matrix size [79,48,50] Iterations # for (G1,G2,G3&G4) Parallel Cumulative time for MC Processors # 16 Cumulative Problem Time (hr) 17.6 Cumulative Problem Time (hr) Nondedicated Time ratio to S We estimated that more than 2000 hr, for tallies 70 cm away from the source, is needed to converge to less than 5% * Directions and time ratio are referred to the S12 quadrature set. ** Non dedicated running time Time ratio*

26 Monte Carlo Vs. Deterministic Term Deterministic Monte Carlo Geometry Discrete/ Exact Exact Energy treatment- cross section Discrete Exact Direction Discrete/ Truncated series Exact Input preparation simplified* simple Computer memory required Large Small/large Computer time Small Large Numerical issues Convergence Statistical uncertainty Amount of information Large Limited Parallel computing Complex Trivial Comparison between Monte Carlo methods and Deterministic techniques

27 The SN approach is an effective alternative to the Monte Carlo method for Accurately solve the transport equation over an entire human phantom Use in optimizing current radiation therapy treatment plans. A major advantage of the SN method combined with NURBS Computational Phantoms it can be sculpted to represent the patient avoiding Findings whole-body images of the patient (too costly) detailed organ segmentation of the partial body CT images for treatment planning Collisional kerma approximation Can is accurate for low beam energies dose calculations For therapeutic beams (high energies) require a different approach employing better representation of electron transport

DETERMINISTIC 3D RADIATION TRANSPORT SIMULATION FOR DOSE DISTRIBUTION AND ORGAN DOSE EVALUATION IN DIAGNOSTIC CT

DETERMINISTIC 3D RADIATION TRANSPORT SIMULATION FOR DOSE DISTRIBUTION AND ORGAN DOSE EVALUATION IN DIAGNOSTIC CT DETERMINISTIC 3D RADIATION TRANSPORT SIMULATION FOR DOSE DISTRIBUTION AND ORGAN DOSE EVALUATION IN DIAGNOSTIC CT Monica Ghita,, Glenn Sjoden, Manuel Arreola, Ahmad Al-Basheer Basheer, Choonsik Lee, Wesley

More information

Electron Dose Kernels (EDK) for Secondary Particle Transport in Deterministic Simulations

Electron Dose Kernels (EDK) for Secondary Particle Transport in Deterministic Simulations Electron Dose Kernels (EDK) for Secondary Particle Transport in Deterministic Simulations A. Al-Basheer, G. Sjoden, M. Ghita Computational Medical Physics Team Nuclear & Radiological Engineering University

More information

ELECTRON DOSE KERNELS TO ACCOUNT FOR SECONDARY PARTICLE TRANSPORT IN DETERMINISTIC SIMULATIONS

ELECTRON DOSE KERNELS TO ACCOUNT FOR SECONDARY PARTICLE TRANSPORT IN DETERMINISTIC SIMULATIONS Computational Medical Physics Working Group Workshop II, Sep 30 Oct 3, 2007 University of Florida (UF), Gainesville, Florida USA on CD-ROM, American Nuclear Society, LaGrange Park, IL (2007) ELECTRON DOSE

More information

3D DETERMINISTIC RADIATION TRANSPORT FOR DOSE COMPUTATIONS IN CLINICAL PROCEDURES

3D DETERMINISTIC RADIATION TRANSPORT FOR DOSE COMPUTATIONS IN CLINICAL PROCEDURES 3D DETERMINISTIC RADIATION TRANSPORT FOR DOSE COMPUTATIONS IN CLINICAL PROCEDURES By AHMAD AL-BASHEER A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

More information

Monte Carlo methods in proton beam radiation therapy. Harald Paganetti

Monte Carlo methods in proton beam radiation therapy. Harald Paganetti Monte Carlo methods in proton beam radiation therapy Harald Paganetti Introduction: Proton Physics Electromagnetic energy loss of protons Distal distribution Dose [%] 120 100 80 60 40 p e p Ionization

More information

Michael Speiser, Ph.D.

Michael Speiser, Ph.D. IMPROVED CT-BASED VOXEL PHANTOM GENERATION FOR MCNP MONTE CARLO Michael Speiser, Ph.D. Department of Radiation Oncology UT Southwestern Medical Center Dallas, TX September 1 st, 2012 CMPWG Workshop Medical

More information

Comparison of internal and external dose conversion factors using ICRP adult male and MEET Man voxel model phantoms.

Comparison of internal and external dose conversion factors using ICRP adult male and MEET Man voxel model phantoms. Comparison of internal and external dose conversion factors using ICRP adult male and MEET Man voxel model phantoms. D.Leone, A.Häußler Intitute for Nuclear Waste Disposal, Karlsruhe Institute for Technology,

More information

Basics of treatment planning II

Basics of treatment planning II Basics of treatment planning II Sastry Vedam PhD DABR Introduction to Medical Physics III: Therapy Spring 2015 Dose calculation algorithms! Correction based! Model based 1 Dose calculation algorithms!

More information

Mesh Human Phantoms with MCNP

Mesh Human Phantoms with MCNP LAUR-12-01659 Mesh Human Phantoms with MCNP Casey Anderson (casey_a@lanl.gov) Karen Kelley, Tim Goorley Los Alamos National Laboratory U N C L A S S I F I E D Slide 1 Summary Monte Carlo for Radiation

More information

A premilinary study of the OECD/NEA 3D transport problem using the lattice code DRAGON

A premilinary study of the OECD/NEA 3D transport problem using the lattice code DRAGON A premilinary study of the OECD/NEA 3D transport problem using the lattice code DRAGON Nicolas Martin, Guy Marleau, Alain Hébert Institut de Génie Nucléaire École Polytechnique de Montréal 28 CNS Symposium

More information

HPC Particle Transport Methodologies for Simulation of Nuclear Systems

HPC Particle Transport Methodologies for Simulation of Nuclear Systems HPC Particle Transport Methodologies for Simulation of Nuclear Systems Prof. Alireza Haghighat Virginia Tech Virginia Tech Transport Theory Group (VT 3 G) Director of Nuclear Engineering and Science Lab

More information

Basics of treatment planning II

Basics of treatment planning II Basics of treatment planning II Sastry Vedam PhD DABR Introduction to Medical Physics III: Therapy Spring 2015 Monte Carlo Methods 1 Monte Carlo! Most accurate at predicting dose distributions! Based on

More information

Dose Calculations: Where and How to Calculate Dose. Allen Holder Trinity University.

Dose Calculations: Where and How to Calculate Dose. Allen Holder Trinity University. Dose Calculations: Where and How to Calculate Dose Trinity University www.trinity.edu/aholder R. Acosta, W. Brick, A. Hanna, D. Lara, G. McQuilen, D. Nevin, P. Uhlig and B. Slater Dose Calculations - Why

More information

Parallel PENTRAN Applications. G. E. Sjoden and A. Haghighat Nuclear and Radiological Engineering University of Florida

Parallel PENTRAN Applications. G. E. Sjoden and A. Haghighat Nuclear and Radiological Engineering University of Florida Parallel PENTRAN Applications G. E. Sjoden and A. Haghighat Nuclear and Radiological Engineering University of Florida Overview Introduction Parallel Computing & MPI Boltzmann & Transport PENTRAN TM Code

More information

DOSE KERNEL METHODS FOR OUT-OF-FIELD DOSE ASSESSMENTS IN CLINICAL MEGAVOLTAGE RADIATION THERAPY

DOSE KERNEL METHODS FOR OUT-OF-FIELD DOSE ASSESSMENTS IN CLINICAL MEGAVOLTAGE RADIATION THERAPY APPLICATION OF DETERMINISTIC 3D SN TRANSPORT DRIVEN DOSE KERNEL METHODS FOR OUT-OF-FIELD DOSE ASSESSMENTS IN CLINICAL MEGAVOLTAGE RADIATION THERAPY A Dissertation Presented to The Academic Faculty by Mi

More information

Image-based Monte Carlo calculations for dosimetry

Image-based Monte Carlo calculations for dosimetry Image-based Monte Carlo calculations for dosimetry Irène Buvat Imagerie et Modélisation en Neurobiologie et Cancérologie UMR 8165 CNRS Universités Paris 7 et Paris 11 Orsay, France buvat@imnc.in2p3.fr

More information

gpmc: GPU-Based Monte Carlo Dose Calculation for Proton Radiotherapy Xun Jia 8/7/2013

gpmc: GPU-Based Monte Carlo Dose Calculation for Proton Radiotherapy Xun Jia 8/7/2013 gpmc: GPU-Based Monte Carlo Dose Calculation for Proton Radiotherapy Xun Jia xunjia@ucsd.edu 8/7/2013 gpmc project Proton therapy dose calculation Pencil beam method Monte Carlo method gpmc project Started

More information

Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.

Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. DXRaySMCS First User Friendly Interface Developed for Prediction of Diagnostic Radiology X-Ray Spectra Produced by Monte Carlo (MCNP-4C) Simulation in Iran M.T. Bahreyni Toosi a*, H. Moradi b, H. Zare

More information

Improved Detector Response Characterization Method in ISOCS and LabSOCS

Improved Detector Response Characterization Method in ISOCS and LabSOCS P Improved Detector Response Characterization Method in ISOCS and LabSOCS *1 1 1 1 1 R. VenkataramanP P, F. BronsonP P, V. AtrashkevichP P, M. FieldP P, and B.M. YoungP P. 1 PCanberra Industries, 800 Research

More information

Development and Use of Computational Anthropomorphic Phantoms for Medical Dosimetry Nina Petoussi-Henss

Development and Use of Computational Anthropomorphic Phantoms for Medical Dosimetry Nina Petoussi-Henss Medical Radiation Physics and Diagnostics, AMSD Development and Use of Computational Anthropomorphic Phantoms for Medical Dosimetry Nina Petoussi-Henss HMGU, HELENA Lecture series, 16.09.2015 Outline Why

More information

A dedicated tool for PET scanner simulations using FLUKA

A dedicated tool for PET scanner simulations using FLUKA A dedicated tool for PET scanner simulations using FLUKA P. G. Ortega FLUKA meeting June 2013 1 Need for in-vivo treatment monitoring Particles: The good thing is that they stop... Tumour Normal tissue/organ

More information

IMPLEMENTATION OF SALIVARY GLANDS IN THE BODYBUILDER ANTHROPOMORPHIC PHANTOMS

IMPLEMENTATION OF SALIVARY GLANDS IN THE BODYBUILDER ANTHROPOMORPHIC PHANTOMS Computational Medical Physics Working Group Workshop II, Sep 30 Oct 3, 2007 University of Florida (UF), Gainesville, Florida USA on CD-ROM, American Nuclear Society, LaGrange Park, IL (2007) IMPLEMENTATION

More information

Shielding factors for traditional safety glasses

Shielding factors for traditional safety glasses Shielding factors for traditional safety glasses Malcolm McEwen, Hong Shen and Ernesto Mainegra-Hing Ionizing Radiation Standards, National Research Council Canada Alan DuSautoy, Radiation and Health Sciences

More information

Teresa S. Bailey (LLNL) Marvin L. Adams (Texas A&M University)

Teresa S. Bailey (LLNL) Marvin L. Adams (Texas A&M University) A Piecewise i Linear Discontinuous Finite it Element Spatial Discretization of the S N Transport Equation for Polyhedral Grids in 3D Cartesian Geometry International Conference on Transport Theory September

More information

A Method for Estimating Criticality Lower Limit Multiplication Factor. Yoshitaka NAITO NAIS Co., Ltd.

A Method for Estimating Criticality Lower Limit Multiplication Factor. Yoshitaka NAITO NAIS Co., Ltd. A Method for Estimating Criticality Lower Limit Multiplication Factor Yoshitaka NAITO NAIS Co., Ltd. Progress Grade up of computer performance Sub-criticality becomes to be decided using computed results

More information

Comparison of Predictions by MCNP and EGSnrc of Radiation Dose

Comparison of Predictions by MCNP and EGSnrc of Radiation Dose Comparison of Predictions by MCNP and EGSnrc of Radiation Dose Computational Medical Physics Working Group Workshop II, Sep 30 Oct 3, 2007 at UF imparted to various Material Targets by Beams and small

More information

Effects of the difference in tube voltage of the CT scanner on. dose calculation

Effects of the difference in tube voltage of the CT scanner on. dose calculation Effects of the difference in tube voltage of the CT scanner on dose calculation Dong Joo Rhee, Sung-woo Kim, Dong Hyeok Jeong Medical and Radiological Physics Laboratory, Dongnam Institute of Radiological

More information

Suitability Study of MCNP Monte Carlo Program for Use in Medical Physics

Suitability Study of MCNP Monte Carlo Program for Use in Medical Physics Nuclear Energy in Central Europe '98 Terme Catez, September 7 to 10, 1998 SI0100092 Suitability Study of MCNP Monte Carlo Program for Use in Medical Physics R. Jeraj Reactor Physics Division, Jozef Stefan

More information

CBCT Equivalent Source Generation Using HVL and Beam Profile Measurements. Johnny Little PSM - Medical Physics Graduate Student University of Arizona

CBCT Equivalent Source Generation Using HVL and Beam Profile Measurements. Johnny Little PSM - Medical Physics Graduate Student University of Arizona CBCT Equivalent Source Generation Using HVL and Beam Profile Measurements. Johnny Little PSM - Medical Physics Graduate Student University of Arizona Introduction CBCT has become a routine procedure for

More information

A fast and accurate GPU-based proton transport Monte Carlo simulation for validating proton therapy treatment plans

A fast and accurate GPU-based proton transport Monte Carlo simulation for validating proton therapy treatment plans A fast and accurate GPU-based proton transport Monte Carlo simulation for validating proton therapy treatment plans H. Wan Chan Tseung 1 J. Ma C. Beltran PTCOG 2014 13 June, Shanghai 1 wanchantseung.hok@mayo.edu

More information

Modeling the White Sands Missile Range Fast Burst Reactor Using a Discrete Ordinates Code, PENTRAN

Modeling the White Sands Missile Range Fast Burst Reactor Using a Discrete Ordinates Code, PENTRAN Air Force Institute of Technology AFIT Scholar Theses and Dissertations 3-23-207 Modeling the White Sands Missile Range Fast Burst Reactor Using a Discrete Ordinates Code, PENTRAN Taylor R. Schulmeister

More information

DUAL energy X-ray radiography [1] can be used to separate

DUAL energy X-ray radiography [1] can be used to separate IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 1, FEBRUARY 2006 133 A Scatter Correction Using Thickness Iteration in Dual-Energy Radiography S. K. Ahn, G. Cho, and H. Jeon Abstract In dual-energy

More information

The OpenGATE Collaboration

The OpenGATE Collaboration The OpenGATE Collaboration GATE developments and future releases GATE Users meeting, IEEE MIC 2015, San Diego Sébastien JAN CEA - IMIV sebastien.jan@cea.fr Outline Theranostics modeling Radiobiology Optics

More information

Analysis of Radiation Transport through Multileaf Collimators Using BEAMnrc Code

Analysis of Radiation Transport through Multileaf Collimators Using BEAMnrc Code American Journal of Biomedical Engineering 216, 6(4): 124-131 DOI: 1.5923/j.ajbe.21664.3 Analysis of Radiation Transport through Multileaf Collimators Using BEAMnrc Code Ankit Kajaria 1,*, Neeraj Sharma

More information

CT vs. VolumeScope: image quality and dose comparison

CT vs. VolumeScope: image quality and dose comparison CT vs. VolumeScope: image quality and dose comparison V.N. Vasiliev *a, A.F. Gamaliy **b, M.Yu. Zaytsev b, K.V. Zaytseva ***b a Russian Sci. Center of Roentgenology & Radiology, 86, Profsoyuznaya, Moscow,

More information

Evaluation of RayXpert for shielding design of medical facilities

Evaluation of RayXpert for shielding design of medical facilities Evaluation of Raypert for shielding design of medical facilities Sylvie Derreumaux 1,*, Sophie Vecchiola 1, Thomas Geoffray 2, and Cécile Etard 1 1 Institut for radiation protection and nuclear safety,

More information

Attenuation Coefficients for Layered Ceiling and Floor Shields in PET/CT Clinics

Attenuation Coefficients for Layered Ceiling and Floor Shields in PET/CT Clinics Attenuation Coefficients for Layered Ceiling and Floor Shields in PET/CT Clinics Robert L. Metzger and Kenneth A. Van Riper Radiation Safety Engineering, Inc 3245 North Washington Street, Chandler, AZ

More information

MCNP4C3-BASED SIMULATION OF A MEDICAL LINEAR ACCELERATOR

MCNP4C3-BASED SIMULATION OF A MEDICAL LINEAR ACCELERATOR Computational Medical Physics Working Group Workshop II, Sep 3 Oct 3, 7 University of Florida (UF), Gainesville, Florida USA on CD-ROM, American Nuclear Society, LaGrange Park, IL (7) MCNP4C3-BASED SIMULATION

More information

ISOCS Characterization of Sodium Iodide Detectors for Gamma-Ray Spectrometry

ISOCS Characterization of Sodium Iodide Detectors for Gamma-Ray Spectrometry ISOCS Characterization of Sodium Iodide Detectors for Gamma-Ray Spectrometry Sasha A. Philips, Frazier Bronson, Ram Venkataraman, Brian M. Young Abstract--Activity measurements require knowledge of the

More information

Breaking Through the Barriers to GPU Accelerated Monte Carlo Particle Transport

Breaking Through the Barriers to GPU Accelerated Monte Carlo Particle Transport Breaking Through the Barriers to GPU Accelerated Monte Carlo Particle Transport GTC 2018 Jeremy Sweezy Scientist Monte Carlo Methods, Codes and Applications Group 3/28/2018 Operated by Los Alamos National

More information

Dose Point Kernel calculation and modelling with nuclear medicine dosimetry purposes

Dose Point Kernel calculation and modelling with nuclear medicine dosimetry purposes Dose Point Kernel calculation and modelling with nuclear medicine dosimetry purposes LIIFAMIRX - Laboratorio de Investigación e Instrumentación en Física Aplicada a la Medicina e Imágenes por Rayos X -

More information

Evaluation of 3D Gamma index calculation implemented in two commercial dosimetry systems

Evaluation of 3D Gamma index calculation implemented in two commercial dosimetry systems University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2015 Evaluation of 3D Gamma index calculation implemented

More information

Three Dimensional Dosimetry Analyses In Radionuclide Therapy Using IDL And MCNP-based Software Tools

Three Dimensional Dosimetry Analyses In Radionuclide Therapy Using IDL And MCNP-based Software Tools Three Dimensional Dosimetry Analyses In Radionuclide Therapy Using IDL And MCNP-based Software Tools M. G. Stabin 1, H. Yoriyaz 2, R. Li 1, A. B. Brill 1 1 Vanderbilt University, Nashville, TN, USA 2 Instituto

More information

Application of MCNP Code in Shielding Design for Radioactive Sources

Application of MCNP Code in Shielding Design for Radioactive Sources Application of MCNP Code in Shielding Design for Radioactive Sources Ibrahim A. Alrammah Abstract This paper presents three tasks: Task 1 explores: the detected number of as a function of polythene moderator

More information

Design and performance characteristics of a Cone Beam CT system for Leksell Gamma Knife Icon

Design and performance characteristics of a Cone Beam CT system for Leksell Gamma Knife Icon Design and performance characteristics of a Cone Beam CT system for Leksell Gamma Knife Icon WHITE PAPER Introduction Introducing an image guidance system based on Cone Beam CT (CBCT) and a mask immobilization

More information

MCNP Variance Reduction technique application for the Development of the Citrusdal Irradiation Facility

MCNP Variance Reduction technique application for the Development of the Citrusdal Irradiation Facility IYNC 2008 Interlaken, Switzerland, 20-26 September 2008 Paper No. 376 MCNP Variance Reduction technique application for the Development of the Citrusdal Irradiation Facility R Makgae Pebble Bed Modular

More information

Transitioning from pencil beam to Monte Carlo for electron dose calculations

Transitioning from pencil beam to Monte Carlo for electron dose calculations Transitioning from pencil beam to Monte Carlo for electron dose calculations Jessie Huang-Vredevoogd (jyhuang4@wisc.edu) University of Wisconsin NCC AAPM October 12, 2019 1 Topics to cover Background RayStation

More information

Artifact Mitigation in High Energy CT via Monte Carlo Simulation

Artifact Mitigation in High Energy CT via Monte Carlo Simulation PIERS ONLINE, VOL. 7, NO. 8, 11 791 Artifact Mitigation in High Energy CT via Monte Carlo Simulation Xuemin Jin and Robert Y. Levine Spectral Sciences, Inc., USA Abstract The high energy (< 15 MeV) incident

More information

Monte Carlo simulations

Monte Carlo simulations MC simulations Monte Carlo simulations Eirik Malinen Simulations of stochastic processes Interactions are stochastic: the path of a single ioniing particle may not be predicted Interactions are quantified

More information

An EGSnrc generated TG-43 dosimetry parameter database

An EGSnrc generated TG-43 dosimetry parameter database An EGSnrc generated TG-43 dosimetry parameter database Randle E. P. Taylor & D.W.O Rogers Carleton Laboratory for Radiotherapy Physics, Dept. of Physics, Carleton University Monte Carlo Workshop, May 30

More information

IMRT and VMAT Patient Specific QA Using 2D and 3D Detector Arrays

IMRT and VMAT Patient Specific QA Using 2D and 3D Detector Arrays IMRT and VMAT Patient Specific QA Using 2D and 3D Detector Arrays Sotiri Stathakis Outline Why IMRT/VMAT QA AAPM TG218 UPDATE Tolerance Limits and Methodologies for IMRT Verification QA Common sources

More information

Proton dose calculation algorithms and configuration data

Proton dose calculation algorithms and configuration data Proton dose calculation algorithms and configuration data Barbara Schaffner PTCOG 46 Educational workshop in Wanjie, 20. May 2007 VARIAN Medical Systems Agenda Broad beam algorithms Concept of pencil beam

More information

Monte Carlo Simulation for Neptun 10 PC Medical Linear Accelerator and Calculations of Electron Beam Parameters

Monte Carlo Simulation for Neptun 10 PC Medical Linear Accelerator and Calculations of Electron Beam Parameters Monte Carlo Simulation for Neptun 1 PC Medical Linear Accelerator and Calculations of Electron Beam Parameters M.T. Bahreyni Toossi a, M. Momen Nezhad b, S.M. Hashemi a a Medical Physics Research Center,

More information

Attila4MC. Software for Simplifying Monte Carlo. For more info contact or

Attila4MC. Software for Simplifying Monte Carlo. For more info contact or Attila4MC Software for Simplifying Monte Carlo For more info contact attila@varian.com or Gregory.Failla@varian.com MCNP and MCNP6 are trademarks of Los Alamos National Security, LLC, Los Alamos National

More information

Av. Professor Lineu Prestes São Paulo, SP ABSTRACT

Av. Professor Lineu Prestes São Paulo, SP ABSTRACT 2011 International Nuclear Atlantic Conference - INAC 2011 Belo Horizonte,MG, Brazil, October 24-28, 2011 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-04-5 COMPARISON BETWEEN THE

More information

ABSTRACT. W. T. Urban', L. A. Crotzerl, K. B. Spinney', L. S. Waters', D. K. Parsons', R. J. Cacciapouti2, and R. E. Alcouffel. 1.

ABSTRACT. W. T. Urban', L. A. Crotzerl, K. B. Spinney', L. S. Waters', D. K. Parsons', R. J. Cacciapouti2, and R. E. Alcouffel. 1. COMPARISON OF' THREE-DIMENSIONAL NEUTRON FLUX CALCULATIONS FOR MAINE YANKEE W. T. Urban', L. A. Crotzerl, K. B. Spinney', L. S. Waters', D. K. Parsons', R. J. Cacciapouti2, and R. E. Alcouffel ABSTRACT

More information

Daedeok-daero, Yuseong-gu, Daejeon , Republic of Korea b Argonne National Laboratory (ANL)

Daedeok-daero, Yuseong-gu, Daejeon , Republic of Korea b Argonne National Laboratory (ANL) MC 2-3/TWODANT/DIF3D Analysis for the ZPPR-15 10 B(n, α) Reaction Rate Measurement Min Jae Lee a*, Donny Hartanto a, Sang Ji Kim a, and Changho Lee b a Korea Atomic Energy Research Institute (KAERI) 989-111

More information

Absorbed fractions in a voxel-based phantom calculated with the MCNP-4B code

Absorbed fractions in a voxel-based phantom calculated with the MCNP-4B code Absorbed fractions in a voxel-based phantom calculated with the MCNP-4B code Hélio Yoriyaz and Adimir dos Santos a) Instituto de Pesquisas Energéticas e Nucleares IPEN-CNEN/SP, São Paulo, Brazil Michael

More information

ADVANCING CANCER TREATMENT

ADVANCING CANCER TREATMENT 3 ADVANCING CANCER TREATMENT SUPPORTING CLINICS WORLDWIDE RaySearch is advancing cancer treatment through pioneering software. We believe software has un limited potential, and that it is now the driving

More information

A Monte Carlo shielding model for PET/CT clinics

A Monte Carlo shielding model for PET/CT clinics A Monte Carlo shielding model for PET/CT clinics Robert L. Metzger and Kenneth A. Van Riper Radiation Safety Engineering, Inc Chandler, AZ Abstract Modern PET/CT clinics consist of a scanner room housing

More information

The team. Disclosures. Ultrasound Guidance During Radiation Delivery: Confronting the Treatment Interference Challenge.

The team. Disclosures. Ultrasound Guidance During Radiation Delivery: Confronting the Treatment Interference Challenge. Ultrasound Guidance During Radiation Delivery: Confronting the Treatment Interference Challenge Dimitre Hristov Radiation Oncology Stanford University The team Renhui Gong 1 Magdalena Bazalova-Carter 1

More information

Monte Carlo Method for Solving Inverse Problems of Radiation Transfer

Monte Carlo Method for Solving Inverse Problems of Radiation Transfer INVERSE AND ILL-POSED PROBLEMS SERIES Monte Carlo Method for Solving Inverse Problems of Radiation Transfer V.S.Antyufeev. ///VSP/// UTRECHT BOSTON KÖLN TOKYO 2000 Contents Chapter 1. Monte Carlo modifications

More information

Mathematical methods and simulations tools useful in medical radiation physics

Mathematical methods and simulations tools useful in medical radiation physics Mathematical methods and simulations tools useful in medical radiation physics Michael Ljungberg, professor Department of Medical Radiation Physics Lund University SE-221 85 Lund, Sweden Major topic 1:

More information

Implementation of the EGSnrc / BEAMnrc Monte Carlo code - Application to medical accelerator SATURNE43

Implementation of the EGSnrc / BEAMnrc Monte Carlo code - Application to medical accelerator SATURNE43 International Journal of Innovation and Applied Studies ISSN 2028-9324 Vol. 6 No. 3 July 2014, pp. 635-641 2014 Innovative Space of Scientific Research Journals http://www.ijias.issr-journals.org/ Implementation

More information

Quantitative imaging for clinical dosimetry

Quantitative imaging for clinical dosimetry Quantitative imaging for clinical dosimetry Irène Buvat Laboratoire d Imagerie Fonctionnelle U678 INSERM - UPMC CHU Pitié-Salpêtrière, Paris buvat@imed.jussieu.fr http://www.guillemet.org/irene Methodology

More information

ICRP Symposium on Radiological Protection Dosimetry

ICRP Symposium on Radiological Protection Dosimetry ICRP Symposium on Radiological Protection Dosimetry Tokyo February 18 th, 2016 M. Zankl a, J. Becker a, K.F. Eckerman b, W.E. Bolch c, R. Behrens d a Helmholtz Zentrum München, Neuherberg, Germany b Oak

More information

GPU implementation for rapid iterative image reconstruction algorithm

GPU implementation for rapid iterative image reconstruction algorithm GPU implementation for rapid iterative image reconstruction algorithm and its applications in nuclear medicine Jakub Pietrzak Krzysztof Kacperski Department of Medical Physics, Maria Skłodowska-Curie Memorial

More information

Megan A. Wood, M.S. Under the direction of Larry DeWerd, Ph.D. University of Wisconsin Medical Radiation Research Center (UWMRRC)

Megan A. Wood, M.S. Under the direction of Larry DeWerd, Ph.D. University of Wisconsin Medical Radiation Research Center (UWMRRC) Megan A. Wood, M.S. Under the direction of Larry DeWerd, Ph.D. University of Wisconsin Medical Radiation Research Center (UWMRRC) NCCAAPM Spring Meeting May 3, 2013 Introduction FFF background Project

More information

Detailed analysis of scatter contribution from different simulated geometries of X-ray detectors

Detailed analysis of scatter contribution from different simulated geometries of X-ray detectors Detailed analysis of scatter contribution from different simulated geometries of X-ray detectors Elena Marimon 1,2*, Hammadi Nait-Charif 1, Asmar Khan 2, Philip A. Marsden 3, Oliver Diaz 4 1 Centre for

More information

DUAL-ENERGY CT IN PROTON THERAPY

DUAL-ENERGY CT IN PROTON THERAPY 10/31/17 DUAL-ENERGY CT IN PROTON THERAPY Isabel Almeida, MAASTRO Clinic 7th NCS Lustrum Symposium 1 10/31/17 http://zonptc.bouwwebcam.nl https://www.youtube.com/watch?v=3vvvf5bqn7g Range uncertainties

More information

Current status of the benchmark cases with plans for availability to the medical physics community

Current status of the benchmark cases with plans for availability to the medical physics community Research and Relevance of Brachytherapy Dose Calculation Advancements: Current status of the benchmark cases with plans for availability to the medical physics community F. Ballester PhD University of

More information

Dosimetric Analysis Report

Dosimetric Analysis Report RT-safe 48, Artotinis str 116 33, Athens Greece +30 2107563691 info@rt-safe.com Dosimetric Analysis Report SAMPLE, for demonstration purposes only Date of report: ----------- Date of irradiation: -----------

More information

Digital Scatter Removal in Mammography to enable Patient Dose Reduction

Digital Scatter Removal in Mammography to enable Patient Dose Reduction Digital Scatter Removal in Mammography to enable Patient Dose Reduction Mary Cocker Radiation Physics and Protection Oxford University Hospitals NHS Trust Chris Tromans, Mike Brady University of Oxford

More information

Towards patient specific dosimetry in nuclear medicine associating Monte Carlo and 3D voxel based approaches

Towards patient specific dosimetry in nuclear medicine associating Monte Carlo and 3D voxel based approaches Towards patient specific dosimetry in nuclear medicine associating Monte Carlo and 3D voxel based approaches L.Hadid, N. Grandgirard, N. Pierrat, H. Schlattl, M. Zankl, A.Desbrée IRSN, French Institute

More information

NUC E 521. Chapter 6: METHOD OF CHARACTERISTICS

NUC E 521. Chapter 6: METHOD OF CHARACTERISTICS NUC E 521 Chapter 6: METHOD OF CHARACTERISTICS K. Ivanov 206 Reber, 865-0040, kni1@psu.edu Introduction o Spatial three-dimensional (3D) and energy dependent modeling of neutron population in a reactor

More information

THE SIMULATION OF THE 4 MV VARIAN LINAC WITH EXPERIMENTAL VALIDATION

THE SIMULATION OF THE 4 MV VARIAN LINAC WITH EXPERIMENTAL VALIDATION 2007 International Nuclear Atlantic Conference - INAC 2007 Santos, SP, Brazil, September 30 to October 5, 2007 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-02-1 THE SIMULATION OF

More information

Assesing multileaf collimator effect on the build-up region using Monte Carlo method

Assesing multileaf collimator effect on the build-up region using Monte Carlo method Pol J Med Phys Eng. 2008;14(3):163-182. PL ISSN 1425-4689 doi: 10.2478/v10013-008-0014-0 website: http://www.pjmpe.waw.pl M. Zarza Moreno 1, 2, N. Teixeira 3, 4, A. P. Jesus 1, 2, G. Mora 1 Assesing multileaf

More information

Air Kerma Strength Measurements and Monte Carlo based Dosimetric Characterization of a directional Pd 103 planar source array.

Air Kerma Strength Measurements and Monte Carlo based Dosimetric Characterization of a directional Pd 103 planar source array. Air Kerma Strength Measurements and Monte Carlo based Dosimetric Characterization of a directional Pd 103 planar source array. MANIK AIMA UWMRRC, MADISON 2014 NCAAPM Autumn Meeting October 24 th, 2014

More information

UNCOMPROMISING QUALITY

UNCOMPROMISING QUALITY ION CHAMBERS UNCOMPROMISING QUALITY Designed with over 30 years of scientific integrity for a broad range of dosimetry measurements in diverse radiation beams Farmer-type Chambers For absolute dosimetry

More information

GPU Based Convolution/Superposition Dose Calculation

GPU Based Convolution/Superposition Dose Calculation GPU Based Convolution/Superposition Dose Calculation Todd McNutt 1, Robert Jacques 1,2, Stefan Pencea 2, Sharon Dye 2, Michel Moreau 2 1) Johns Hopkins University 2) Elekta Research Funded by and Licensed

More information

Source Model Tuning for a 6 MV Photon Beam used in Radiotherapy

Source Model Tuning for a 6 MV Photon Beam used in Radiotherapy Journal of Physics: Conference Series Source Model Tuning for a 6 MV Photon Beam used in Radiotherapy To cite this article: Lukas A Hirschi et al 2007 J. Phys.: Conf. Ser. 74 021008 View the article online

More information

Development of the Efficient Modeling Method with Complicated Human Geometry for Monte-Carlo Treatment Planning System

Development of the Efficient Modeling Method with Complicated Human Geometry for Monte-Carlo Treatment Planning System Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 2, pp.226-231 (2011) ARTICLE Development of the Efficient Modeling Method with Complicated Human Geometry for Monte-Carlo Treatment Planning System Hiroaki

More information

Monaco VMAT. The Next Generation in IMRT/VMAT Planning. Paulo Mathias Customer Support TPS Application

Monaco VMAT. The Next Generation in IMRT/VMAT Planning. Paulo Mathias Customer Support TPS Application Monaco VMAT The Next Generation in IMRT/VMAT Planning Paulo Mathias Customer Support TPS Application 11.05.2011 Background What is Monaco? Advanced IMRT/VMAT treatment planning system from Elekta Software

More information

Image Quality Assessment and Quality Assurance of Advanced Imaging Systems for IGRT. AAPM Penn-Ohio Chapter Sep 25, 2015 Soyoung Lee, PhD

Image Quality Assessment and Quality Assurance of Advanced Imaging Systems for IGRT. AAPM Penn-Ohio Chapter Sep 25, 2015 Soyoung Lee, PhD Image Quality Assessment and Quality Assurance of Advanced Imaging Systems for IGRT AAPM Penn-Ohio Chapter Sep 25, 2015 Soyoung Lee, PhD 1 Outline q Introduction q Imaging performances in 4D-CBCT Image

More information

Loma Linda University Medical Center Dept. of Radiation Medicine

Loma Linda University Medical Center Dept. of Radiation Medicine Loma Linda University Medical Center Dept. of Radiation Medicine and Northern Illinois University Dept. of Physics and Dept. of Computer Science Presented by George Coutrakon, PhD NIU Physics Dept. Collaborators

More information

Investigation of tilted dose kernels for portal dose prediction in a-si electronic portal imagers

Investigation of tilted dose kernels for portal dose prediction in a-si electronic portal imagers Investigation of tilted dose kernels for portal dose prediction in a-si electronic portal imagers Krista Chytyk MSc student Supervisor: Dr. Boyd McCurdy Introduction The objective of cancer radiotherapy

More information

Modeling the ORTEC EX-100 Detector using MCNP

Modeling the ORTEC EX-100 Detector using MCNP Modeling the ORTEC EX-100 Detector using MCNP MCNP is a general-purpose Monte Carlo radiation transport code for modeling the interaction of radiation with materials based on composition and density. MCNP

More information

Absorbed Fractions for Multi-Region Models of the Kidneys in ICRP/ICRU Voxel Phantoms

Absorbed Fractions for Multi-Region Models of the Kidneys in ICRP/ICRU Voxel Phantoms Absorbed Fractions for Multi-Region Models of the Kidneys in ICRP/ICRU Voxel Phantoms Sakae KINASE *, Masanori KIMURA, Shogo TAKAHARA and Toshimitsu HOMMA * 2-4 Shirane, Shirakata, Tokai-mura, Naka-gun,

More information

ADVANCING CANCER TREATMENT

ADVANCING CANCER TREATMENT The RayPlan treatment planning system makes proven, innovative RayStation technology accessible to clinics that need a cost-effective and streamlined solution. Fast, efficient and straightforward to use,

More information

Hidenobu Tachibana The Cancer Institute Hospital of JFCR, Radiology Dept. The Cancer Institute of JFCR, Physics Dept.

Hidenobu Tachibana The Cancer Institute Hospital of JFCR, Radiology Dept. The Cancer Institute of JFCR, Physics Dept. 2-D D Dose-CT Mapping in Geant4 Hidenobu Tachibana The Cancer Institute Hospital of JFCR, Radiology Dept. The Cancer Institute of JFCR, Physics Dept. Table of Contents Background & Purpose Materials Methods

More information

A PRACTICAL LOOK AT MONTE CARLO VARIANCE REDUCTION METHODS IN RADIATION SHIELDING

A PRACTICAL LOOK AT MONTE CARLO VARIANCE REDUCTION METHODS IN RADIATION SHIELDING A PRACTICAL LOOK AT MONTE CARLO VARIANCE REDUCTION METHODS IN RADIATION SHIELDING RICHARD H. OLSHER Health Physics Measurements Group, Los Alamos National Laboratory MS J573, P.O. Box 1663, Los Alamos,

More information

Monte Carlo simulations. Lesson FYSKJM4710 Eirik Malinen

Monte Carlo simulations. Lesson FYSKJM4710 Eirik Malinen Monte Carlo simulations Lesson FYSKJM4710 Eirik Malinen MC simulations 1 Simulations of stochastic processes Interactions are stochastic: the path of a single ionizing particle may not be predicted Interactions

More information

Automated ADVANTG Variance Reduction in a Proton Driven System. Kenneth A. Van Riper1 and Robert L. Metzger2

Automated ADVANTG Variance Reduction in a Proton Driven System. Kenneth A. Van Riper1 and Robert L. Metzger2 Automated ADVANTG Variance Reduction in a Proton Driven System Kenneth A. Van Riper1 and Robert L. Metzger2 1 White Rock Science, P. O. Box 4729, White Rock, NM 87547, kvr@rt66.com Radiation Safety Engineering,

More information

PSG2 / Serpent a Monte Carlo Reactor Physics Burnup Calculation Code. Jaakko Leppänen

PSG2 / Serpent a Monte Carlo Reactor Physics Burnup Calculation Code. Jaakko Leppänen PSG2 / Serpent a Monte Carlo Reactor Physics Burnup Calculation Code Jaakko Leppänen Outline Background History The Serpent code: Neutron tracking Physics and interaction data Burnup calculation Output

More information

Outline. Monte Carlo Radiation Transport Modeling Overview (MCNP5/6) Monte Carlo technique: Example. Monte Carlo technique: Introduction

Outline. Monte Carlo Radiation Transport Modeling Overview (MCNP5/6) Monte Carlo technique: Example. Monte Carlo technique: Introduction Monte Carlo Radiation Transport Modeling Overview () Lecture 7 Special Topics: Device Modeling Outline Principles of Monte Carlo modeling Radiation transport modeling with Utilizing Visual Editor (VisEd)

More information

Validation of GEANT4 for Accurate Modeling of 111 In SPECT Acquisition

Validation of GEANT4 for Accurate Modeling of 111 In SPECT Acquisition Validation of GEANT4 for Accurate Modeling of 111 In SPECT Acquisition Bernd Schweizer, Andreas Goedicke Philips Technology Research Laboratories, Aachen, Germany bernd.schweizer@philips.com Abstract.

More information

RADIOMICS: potential role in the clinics and challenges

RADIOMICS: potential role in the clinics and challenges 27 giugno 2018 Dipartimento di Fisica Università degli Studi di Milano RADIOMICS: potential role in the clinics and challenges Dr. Francesca Botta Medical Physicist Istituto Europeo di Oncologia (Milano)

More information

Tutorial: Modeling Liquid Reactions in CIJR Using the Eulerian PDF transport (DQMOM-IEM) Model

Tutorial: Modeling Liquid Reactions in CIJR Using the Eulerian PDF transport (DQMOM-IEM) Model Tutorial: Modeling Liquid Reactions in CIJR Using the Eulerian PDF transport (DQMOM-IEM) Model Introduction The purpose of this tutorial is to demonstrate setup and solution procedure of liquid chemical

More information

Comparison of measured and Monte Carlo calculated electron beam central axis depth dose in water

Comparison of measured and Monte Carlo calculated electron beam central axis depth dose in water Original article UDC: 681.324:519.245 Archive of Oncology 2001;9(2):83-7. Comparison of measured and Monte Carlo calculated electron beam central axis depth dose in water Darko LALIÆ 1 Radovan D. ILIÆ

More information

IMPROVING COMPUTATIONAL EFFICIENCY OF MONTE-CARLO SIMULATIONS WITH VARIANCE REDUCTION

IMPROVING COMPUTATIONAL EFFICIENCY OF MONTE-CARLO SIMULATIONS WITH VARIANCE REDUCTION International Conference on Mathematics and Computational Methods Applied to Nuclear Science & Engineering (M&C 2013), Sun Valley, Idaho, USA, May 5-9, 2013, on CD-ROM, American Nuclear Society, LaGrange

More information