Recognition Tools: Support Vector Machines

Size: px
Start display at page:

Download "Recognition Tools: Support Vector Machines"

Transcription

1 CS 2770: Computer Vision Recognition Tools: Support Vector Machines Prof. Adriana Kovashka University of Pittsburgh January 12, 2017

2 Announcement TA office hours: Tuesday 4pm-6pm Wednesday 10am-12pm

3 Matlab Tutorial Please cover whatever we don t finish at home.

4 Tutorials and Eercises 750/Tutorial/ tlab_probs2.pdf lp211/basiceercises.html Do Problems 1-8, 12 Most also have solutions Ask the TA if you have any problems

5 Plan for today What is classification/recognition? Support vector machines Separable case / non-separable case Linear / non-linear (kernels) The importance of generalization The bias-variance trade-off (applies to all classifiers)

6 Classification Given a feature representation for images, how do we learn a model for distinguishing features from different classes? Decision boundary Zebra Non-zebra Slide credit: L. Lazebnik

7 Classification Assign input vector to one of two or more classes Any decision rule divides the input space into decision regions separated by decision boundaries Slide credit: L. Lazebnik

8 Eample: Spam filter Slide credit: L. Lazebnik

9 Eamples of Categorization in Vision Part or object detection E.g., for each window: face or non-face? Scene categorization Indoor vs. outdoor, urban, forest, kitchen, etc. Action recognition Picking up vs. sitting down vs. standing Emotion recognition Happy vs. scared vs. surprised Region classification Label piels into different object/surface categories Boundary classification Boundary vs. non-boundary Etc, etc. Adapted from D. Hoiem

10 Image categorization Two-class (binary): Cat vs Dog Adapted from D. Hoiem

11 Image categorization Multi-class (often): Object recognition Caltech 101 Average Object Images Adapted from D. Hoiem

12 Image categorization Fine-grained recognition Visipedia Project Slide credit: D. Hoiem

13 Image categorization Place recognition Places Database [Zhou et al. NIPS 2014] Slide credit: D. Hoiem

14 Image categorization Dating historical photos [Palermo et al. ECCV 2012] Slide credit: D. Hoiem

15 Image categorization Image style recognition [Karayev et al. BMVC 2014] Slide credit: D. Hoiem

16 Region categorization Material recognition [Bell et al. CVPR 2015] Slide credit: D. Hoiem

17 Why recognition? Recognition a fundamental part of perception e.g., robots, autonomous agents Organize and give access to visual content Connect to information Detect trends and themes Slide credit: K. Grauman

18 Recognition: A machine learning approach

19 The machine learning framework Apply a prediction function to a feature representation of the image to get the desired output: f( ) = apple f( ) = tomato f( ) = cow Slide credit: L. Lazebnik

20 The machine learning framework y = f() output prediction function image feature Training: given a training set of labeled eamples {( 1,y 1 ),, ( N,y N )}, estimate the prediction function f by minimizing the prediction error on the training set Testing: apply f to a never before seen test eample and output the predicted value y = f() Slide credit: L. Lazebnik

21 Training Training Images Steps Image Features Training Labels Training Learned model Testing Test Image Image Features Learned model Prediction Slide credit: D. Hoiem and L. Lazebnik

22 The simplest classifier Training eamples from class 1 Test eample Training eamples from class 2 f() = label of the training eample nearest to All we need is a distance function for our inputs No training required! Slide credit: L. Lazebnik

23 K-Nearest Neighbors classification For a new point, find the k closest points from training data Labels of the k points vote to classify Black = negative Red = positive k = 5 If query lands here, the 5 NN consist of 3 negatives and 2 positives, so we classify it as negative. Slide credit: D. Lowe

24 Where in the World? Slides: James Hays

25 im2gps: Estimating Geographic Information from a Single Image James Hays and Aleei Efros CVPR 2008 Nearest Neighbors according to GIST + bag of SIFT + color histogram + a few others Slide credit: James Hays

26 The Importance of Data Slides: James Hays

27 Linear classifier Find a linear function to separate the classes f() = sgn(w w w D D ) = sgn(w ) Slide credit: L. Lazebnik

28 Linear classifier Decision = sign(w T ) = sign(w1*1 + w2*2) 2 (0, 0) 1 What should the weights be?

29 Lines in R 2 Let w a c y a cy b 0 Kristen Grauman

30 Lines in R 2 Let w a c y w a cy b 0 w b 0 Kristen Grauman

31 0, y 0 Lines in R 2 Let w a c y w a cy b 0 w b 0 Kristen Grauman

32 0, y 0 D Lines in R 2 Let w a c y w a cy b 0 w b 0 D Kristen Grauman a a 2 cy c 2 b w b w 0 0 distance from point to line

33 0, y 0 D Lines in R 2 Let w a c y w a cy b 0 w b 0 D Kristen Grauman a0 cy0 b w b 2 2 a c w distance from point to line

34 Linear classifiers Find linear function to separate positive and negative eamples i i positive negative : : i i w w b b 0 0 Which line is best? C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

35 Support vector machines Discriminative classifier based on optimal separating line (for 2d case) Maimize the margin between the positive and negative training eamples C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

36 Support vector machines Want line that maimizes the margin. i i positive negative ( y i ( y i 1) : 1) : i i w b 1 w b 1 For support, vectors, i w b 1 Support vectors Margin C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

37 Support vector machines Want line that maimizes the margin. i i positive negative ( y i ( y i 1) : 1) : i i w b 1 w b 1 Support vectors Margin For support, vectors, i w b 1 w b Distance between point i and line: w For support vectors: Τ w b M w w w w w C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

38 Support vector machines Want line that maimizes the margin. i i positive negative ( y i ( y i 1) : 1) : i i w b 1 w b 1 Support vectors Margin For support, vectors, i w b 1 w b Distance between point i and line: w Therefore, the margin is 2 / w C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

39 Finding the maimum margin line 1. Maimize margin 2/ w 2. Correctly classify all training data points: i i positive ( y negative ( y i i 1) : 1) : i i w b 1 w b 1 Quadratic optimization problem: Minimize 1 2 w T w Subject to y i (w i +b) 1 One constraint for each training point. Note sign trick. C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

40 Finding the maimum margin line Solution: w y i i i i Learned weight Support vector C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

41 Finding the maimum margin line Solution: w y i i i i b = y i w i Classification function: f ( ) sign sign (for any support vector) ( w y Notice that it relies on an inner product between the test point and the support vectors i (Solving the optimization problem also involves computing the inner products i j between all pairs of training points) i i i b) i b If f() < 0, classify as negative, otherwise classify as positive. C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998

42 Nonlinear SVMs Datasets that are linearly separable work out great: 0 But what if the dataset is just too hard? 0 We can map it to a higher-dimensional space: 2 Andrew Moore 0

43 Nonlinear SVMs General idea: the original input space can always be mapped to some higher-dimensional feature space where the training set is separable: Φ: φ() Andrew Moore

44 Nonlinear kernel: Eample Consider the mapping ), ( ) ( ), ( ), ( ), ( ) ( ) ( y y y K y y y y y 2 Svetlana Lazebnik

45 The Kernel Trick The linear classifier relies on dot product between vectors K( i, j ) = i j If every data point is mapped into high-dimensional space via some transformation Φ: i φ( i ), the dot product becomes: K( i, j ) = φ( i ) φ( j ) A kernel function is similarity function that corresponds to an inner product in some epanded feature space The kernel trick: instead of eplicitly computing the lifting transformation φ(), define a kernel function K such that: K( i, j ) = φ( i ) φ( j ) Andrew Moore

46 Eamples of kernel functions Linear: K( i, j ) T i j Polynomials of degree up to d: Gaussian RBF: 2 i j K( i, j ) ep( ) 2 2 Histogram intersection: K ( i, j ) min( i ( k), j ( k)) k Andrew Moore / Carlos Guestrin K( i, j ) = ( i T j + 1) d

47 Allowing misclassifications: Before The w that minimizes Maimize margin

48 Allowing misclassifications: After Misclassification cost # data samples Slack variable The w that minimizes Maimize margin Minimize misclassification

49 What about multi-class SVMs? Unfortunately, there is no definitive multi-class SVM formulation In practice, we have to obtain a multi-class SVM by combining multiple two-class SVMs One vs. others Training: learn an SVM for each class vs. the others Testing: apply each SVM to the test eample, and assign it to the class of the SVM that returns the highest decision value One vs. one Training: learn an SVM for each pair of classes Testing: each learned SVM votes for a class to assign to the test eample Svetlana Lazebnik

50 Multi-class problems One-vs-all (a.k.a. one-vs-others) Train K classifiers In each, pos = data from class i, neg = data from classes other than i The class with the most confident prediction wins Eample: You have 4 classes, train 4 classifiers 1 vs others: score vs others: score vs others: score vs other: score 5.5 Final prediction: class 2

51 Multi-class problems One-vs-one (a.k.a. all-vs-all) Train K(K-1)/2 binary classifiers (all pairs of classes) They all vote for the label Eample: You have 4 classes, then train 6 classifiers 1 vs 2, 1 vs 3, 1 vs 4, 2 vs 3, 2 vs 4, 3 vs 4 Votes: 1, 1, 4, 2, 4, 4 Final prediction is class 4

52 SVMs for recognition 1. Define your representation for each eample. 2. Select a kernel function. 3. Compute pairwise kernel values between labeled eamples 4. Use this kernel matri to solve for SVM support vectors & weights. 5. To classify a new eample: compute kernel values between new input and support vectors, apply weights, check sign of output. Kristen Grauman

53 Eample: learning gender with SVMs Moghaddam and Yang, Learning Gender with Support Faces, TPAMI Moghaddam and Yang, Face & Gesture Kristen Grauman

54 Learning gender with SVMs Training eamples: 1044 males 713 females Eperiment with various kernels, select Gaussian RBF i K( i, j) ep( 2 2 j 2 ) Kristen Grauman

55 Support Faces Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002.

56 Moghaddam and Yang, Learning Gender with Support Faces, TPAMI 2002.

57 Gender perception eperiment: How well can humans do? Subjects: 30 people (22 male, 8 female) Ages mid-20 s to mid-40 s Test data: 254 face images (6 males, 4 females) Low res and high res versions Task: Classify as male or female, forced choice No time limit Moghaddam and Yang, Face & Gesture 2000.

58 Moghaddam and Yang, Face & Gesture Gender perception eperiment: How well can humans do? Error Error

59 Human vs. Machine SVMs performed better than any single human test subject, at either resolution Kristen Grauman

60 Pros Many publicly available SVM packages: LIBSVM LIBLINEAR SVM Light or use built-in Matlab version (but slower) Kernel-based framework is very powerful, fleible Often a sparse set of support vectors compact at test time Work very well in practice, even with little training data Cons Adapted from Lana Lazebnik SVMs: Pros and cons No direct multi-class SVM, must combine two-class SVMs Computation, memory During training time, must compute matri of kernel values for every pair of eamples Learning can take a very long time for large-scale problems

61 Linear classifiers vs nearest neighbors Linear pros: + Low-dimensional parametric representation + Very fast at test time Linear cons: Works for two classes What if data is not linearly separable? NN pros: + Works for any number of classes + Decision boundaries not necessarily linear + Nonparametric method + Simple to implement NN cons: Slow at test time (large search problem to find neighbors) Storage of data Need good distance function Adapted from L. Lazebnik

62 Training vs Testing What do we want? High accuracy on training data? No, high accuracy on unseen/new/test data! Why is this tricky? Training data Features () and labels (y) used to learn mapping f Test data Features () used to make a prediction Labels (y) only used to see how well we ve learned f!!! Validation data Held-out set of the training data Can use both features () and labels (y) to tune parameters of the model we re learning

63 Generalization Training set (labels known) Test set (labels unknown) How well does a learned model generalize from the data it was trained on to a new test set? Slide credit: L. Lazebnik

64 Generalization Components of generalization error Bias: how much the average model over all training sets differs from the true model Error due to inaccurate assumptions/simplifications made by the model Variance: how much models estimated from different training sets differ from each other Underfitting: model is too simple to represent all the relevant class characteristics High bias and low variance High training error and high test error Overfitting: model is too comple and fits irrelevant characteristics (noise) in the data Low bias and high variance Low training error and high test error Slide credit: L. Lazebnik

65 Bias-Variance Trade-off Models with too few parameters are inaccurate because of a large bias (not enough fleibility). Models with too many parameters are inaccurate because of a large variance (too much sensitivity to the sample). Slide credit: D. Hoiem

66 Fitting a model Is this a good fit? Figures from Bishop

67 With more training data Figures from Bishop

68 Regularization No regularization Huge regularization Figures from Bishop

69 Error Training vs test error Underfitting Overfitting Test error High Bias Low Variance Compleity Training error Low Bias High Variance Slide credit: D. Hoiem

70 Test Error The effect of training set size Few training eamples Many training eamples High Bias Low Variance Compleity Low Bias High Variance Slide credit: D. Hoiem

71 Error The effect of training set size Fied prediction model Generalization Error Testing Training Number of Training Eamples Adapted from D. Hoiem

72 Error Choosing the trade-off between bias and variance Need validation set (separate from the test set) Validation error Training error High Bias Low Variance Compleity Low Bias High Variance Slide credit: D. Hoiem

73 How to reduce variance? Choose a simpler classifier Get more training data Regularize the parameters Slide credit: D. Hoiem

74 What to remember about classifiers No free lunch: machine learning algorithms are tools Try simple classifiers first Better to have smart features and simple classifiers than simple features and smart classifiers Use increasingly powerful classifiers with more training data (bias-variance tradeoff) Slide credit: D. Hoiem

Discriminative classifiers for image recognition

Discriminative classifiers for image recognition Discriminative classifiers for image recognition May 26 th, 2015 Yong Jae Lee UC Davis Outline Last time: window-based generic object detection basic pipeline face detection with boosting as case study

More information

Bias-Variance Trade-off + Other Models and Problems

Bias-Variance Trade-off + Other Models and Problems CS 1699: Intro to Computer Vision Bias-Variance Trade-off + Other Models and Problems Prof. Adriana Kovashka University of Pittsburgh November 3, 2015 Outline Support Vector Machines (review + other uses)

More information

Introduction to object recognition. Slides adapted from Fei-Fei Li, Rob Fergus, Antonio Torralba, and others

Introduction to object recognition. Slides adapted from Fei-Fei Li, Rob Fergus, Antonio Torralba, and others Introduction to object recognition Slides adapted from Fei-Fei Li, Rob Fergus, Antonio Torralba, and others Overview Basic recognition tasks A statistical learning approach Traditional or shallow recognition

More information

Part-based and local feature models for generic object recognition

Part-based and local feature models for generic object recognition Part-based and local feature models for generic object recognition May 28 th, 2015 Yong Jae Lee UC Davis Announcements PS2 grades up on SmartSite PS2 stats: Mean: 80.15 Standard Dev: 22.77 Vote on piazza

More information

Supervised Learning: Nearest Neighbors

Supervised Learning: Nearest Neighbors CS 2750: Machine Learning Supervised Learning: Nearest Neighbors Prof. Adriana Kovashka University of Pittsburgh February 1, 2016 Today: Supervised Learning Part I Basic formulation of the simplest classifier:

More information

Bias-Variance Trade-off (cont d) + Image Representations

Bias-Variance Trade-off (cont d) + Image Representations CS 275: Machine Learning Bias-Variance Trade-off (cont d) + Image Representations Prof. Adriana Kovashka University of Pittsburgh January 2, 26 Announcement Homework now due Feb. Generalization Training

More information

Support vector machines

Support vector machines Support vector machines When the data is linearly separable, which of the many possible solutions should we prefer? SVM criterion: maximize the margin, or distance between the hyperplane and the closest

More information

CS5670: Computer Vision

CS5670: Computer Vision CS5670: Computer Vision Noah Snavely Lecture 33: Recognition Basics Slides from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/ Announcements Quiz moved to Tuesday Project 4

More information

Feature Extractors. CS 188: Artificial Intelligence Fall Some (Vague) Biology. The Binary Perceptron. Binary Decision Rule.

Feature Extractors. CS 188: Artificial Intelligence Fall Some (Vague) Biology. The Binary Perceptron. Binary Decision Rule. CS 188: Artificial Intelligence Fall 2008 Lecture 24: Perceptrons II 11/24/2008 Dan Klein UC Berkeley Feature Extractors A feature extractor maps inputs to feature vectors Dear Sir. First, I must solicit

More information

DM6 Support Vector Machines

DM6 Support Vector Machines DM6 Support Vector Machines Outline Large margin linear classifier Linear separable Nonlinear separable Creating nonlinear classifiers: kernel trick Discussion on SVM Conclusion SVM: LARGE MARGIN LINEAR

More information

SUPPORT VECTOR MACHINES

SUPPORT VECTOR MACHINES SUPPORT VECTOR MACHINES Today Reading AIMA 18.9 Goals (Naïve Bayes classifiers) Support vector machines 1 Support Vector Machines (SVMs) SVMs are probably the most popular off-the-shelf classifier! Software

More information

Instance-based Learning

Instance-based Learning Instance-based Learning Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University October 15 th, 2007 2005-2007 Carlos Guestrin 1 1-Nearest Neighbor Four things make a memory based learner:

More information

Machine Learning Crash Course

Machine Learning Crash Course Machine Learning Crash Course Photo: CMU Machine Learning Department protests G20 Computer Vision James Hays Slides: Isabelle Guyon, Erik Sudderth, Mark Johnson, Derek Hoiem The machine learning framework

More information

K-Nearest Neighbors. Jia-Bin Huang. Virginia Tech Spring 2019 ECE-5424G / CS-5824

K-Nearest Neighbors. Jia-Bin Huang. Virginia Tech Spring 2019 ECE-5424G / CS-5824 K-Nearest Neighbors Jia-Bin Huang ECE-5424G / CS-5824 Virginia Tech Spring 2019 Administrative Check out review materials Probability Linear algebra Python and NumPy Start your HW 0 On your Local machine:

More information

UVA CS 6316/4501 Fall 2016 Machine Learning. Lecture 15: K-nearest-neighbor Classifier / Bias-Variance Tradeoff. Dr. Yanjun Qi. University of Virginia

UVA CS 6316/4501 Fall 2016 Machine Learning. Lecture 15: K-nearest-neighbor Classifier / Bias-Variance Tradeoff. Dr. Yanjun Qi. University of Virginia UVA CS 6316/4501 Fall 2016 Machine Learning Lecture 15: K-nearest-neighbor Classifier / Bias-Variance Tradeoff Dr. Yanjun Qi University of Virginia Department of Computer Science 11/9/16 1 Rough Plan HW5

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 16: Bag-of-words models Object Bag of words Announcements Project 3: Eigenfaces due Wednesday, November 11 at 11:59pm solo project Final project presentations:

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 013-014 Jakob Verbeek, December 13+0, 013 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.13.14

More information

Bag-of-features. Cordelia Schmid

Bag-of-features. Cordelia Schmid Bag-of-features for category classification Cordelia Schmid Visual search Particular objects and scenes, large databases Category recognition Image classification: assigning a class label to the image

More information

Announcements. CS 188: Artificial Intelligence Spring Classification: Feature Vectors. Classification: Weights. Learning: Binary Perceptron

Announcements. CS 188: Artificial Intelligence Spring Classification: Feature Vectors. Classification: Weights. Learning: Binary Perceptron CS 188: Artificial Intelligence Spring 2010 Lecture 24: Perceptrons and More! 4/20/2010 Announcements W7 due Thursday [that s your last written for the semester!] Project 5 out Thursday Contest running

More information

Instance-based Learning

Instance-based Learning Instance-based Learning Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University February 19 th, 2007 2005-2007 Carlos Guestrin 1 Why not just use Linear Regression? 2005-2007 Carlos Guestrin

More information

UVA CS 4501: Machine Learning. Lecture 10: K-nearest-neighbor Classifier / Bias-Variance Tradeoff. Dr. Yanjun Qi. University of Virginia

UVA CS 4501: Machine Learning. Lecture 10: K-nearest-neighbor Classifier / Bias-Variance Tradeoff. Dr. Yanjun Qi. University of Virginia UVA CS 4501: Machine Learning Lecture 10: K-nearest-neighbor Classifier / Bias-Variance Tradeoff Dr. Yanjun Qi University of Virginia Department of Computer Science 1 Where are we? è Five major secfons

More information

CSE 573: Artificial Intelligence Autumn 2010

CSE 573: Artificial Intelligence Autumn 2010 CSE 573: Artificial Intelligence Autumn 2010 Lecture 16: Machine Learning Topics 12/7/2010 Luke Zettlemoyer Most slides over the course adapted from Dan Klein. 1 Announcements Syllabus revised Machine

More information

Content-based image and video analysis. Machine learning

Content-based image and video analysis. Machine learning Content-based image and video analysis Machine learning for multimedia retrieval 04.05.2009 What is machine learning? Some problems are very hard to solve by writing a computer program by hand Almost all

More information

Perceptron as a graph

Perceptron as a graph Neural Networks Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University October 10 th, 2007 2005-2007 Carlos Guestrin 1 Perceptron as a graph 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0-6 -4-2

More information

Deformable Part Models

Deformable Part Models CS 1674: Intro to Computer Vision Deformable Part Models Prof. Adriana Kovashka University of Pittsburgh November 9, 2016 Today: Object category detection Window-based approaches: Last time: Viola-Jones

More information

CS 343H: Honors AI. Lecture 23: Kernels and clustering 4/15/2014. Kristen Grauman UT Austin

CS 343H: Honors AI. Lecture 23: Kernels and clustering 4/15/2014. Kristen Grauman UT Austin CS 343H: Honors AI Lecture 23: Kernels and clustering 4/15/2014 Kristen Grauman UT Austin Slides courtesy of Dan Klein, except where otherwise noted Announcements Office hours Kim s office hours this week:

More information

Announcements. CS 188: Artificial Intelligence Spring Generative vs. Discriminative. Classification: Feature Vectors. Project 4: due Friday.

Announcements. CS 188: Artificial Intelligence Spring Generative vs. Discriminative. Classification: Feature Vectors. Project 4: due Friday. CS 188: Artificial Intelligence Spring 2011 Lecture 21: Perceptrons 4/13/2010 Announcements Project 4: due Friday. Final Contest: up and running! Project 5 out! Pieter Abbeel UC Berkeley Many slides adapted

More information

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009

Analysis: TextonBoost and Semantic Texton Forests. Daniel Munoz Februrary 9, 2009 Analysis: TextonBoost and Semantic Texton Forests Daniel Munoz 16-721 Februrary 9, 2009 Papers [shotton-eccv-06] J. Shotton, J. Winn, C. Rother, A. Criminisi, TextonBoost: Joint Appearance, Shape and Context

More information

Support Vector Machines + Classification for IR

Support Vector Machines + Classification for IR Support Vector Machines + Classification for IR Pierre Lison University of Oslo, Dep. of Informatics INF3800: Søketeknologi April 30, 2014 Outline of the lecture Recap of last week Support Vector Machines

More information

Object Classification Problem

Object Classification Problem HIERARCHICAL OBJECT CATEGORIZATION" Gregory Griffin and Pietro Perona. Learning and Using Taxonomies For Fast Visual Categorization. CVPR 2008 Marcin Marszalek and Cordelia Schmid. Constructing Category

More information

SUPPORT VECTOR MACHINES

SUPPORT VECTOR MACHINES SUPPORT VECTOR MACHINES Today Reading AIMA 8.9 (SVMs) Goals Finish Backpropagation Support vector machines Backpropagation. Begin with randomly initialized weights 2. Apply the neural network to each training

More information

Object recognition. Methods for classification and image representation

Object recognition. Methods for classification and image representation Object recognition Methods for classification and image representation Credits Slides by Pete Barnum Slides by FeiFei Li Paul Viola, Michael Jones, Robust Realtime Object Detection, IJCV 04 Navneet Dalal

More information

All lecture slides will be available at CSC2515_Winter15.html

All lecture slides will be available at  CSC2515_Winter15.html CSC2515 Fall 2015 Introduc3on to Machine Learning Lecture 9: Support Vector Machines All lecture slides will be available at http://www.cs.toronto.edu/~urtasun/courses/csc2515/ CSC2515_Winter15.html Many

More information

Image classification Computer Vision Spring 2018, Lecture 18

Image classification Computer Vision Spring 2018, Lecture 18 Image classification http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 18 Course announcements Homework 5 has been posted and is due on April 6 th. - Dropbox link because course

More information

Classification: Feature Vectors

Classification: Feature Vectors Classification: Feature Vectors Hello, Do you want free printr cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just # free YOUR_NAME MISSPELLED FROM_FRIEND... : : : : 2 0 2 0 PIXEL 7,12

More information

CS4495/6495 Introduction to Computer Vision. 8C-L1 Classification: Discriminative models

CS4495/6495 Introduction to Computer Vision. 8C-L1 Classification: Discriminative models CS4495/6495 Introduction to Computer Vision 8C-L1 Classification: Discriminative models Remember: Supervised classification Given a collection of labeled examples, come up with a function that will predict

More information

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review Gautam Kunapuli Machine Learning Data is identically and independently distributed Goal is to learn a function that maps to Data is generated using an unknown function Learn a hypothesis that minimizes

More information

CSE 417T: Introduction to Machine Learning. Lecture 22: The Kernel Trick. Henry Chai 11/15/18

CSE 417T: Introduction to Machine Learning. Lecture 22: The Kernel Trick. Henry Chai 11/15/18 CSE 417T: Introduction to Machine Learning Lecture 22: The Kernel Trick Henry Chai 11/15/18 Linearly Inseparable Data What can we do if the data is not linearly separable? Accept some non-zero in-sample

More information

Visual words. Map high-dimensional descriptors to tokens/words by quantizing the feature space.

Visual words. Map high-dimensional descriptors to tokens/words by quantizing the feature space. Visual words Map high-dimensional descriptors to tokens/words by quantizing the feature space. Quantize via clustering; cluster centers are the visual words Word #2 Descriptor feature space Assign word

More information

Support Vector Machines 290N, 2015

Support Vector Machines 290N, 2015 Support Vector Machines 290N, 2015 Two Class Problem: Linear Separable Case with a Hyperplane Class 1 Class 2 Many decision boundaries can separate these two classes using a hyperplane. Which one should

More information

Instance-based Learning CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2015

Instance-based Learning CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2015 Instance-based Learning CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2015 Outline Non-parametric approach Unsupervised: Non-parametric density estimation Parzen Windows K-Nearest

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Xiaojin Zhu jerryzhu@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison [ Based on slides from Andrew Moore http://www.cs.cmu.edu/~awm/tutorials] slide 1

More information

Feature Extractors. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. The Perceptron Update Rule.

Feature Extractors. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. The Perceptron Update Rule. CS 188: Artificial Intelligence Fall 2007 Lecture 26: Kernels 11/29/2007 Dan Klein UC Berkeley Feature Extractors A feature extractor maps inputs to feature vectors Dear Sir. First, I must solicit your

More information

Object recognition (part 2)

Object recognition (part 2) Object recognition (part 2) CSE P 576 Larry Zitnick (larryz@microsoft.com) 1 2 3 Support Vector Machines Modified from the slides by Dr. Andrew W. Moore http://www.cs.cmu.edu/~awm/tutorials Linear Classifiers

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Kernels and Clustering Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

By Suren Manvelyan,

By Suren Manvelyan, By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116 By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116 By Suren Manvelyan, http://www.surenmanvelyan.com/gallery/7116 By Suren Manvelyan,

More information

Applying Supervised Learning

Applying Supervised Learning Applying Supervised Learning When to Consider Supervised Learning A supervised learning algorithm takes a known set of input data (the training set) and known responses to the data (output), and trains

More information

Kernels and Clustering

Kernels and Clustering Kernels and Clustering Robert Platt Northeastern University All slides in this file are adapted from CS188 UC Berkeley Case-Based Learning Non-Separable Data Case-Based Reasoning Classification from similarity

More information

CS 8520: Artificial Intelligence. Machine Learning 2. Paula Matuszek Fall, CSC 8520 Fall Paula Matuszek

CS 8520: Artificial Intelligence. Machine Learning 2. Paula Matuszek Fall, CSC 8520 Fall Paula Matuszek CS 8520: Artificial Intelligence Machine Learning 2 Paula Matuszek Fall, 2015!1 Regression Classifiers We said earlier that the task of a supervised learning system can be viewed as learning a function

More information

CS 2750: Machine Learning. Clustering. Prof. Adriana Kovashka University of Pittsburgh January 17, 2017

CS 2750: Machine Learning. Clustering. Prof. Adriana Kovashka University of Pittsburgh January 17, 2017 CS 2750: Machine Learning Clustering Prof. Adriana Kovashka University of Pittsburgh January 17, 2017 What is clustering? Grouping items that belong together (i.e. have similar features) Unsupervised:

More information

Notes and Announcements

Notes and Announcements Notes and Announcements Midterm exam: Oct 20, Wednesday, In Class Late Homeworks Turn in hardcopies to Michelle. DO NOT ask Michelle for extensions. Note down the date and time of submission. If submitting

More information

Photo by Carl Warner

Photo by Carl Warner Photo b Carl Warner Photo b Carl Warner Photo b Carl Warner Fitting and Alignment Szeliski 6. Computer Vision CS 43, Brown James Has Acknowledgment: Man slides from Derek Hoiem and Grauman&Leibe 2008 AAAI

More information

Kernels + K-Means Introduction to Machine Learning. Matt Gormley Lecture 29 April 25, 2018

Kernels + K-Means Introduction to Machine Learning. Matt Gormley Lecture 29 April 25, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Kernels + K-Means Matt Gormley Lecture 29 April 25, 2018 1 Reminders Homework 8:

More information

Shifting from Naming to Describing: Semantic Attribute Models. Rogerio Feris, June 2014

Shifting from Naming to Describing: Semantic Attribute Models. Rogerio Feris, June 2014 Shifting from Naming to Describing: Semantic Attribute Models Rogerio Feris, June 2014 Recap Large-Scale Semantic Modeling Feature Coding and Pooling Low-Level Feature Extraction Training Data Slide credit:

More information

CS178: Machine Learning and Data Mining. Complexity & Nearest Neighbor Methods

CS178: Machine Learning and Data Mining. Complexity & Nearest Neighbor Methods + CS78: Machine Learning and Data Mining Complexity & Nearest Neighbor Methods Prof. Erik Sudderth Some materials courtesy Alex Ihler & Sameer Singh Machine Learning Complexity and Overfitting Nearest

More information

LECTURE 5: DUAL PROBLEMS AND KERNELS. * Most of the slides in this lecture are from

LECTURE 5: DUAL PROBLEMS AND KERNELS. * Most of the slides in this lecture are from LECTURE 5: DUAL PROBLEMS AND KERNELS * Most of the slides in this lecture are from http://www.robots.ox.ac.uk/~az/lectures/ml Optimization Loss function Loss functions SVM review PRIMAL-DUAL PROBLEM Max-min

More information

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Detection and Classification Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Problem I. Strategies II. Features for training III. Using spatial information? IV. Reducing dimensionality

More information

ADVANCED CLASSIFICATION TECHNIQUES

ADVANCED CLASSIFICATION TECHNIQUES Admin ML lab next Monday Project proposals: Sunday at 11:59pm ADVANCED CLASSIFICATION TECHNIQUES David Kauchak CS 159 Fall 2014 Project proposal presentations Machine Learning: A Geometric View 1 Apples

More information

CS570: Introduction to Data Mining

CS570: Introduction to Data Mining CS570: Introduction to Data Mining Classification Advanced Reading: Chapter 8 & 9 Han, Chapters 4 & 5 Tan Anca Doloc-Mihu, Ph.D. Slides courtesy of Li Xiong, Ph.D., 2011 Han, Kamber & Pei. Data Mining.

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Sources Hastie, Tibshirani, Friedman: The Elements of Statistical Learning James, Witten, Hastie, Tibshirani: An Introduction to Statistical Learning Andrew Ng:

More information

Nearest Neighbor with KD Trees

Nearest Neighbor with KD Trees Case Study 2: Document Retrieval Finding Similar Documents Using Nearest Neighbors Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Emily Fox January 22 nd, 2013 1 Nearest

More information

Beyond Bags of features Spatial information & Shape models

Beyond Bags of features Spatial information & Shape models Beyond Bags of features Spatial information & Shape models Jana Kosecka Many slides adapted from S. Lazebnik, FeiFei Li, Rob Fergus, and Antonio Torralba Detection, recognition (so far )! Bags of features

More information

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning Associate Instructor: Herke van Hoof (herke.vanhoof@mail.mcgill.ca) Slides mostly by: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551

More information

Support Vector Machines

Support Vector Machines Support Vector Machines About the Name... A Support Vector A training sample used to define classification boundaries in SVMs located near class boundaries Support Vector Machines Binary classifiers whose

More information

HW2 due on Thursday. Face Recognition: Dimensionality Reduction. Biometrics CSE 190 Lecture 11. Perceptron Revisited: Linear Separators

HW2 due on Thursday. Face Recognition: Dimensionality Reduction. Biometrics CSE 190 Lecture 11. Perceptron Revisited: Linear Separators HW due on Thursday Face Recognition: Dimensionality Reduction Biometrics CSE 190 Lecture 11 CSE190, Winter 010 CSE190, Winter 010 Perceptron Revisited: Linear Separators Binary classification can be viewed

More information

Problem 1: Complexity of Update Rules for Logistic Regression

Problem 1: Complexity of Update Rules for Logistic Regression Case Study 1: Estimating Click Probabilities Tackling an Unknown Number of Features with Sketching Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox January 16 th, 2014 1

More information

Nearest Neighbor with KD Trees

Nearest Neighbor with KD Trees Case Study 2: Document Retrieval Finding Similar Documents Using Nearest Neighbors Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Emily Fox January 22 nd, 2013 1 Nearest

More information

Aggregating Descriptors with Local Gaussian Metrics

Aggregating Descriptors with Local Gaussian Metrics Aggregating Descriptors with Local Gaussian Metrics Hideki Nakayama Grad. School of Information Science and Technology The University of Tokyo Tokyo, JAPAN nakayama@ci.i.u-tokyo.ac.jp Abstract Recently,

More information

CS 229 Midterm Review

CS 229 Midterm Review CS 229 Midterm Review Course Staff Fall 2018 11/2/2018 Outline Today: SVMs Kernels Tree Ensembles EM Algorithm / Mixture Models [ Focus on building intuition, less so on solving specific problems. Ask

More information

CS 2770: Intro to Computer Vision. Multiple Views. Prof. Adriana Kovashka University of Pittsburgh March 14, 2017

CS 2770: Intro to Computer Vision. Multiple Views. Prof. Adriana Kovashka University of Pittsburgh March 14, 2017 CS 277: Intro to Computer Vision Multiple Views Prof. Adriana Kovashka Universit of Pittsburgh March 4, 27 Plan for toda Affine and projective image transformations Homographies and image mosaics Stereo

More information

Support Vector Machines

Support Vector Machines Support Vector Machines RBF-networks Support Vector Machines Good Decision Boundary Optimization Problem Soft margin Hyperplane Non-linear Decision Boundary Kernel-Trick Approximation Accurancy Overtraining

More information

Machine Learning for NLP

Machine Learning for NLP Machine Learning for NLP Support Vector Machines Aurélie Herbelot 2018 Centre for Mind/Brain Sciences University of Trento 1 Support Vector Machines: introduction 2 Support Vector Machines (SVMs) SVMs

More information

Support Vector Machines

Support Vector Machines Support Vector Machines . Importance of SVM SVM is a discriminative method that brings together:. computational learning theory. previously known methods in linear discriminant functions 3. optimization

More information

Segmentation and Grouping

Segmentation and Grouping CS 1699: Intro to Computer Vision Segmentation and Grouping Prof. Adriana Kovashka University of Pittsburgh September 24, 2015 Goals: Grouping in vision Gather features that belong together Obtain an intermediate

More information

CS 8520: Artificial Intelligence

CS 8520: Artificial Intelligence CS 8520: Artificial Intelligence Machine Learning 2 Paula Matuszek Spring, 2013 1 Regression Classifiers We said earlier that the task of a supervised learning system can be viewed as learning a function

More information

SVM-KNN : Discriminative Nearest Neighbor Classification for Visual Category Recognition

SVM-KNN : Discriminative Nearest Neighbor Classification for Visual Category Recognition SVM-KNN : Discriminative Nearest Neighbor Classification for Visual Category Recognition Hao Zhang, Alexander Berg, Michael Maire Jitendra Malik EECS, UC Berkeley Presented by Adam Bickett Objective Visual

More information

Describable Visual Attributes for Face Verification and Image Search

Describable Visual Attributes for Face Verification and Image Search Advanced Topics in Multimedia Analysis and Indexing, Spring 2011, NTU. 1 Describable Visual Attributes for Face Verification and Image Search Kumar, Berg, Belhumeur, Nayar. PAMI, 2011. Ryan Lei 2011/05/05

More information

Machine Learning: Think Big and Parallel

Machine Learning: Think Big and Parallel Day 1 Inderjit S. Dhillon Dept of Computer Science UT Austin CS395T: Topics in Multicore Programming Oct 1, 2013 Outline Scikit-learn: Machine Learning in Python Supervised Learning day1 Regression: Least

More information

Introduction to Support Vector Machines

Introduction to Support Vector Machines Introduction to Support Vector Machines CS 536: Machine Learning Littman (Wu, TA) Administration Slides borrowed from Martin Law (from the web). 1 Outline History of support vector machines (SVM) Two classes,

More information

Data Mining: Concepts and Techniques. Chapter 9 Classification: Support Vector Machines. Support Vector Machines (SVMs)

Data Mining: Concepts and Techniques. Chapter 9 Classification: Support Vector Machines. Support Vector Machines (SVMs) Data Mining: Concepts and Techniques Chapter 9 Classification: Support Vector Machines 1 Support Vector Machines (SVMs) SVMs are a set of related supervised learning methods used for classification Based

More information

Local Features and Bag of Words Models

Local Features and Bag of Words Models 10/14/11 Local Features and Bag of Words Models Computer Vision CS 143, Brown James Hays Slides from Svetlana Lazebnik, Derek Hoiem, Antonio Torralba, David Lowe, Fei Fei Li and others Computer Engineering

More information

Image Features and Categorization. Computer Vision Jia-Bin Huang, Virginia Tech

Image Features and Categorization. Computer Vision Jia-Bin Huang, Virginia Tech Image Features and Categorization Computer Vision Jia-Bin Huang, Virginia Tech Administrative stuffs Final project Got your proposals! Thanks! Will reply with feedbacks this week. HW 4 Due 11:59pm on Wed,

More information

Lecture 12 Recognition

Lecture 12 Recognition Institute of Informatics Institute of Neuroinformatics Lecture 12 Recognition Davide Scaramuzza 1 Lab exercise today replaced by Deep Learning Tutorial Room ETH HG E 1.1 from 13:15 to 15:00 Optional lab

More information

Topics in Machine Learning

Topics in Machine Learning Topics in Machine Learning Gilad Lerman School of Mathematics University of Minnesota Text/slides stolen from G. James, D. Witten, T. Hastie, R. Tibshirani and A. Ng Machine Learning - Motivation Arthur

More information

DECISION-TREE-BASED MULTICLASS SUPPORT VECTOR MACHINES. Fumitake Takahashi, Shigeo Abe

DECISION-TREE-BASED MULTICLASS SUPPORT VECTOR MACHINES. Fumitake Takahashi, Shigeo Abe DECISION-TREE-BASED MULTICLASS SUPPORT VECTOR MACHINES Fumitake Takahashi, Shigeo Abe Graduate School of Science and Technology, Kobe University, Kobe, Japan (E-mail: abe@eedept.kobe-u.ac.jp) ABSTRACT

More information

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University DS 4400 Machine Learning and Data Mining I Alina Oprea Associate Professor, CCIS Northeastern University January 24 2019 Logistics HW 1 is due on Friday 01/25 Project proposal: due Feb 21 1 page description

More information

CS7267 MACHINE LEARNING NEAREST NEIGHBOR ALGORITHM. Mingon Kang, PhD Computer Science, Kennesaw State University

CS7267 MACHINE LEARNING NEAREST NEIGHBOR ALGORITHM. Mingon Kang, PhD Computer Science, Kennesaw State University CS7267 MACHINE LEARNING NEAREST NEIGHBOR ALGORITHM Mingon Kang, PhD Computer Science, Kennesaw State University KNN K-Nearest Neighbors (KNN) Simple, but very powerful classification algorithm Classifies

More information

Object Recognition. Lecture 11, April 21 st, Lexing Xie. EE4830 Digital Image Processing

Object Recognition. Lecture 11, April 21 st, Lexing Xie. EE4830 Digital Image Processing Object Recognition Lecture 11, April 21 st, 2008 Lexing Xie EE4830 Digital Image Processing http://www.ee.columbia.edu/~xlx/ee4830/ 1 Announcements 2 HW#5 due today HW#6 last HW of the semester Due May

More information

Part based models for recognition. Kristen Grauman

Part based models for recognition. Kristen Grauman Part based models for recognition Kristen Grauman UT Austin Limitations of window-based models Not all objects are box-shaped Assuming specific 2d view of object Local components themselves do not necessarily

More information

Lecture 9: Support Vector Machines

Lecture 9: Support Vector Machines Lecture 9: Support Vector Machines William Webber (william@williamwebber.com) COMP90042, 2014, Semester 1, Lecture 8 What we ll learn in this lecture Support Vector Machines (SVMs) a highly robust and

More information

Bag of Words Models. CS4670 / 5670: Computer Vision Noah Snavely. Bag-of-words models 11/26/2013

Bag of Words Models. CS4670 / 5670: Computer Vision Noah Snavely. Bag-of-words models 11/26/2013 CS4670 / 5670: Computer Vision Noah Snavely Bag-of-words models Object Bag of words Bag of Words Models Adapted from slides by Rob Fergus and Svetlana Lazebnik 1 Object Bag of words Origin 1: Texture Recognition

More information

Window based detectors

Window based detectors Window based detectors CS 554 Computer Vision Pinar Duygulu Bilkent University (Source: James Hays, Brown) Today Window-based generic object detection basic pipeline boosting classifiers face detection

More information

Multi-stable Perception. Necker Cube

Multi-stable Perception. Necker Cube Multi-stable Perception Necker Cube Spinning dancer illusion, Nobuuki Kaahara Fitting and Alignment Computer Vision Szeliski 6.1 James Has Acknowledgment: Man slides from Derek Hoiem, Lana Lazebnik, and

More information

Text classification II CE-324: Modern Information Retrieval Sharif University of Technology

Text classification II CE-324: Modern Information Retrieval Sharif University of Technology Text classification II CE-324: Modern Information Retrieval Sharif University of Technology M. Soleymani Fall 2015 Some slides have been adapted from: Profs. Manning, Nayak & Raghavan (CS-276, Stanford)

More information

Support Vector Machines

Support Vector Machines Support Vector Machines RBF-networks Support Vector Machines Good Decision Boundary Optimization Problem Soft margin Hyperplane Non-linear Decision Boundary Kernel-Trick Approximation Accurancy Overtraining

More information

Prof. Kristen Grauman

Prof. Kristen Grauman Fitting Prof. Kristen Grauman UT Austin Fitting Want to associate a model with observed features [Fig from Marszalek & Schmid, 2007] For eample, the model could be a line, a circle, or an arbitrary shape.

More information

Detection III: Analyzing and Debugging Detection Methods

Detection III: Analyzing and Debugging Detection Methods CS 1699: Intro to Computer Vision Detection III: Analyzing and Debugging Detection Methods Prof. Adriana Kovashka University of Pittsburgh November 17, 2015 Today Review: Deformable part models How can

More information

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2007 c 2007,

More information

Ensemble Methods, Decision Trees

Ensemble Methods, Decision Trees CS 1675: Intro to Machine Learning Ensemble Methods, Decision Trees Prof. Adriana Kovashka University of Pittsburgh November 13, 2018 Plan for This Lecture Ensemble methods: introduction Boosting Algorithm

More information

CS 1674: Intro to Computer Vision. Attributes. Prof. Adriana Kovashka University of Pittsburgh November 2, 2016

CS 1674: Intro to Computer Vision. Attributes. Prof. Adriana Kovashka University of Pittsburgh November 2, 2016 CS 1674: Intro to Computer Vision Attributes Prof. Adriana Kovashka University of Pittsburgh November 2, 2016 Plan for today What are attributes and why are they useful? (paper 1) Attributes for zero-shot

More information