Estimating Labels from Label Proportions

Size: px
Start display at page:

Download "Estimating Labels from Label Proportions"

Transcription

1 Estimating Labels from Label Proportions Novi Quadrianto The Australian National University, Australia NICTA, Statistical Machine Learning Program, Australia Joint work with Alex Smola, Tiberio Caetano, and Quoc Le Novi Quadrianto: Estimating Labels from Label Proportions, Page 1

2 Supervised Learning Novi Quadrianto: Estimating Labels from Label Proportions, Page 2

3 Unsupervised Learning Novi Quadrianto: Estimating Labels from Label Proportions, Page 3

4 Semi-supervised Learning Novi Quadrianto: Estimating Labels from Label Proportions, Page 4

5 Learning from Proportions Novi Quadrianto: Estimating Labels from Label Proportions, Page 5

6 An example application Promotional coupon Apple Inc. decides to distribute the following coupon: To whom this coupon should be mailed? every college students in the world? selected college students? Novi Quadrianto: Estimating Labels from Label Proportions, Page 6

7 An example application Selection criteria Some people would always buy Mac, even without coupon Some other people will never buy Mac anyway Others will buy Mac if and only if they receive the coupon Novi Quadrianto: Estimating Labels from Label Proportions, Page 7

8 An example application Four types of customers: A - Always buyers, N - Never buyers, C - Compliers (buy iff coupon), D - Defiers (buy iff no coupon). Four data aggregates Buy Doesn t Buy Exp. 1 : Given Coupon A C N Exp. 2 : Not Given Coupon A N C Assumption: no defiers Fact: we don t have a pure sample of C, and we want p(c customer profile) Novi Quadrianto: Estimating Labels from Label Proportions, Page 8

9 An example application We know the proportions p(a) and p(n) from the random assignment experiment Therefore we know p(c) Therefore we know all the proportions Novi Quadrianto: Estimating Labels from Label Proportions, Page 9

10 Problem formulation What we have n sets of observations X i = { x i 1,..., x i m i } of respective sample sizes m i as calibration sets a set X = {x 1,..., x m } as a test set fractions π iy of patterns of labels y Y ( Y n) contained in each set X i marginal probability p(y) of the test set X What we want conditional class probability estimates p(y x) Novi Quadrianto: Estimating Labels from Label Proportions, Page 10

11 Gaussian process solution Conditional exponential likelihood model p(y x, θ) = exp ( φ(x, y), θ g(θ x)) with g(θ x) = log y Y exp φ(x, y), θ Some details φ(x, y) is the sufficient statistics g(θ x) is the log-partition function Gaussian prior log p(θ) λ θ 2 Posterior log p(y X, θ)p(θ) = m i=1 [g(θ x i) φ(x i, y i ), θ ] + λ θ 2 Novi Quadrianto: Estimating Labels from Label Proportions, Page 11

12 Optimization Optimization θ = argmin θ [ m ] g(θ x i ) m µ XY, θ + λ θ 2 i=1 µ XY := 1 m m φ(x i, y i ) i=1 This is a convex optimization problem So is our job done? with Convergence of empirical means (Bartlett & Mandelson 2002): µ XY sample µ xy := y Y p(y)e x p(x y) [φ(x,y)] population Novi Quadrianto: Estimating Labels from Label Proportions, Page 12

13 Intuition Binary classification Dataset 1 contains class +1 Dataset 2 contains class +1 and -1 with proportions p(+1) := ρ and p( 1) = 1 ρ µ + := E (x) p(x y=+1) [φ(x, y)] µ 1 := E (x) p(x set 1) [φ(x, y)] Novi Quadrianto: Estimating Labels from Label Proportions, Page 13

14 Re-calibrated sufficient statistics Binary classification [ µ1 µ 2 ] π = = [ 1 0 ρ 1 ρ [ µ+ µ ] = [ 1 0 ρ 1 ρ ] π 1 = [ 1 0 ρ 1 ρ ˆµ XY = ρµ 1 (1 ρ) 1 1 ρ ] [ ] µ+ µ [ 1 0 ] [ µ1 ρ 1 ρ µ 2 ] 1 1 ρ [ ] ρ 1 ρ µ ρ µ 2 ] Novi Quadrianto: Estimating Labels from Label Proportions, Page 14

15 Generalization Three class classification µ 1 µ 2 µ 3 = α β 1 (α + β) η ξ 1 (η + ξ) σ λ 1 (λ + σ) µ a µ b µ c Novi Quadrianto: Estimating Labels from Label Proportions, Page 15

16 The algorithm µ set X ˆµ class x ˆµ XY Novi Quadrianto: Estimating Labels from Label Proportions, Page 16

17 Performance guaranteed! Binary classification, φ(x, y) = yψ(x) and X 2 = X Theorem 1 With probability 1 δ the following bound holds: [ ˆµ XY µ XY 2ρ 2 + ] [ ] log 2/δ m m Some details m 1 is the number of observations in X 1 m + is the number of observations with y = +1 in X 2 Novi Quadrianto: Estimating Labels from Label Proportions, Page 17

18 Performance guaranteed! Bound on the minimizer of the log-posterior (Altun & Smola 2006) θ ˆθ λ 1 µ ˆµ Bound on the log-posterior (Altun & Smola 2006) Some details L(ˆθ, ˆµ) L(θ, µ) ˆθ θ ˆµ µ = λ 1 µ ˆµ 2 θ is the minimizer of L(θ, µ) ˆθ is the minimizer of L(ˆθ, ˆµ) Novi Quadrianto: Estimating Labels from Label Proportions, Page 18

19 Alternative Solutions Reduction to binary a binary classifier between set X 1 and X 2 label thresholding according to the known proportions Density estimation density estimation for each dataset X i re-calibration to get p(x y) via [ ] i π 1 p(x, y i) yi compute posterior probabilities MCMC (Kück & de Freitas 2005) explicitly generate mixing proportions per group by hierarchical probabilistic model use sampling to generate samples of model posterior distribution Novi Quadrianto: Estimating Labels from Label Proportions, Page 19

20 Experiments Table 1. Classification error on the UCI/LibSVM database Errors are reported in % with standard error. (%) ± SE. The best result and those results not significantly worse than it, are highlighted in red. We used a one-sided paired Welch t- test with 95% confidence level as reference. MM: Mean Map (ours) KDE: Kernel Density Estimation DS: Discriminative Sorting MCMC: Sampling Method BA: Baseline Data MM KDE DS MCMC BA iono 18.4± ± ± ± iris 10.0± ± ± ± optd 1.8± ± ± ± page 3.8± ± ± ± pima 27.5± ± ± ± tic 31.0± ± ± ± yeast 9.3± ± ± ± wine 7.4± ± ± ± wdbc 7.8± ± ± ± sonar 24.2± ± ± ± heart 30.0± ± ± ± brea 5.3± ± ± ± aust 17.0± ± ± ± svm3 20.4± ± ± ± adult 18.9± ± ± ± cleve 19.1± ± ± ± derm 4.9± ± ± ± musk 25.1± ± ± ± ger 32.4± ± ± ± cove 37.1± ± ± ± spli 25.2± ± ± ± giss 10.3± ± ± made 44.1± ± ± cmc 37.5± ± ± ± bupa 48.5± ± ± ± prota 44.6± ±0.1 N/A 65.3± protb 45.7± ±0.0 N/A 67.7± dnaa 16.6± ±0.8 N/A 37.7± dnab 29.1± ±0.7 N/A 40.5± sensa 19.8± ±0.0 N/A 43.2 sensb 21.0± ±0.0 N/A 43.2 Novi Quadrianto: Estimating Labels from Label Proportions, Page 20

21 Zooming in (binary results) KDE (Error Rate) 1 84% % DS (Error Rate) 1 64% % Mean Map (Error Rate) Mean Map (Error Rate) MCMC (Error Rate) % 24% Mean Map (Error Rate) Novi Quadrianto: Estimating Labels from Label Proportions, Page 21

22 Extensions Design parameters : Entropy and regularization : choosing various Csiszar and Bregman distances will produce a range of diverse estimators Function space : measuring the deviation in moment matching in term of l norm recovers sparse coding l 1 (dual connection) Novi Quadrianto: Estimating Labels from Label Proportions, Page 22

23 Summary Take home messages A new problem formulation which has not been solved and quite relevant in many aspects Our estimator can be easily implemented Our estimator enjoys the same rates of convergence as what can be expected from building an estimator with a fully labeled sample Our solution can be easily extended to other learning frameworks Our estimator works well in practice! Novi Quadrianto: Estimating Labels from Label Proportions, Page 23

Estimating Labels from Label Proportions

Estimating Labels from Label Proportions Journal of Machine Learning Research 1 (2008) xxx-xxx Submitted xx/08; Published xx/08 Estimating Labels from Label Proportions Novi Quadrianto novi.quad@gmail.com Statistical Machine Learning Group, NICTA

More information

Expectation Maximization. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University

Expectation Maximization. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University Expectation Maximization Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University April 10 th, 2006 1 Announcements Reminder: Project milestone due Wednesday beginning of class 2 Coordinate

More information

Feature Selection. Department Biosysteme Karsten Borgwardt Data Mining Course Basel Fall Semester / 262

Feature Selection. Department Biosysteme Karsten Borgwardt Data Mining Course Basel Fall Semester / 262 Feature Selection Department Biosysteme Karsten Borgwardt Data Mining Course Basel Fall Semester 2016 239 / 262 What is Feature Selection? Department Biosysteme Karsten Borgwardt Data Mining Course Basel

More information

Warped Mixture Models

Warped Mixture Models Warped Mixture Models Tomoharu Iwata, David Duvenaud, Zoubin Ghahramani Cambridge University Computational and Biological Learning Lab March 11, 2013 OUTLINE Motivation Gaussian Process Latent Variable

More information

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines

Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Non-Bayesian Classifiers Part II: Linear Discriminants and Support Vector Machines Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2007 c 2007,

More information

A Taxonomy of Semi-Supervised Learning Algorithms

A Taxonomy of Semi-Supervised Learning Algorithms A Taxonomy of Semi-Supervised Learning Algorithms Olivier Chapelle Max Planck Institute for Biological Cybernetics December 2005 Outline 1 Introduction 2 Generative models 3 Low density separation 4 Graph

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 013-014 Jakob Verbeek, December 13+0, 013 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.13.14

More information

Outline. Bayesian Data Analysis Hierarchical models. Rat tumor data. Errandum: exercise GCSR 3.11

Outline. Bayesian Data Analysis Hierarchical models. Rat tumor data. Errandum: exercise GCSR 3.11 Outline Bayesian Data Analysis Hierarchical models Helle Sørensen May 15, 2009 Today: More about the rat tumor data: model, derivation of posteriors, the actual computations in R. : a hierarchical normal

More information

Conditional Random Fields : Theory and Application

Conditional Random Fields : Theory and Application Conditional Random Fields : Theory and Application Matt Seigel (mss46@cam.ac.uk) 3 June 2010 Cambridge University Engineering Department Outline The Sequence Classification Problem Linear Chain CRFs CRF

More information

COMS 4771 Clustering. Nakul Verma

COMS 4771 Clustering. Nakul Verma COMS 4771 Clustering Nakul Verma Supervised Learning Data: Supervised learning Assumption: there is a (relatively simple) function such that for most i Learning task: given n examples from the data, find

More information

A Dendrogram. Bioinformatics (Lec 17)

A Dendrogram. Bioinformatics (Lec 17) A Dendrogram 3/15/05 1 Hierarchical Clustering [Johnson, SC, 1967] Given n points in R d, compute the distance between every pair of points While (not done) Pick closest pair of points s i and s j and

More information

Content-based image and video analysis. Machine learning

Content-based image and video analysis. Machine learning Content-based image and video analysis Machine learning for multimedia retrieval 04.05.2009 What is machine learning? Some problems are very hard to solve by writing a computer program by hand Almost all

More information

Kernel Methods for Missing Variables

Kernel Methods for Missing Variables Kernel Methods for Missing Variables Alex J. Smola, S.V.N. Vishwanathan Statistical Machine Learning Program NICTA and ANU, Canberra, ACT, 0200 {Alex.Smola, SVN.Vishwanathan}@nicta.com.au Thomas Hofmann

More information

Data Analysis 3. Support Vector Machines. Jan Platoš October 30, 2017

Data Analysis 3. Support Vector Machines. Jan Platoš October 30, 2017 Data Analysis 3 Support Vector Machines Jan Platoš October 30, 2017 Department of Computer Science Faculty of Electrical Engineering and Computer Science VŠB - Technical University of Ostrava Table of

More information

Large-Scale Multiclass Transduction

Large-Scale Multiclass Transduction Large-Scale Multiclass Transduction Thomas Gärtner Fraunhofer AIS.KD, 53754 Sankt Augustin, Thomas.Gaertner@ais.fraunhofer.de Quoc V. Le, Simon Burton, Alex J. Smola, Vishy Vishwanathan Statistical Machine

More information

Supervised Learning for Image Segmentation

Supervised Learning for Image Segmentation Supervised Learning for Image Segmentation Raphael Meier 06.10.2016 Raphael Meier MIA 2016 06.10.2016 1 / 52 References A. Ng, Machine Learning lecture, Stanford University. A. Criminisi, J. Shotton, E.

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 2014-2015 Jakob Verbeek, November 28, 2014 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.14.15

More information

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition Pattern Recognition Kjell Elenius Speech, Music and Hearing KTH March 29, 2007 Speech recognition 2007 1 Ch 4. Pattern Recognition 1(3) Bayes Decision Theory Minimum-Error-Rate Decision Rules Discriminant

More information

Regularization and model selection

Regularization and model selection CS229 Lecture notes Andrew Ng Part VI Regularization and model selection Suppose we are trying select among several different models for a learning problem. For instance, we might be using a polynomial

More information

Introduction to Pattern Recognition Part II. Selim Aksoy Bilkent University Department of Computer Engineering

Introduction to Pattern Recognition Part II. Selim Aksoy Bilkent University Department of Computer Engineering Introduction to Pattern Recognition Part II Selim Aksoy Bilkent University Department of Computer Engineering saksoy@cs.bilkent.edu.tr RETINA Pattern Recognition Tutorial, Summer 2005 Overview Statistical

More information

(University Improving of Montreal) Generative Adversarial Networks with Denoising Feature Matching / 17

(University Improving of Montreal) Generative Adversarial Networks with Denoising Feature Matching / 17 Improving Generative Adversarial Networks with Denoising Feature Matching David Warde-Farley 1 Yoshua Bengio 1 1 University of Montreal, ICLR,2017 Presenter: Bargav Jayaraman Outline 1 Introduction 2 Background

More information

Multiplicative Mixture Models for Overlapping Clustering

Multiplicative Mixture Models for Overlapping Clustering Multiplicative Mixture Models for Overlapping Clustering Qiang Fu Dept of Computer Science & Engineering University of Minnesota, Twin Cities qifu@cs.umn.edu Arindam Banerjee Dept of Computer Science &

More information

Classification. 1 o Semestre 2007/2008

Classification. 1 o Semestre 2007/2008 Classification Departamento de Engenharia Informática Instituto Superior Técnico 1 o Semestre 2007/2008 Slides baseados nos slides oficiais do livro Mining the Web c Soumen Chakrabarti. Outline 1 2 3 Single-Class

More information

Support Vector Machines

Support Vector Machines Support Vector Machines RBF-networks Support Vector Machines Good Decision Boundary Optimization Problem Soft margin Hyperplane Non-linear Decision Boundary Kernel-Trick Approximation Accurancy Overtraining

More information

Part 5: Structured Support Vector Machines

Part 5: Structured Support Vector Machines Part 5: Structured Support Vector Machines Sebastian Nowozin and Christoph H. Lampert Providence, 21st June 2012 1 / 34 Problem (Loss-Minimizing Parameter Learning) Let d(x, y) be the (unknown) true data

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Learning without Class Labels (or correct outputs) Density Estimation Learn P(X) given training data for X Clustering Partition data into clusters Dimensionality Reduction Discover

More information

Semi-supervised learning and active learning

Semi-supervised learning and active learning Semi-supervised learning and active learning Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Combining classifiers Ensemble learning: a machine learning paradigm where multiple learners

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Object Recognition 2015-2016 Jakob Verbeek, December 11, 2015 Course website: http://lear.inrialpes.fr/~verbeek/mlor.15.16 Classification

More information

SVMs for Structured Output. Andrea Vedaldi

SVMs for Structured Output. Andrea Vedaldi SVMs for Structured Output Andrea Vedaldi SVM struct Tsochantaridis Hofmann Joachims Altun 04 Extending SVMs 3 Extending SVMs SVM = parametric function arbitrary input binary output 3 Extending SVMs SVM

More information

CS839: Probabilistic Graphical Models. Lecture 10: Learning with Partially Observed Data. Theo Rekatsinas

CS839: Probabilistic Graphical Models. Lecture 10: Learning with Partially Observed Data. Theo Rekatsinas CS839: Probabilistic Graphical Models Lecture 10: Learning with Partially Observed Data Theo Rekatsinas 1 Partially Observed GMs Speech recognition 2 Partially Observed GMs Evolution 3 Partially Observed

More information

Semi-supervised Learning

Semi-supervised Learning Semi-supervised Learning Piyush Rai CS5350/6350: Machine Learning November 8, 2011 Semi-supervised Learning Supervised Learning models require labeled data Learning a reliable model usually requires plenty

More information

732A54/TDDE31 Big Data Analytics

732A54/TDDE31 Big Data Analytics 732A54/TDDE31 Big Data Analytics Lecture 10: Machine Learning with MapReduce Jose M. Peña IDA, Linköping University, Sweden 1/27 Contents MapReduce Framework Machine Learning with MapReduce Neural Networks

More information

Complex Prediction Problems

Complex Prediction Problems Problems A novel approach to multiple Structured Output Prediction Max-Planck Institute ECML HLIE08 Information Extraction Extract structured information from unstructured data Typical subtasks Named Entity

More information

08 An Introduction to Dense Continuous Robotic Mapping

08 An Introduction to Dense Continuous Robotic Mapping NAVARCH/EECS 568, ROB 530 - Winter 2018 08 An Introduction to Dense Continuous Robotic Mapping Maani Ghaffari March 14, 2018 Previously: Occupancy Grid Maps Pose SLAM graph and its associated dense occupancy

More information

Note Set 4: Finite Mixture Models and the EM Algorithm

Note Set 4: Finite Mixture Models and the EM Algorithm Note Set 4: Finite Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine Finite Mixture Models A finite mixture model with K components, for

More information

Segmentation: Clustering, Graph Cut and EM

Segmentation: Clustering, Graph Cut and EM Segmentation: Clustering, Graph Cut and EM Ying Wu Electrical Engineering and Computer Science Northwestern University, Evanston, IL 60208 yingwu@northwestern.edu http://www.eecs.northwestern.edu/~yingwu

More information

2. A Bernoulli distribution has the following likelihood function for a data set D: N 1 N 1 + N 0

2. A Bernoulli distribution has the following likelihood function for a data set D: N 1 N 1 + N 0 Machine Learning Fall 2015 Homework 1 Homework must be submitted electronically following the instructions on the course homepage. Make sure to explain you reasoning or show your derivations. Except for

More information

Convexization in Markov Chain Monte Carlo

Convexization in Markov Chain Monte Carlo in Markov Chain Monte Carlo 1 IBM T. J. Watson Yorktown Heights, NY 2 Department of Aerospace Engineering Technion, Israel August 23, 2011 Problem Statement MCMC processes in general are governed by non

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing ECG782: Multidimensional Digital Signal Processing Object Recognition http://www.ee.unlv.edu/~b1morris/ecg782/ 2 Outline Knowledge Representation Statistical Pattern Recognition Neural Networks Boosting

More information

Clustering algorithms

Clustering algorithms Clustering algorithms Machine Learning Hamid Beigy Sharif University of Technology Fall 1393 Hamid Beigy (Sharif University of Technology) Clustering algorithms Fall 1393 1 / 22 Table of contents 1 Supervised

More information

Support Vector Machines

Support Vector Machines Support Vector Machines About the Name... A Support Vector A training sample used to define classification boundaries in SVMs located near class boundaries Support Vector Machines Binary classifiers whose

More information

Nested Sampling: Introduction and Implementation

Nested Sampling: Introduction and Implementation UNIVERSITY OF TEXAS AT SAN ANTONIO Nested Sampling: Introduction and Implementation Liang Jing May 2009 1 1 ABSTRACT Nested Sampling is a new technique to calculate the evidence, Z = P(D M) = p(d θ, M)p(θ

More information

Metric Learning for Large-Scale Image Classification:

Metric Learning for Large-Scale Image Classification: Metric Learning for Large-Scale Image Classification: Generalizing to New Classes at Near-Zero Cost Florent Perronnin 1 work published at ECCV 2012 with: Thomas Mensink 1,2 Jakob Verbeek 2 Gabriela Csurka

More information

Missing Data Analysis for the Employee Dataset

Missing Data Analysis for the Employee Dataset Missing Data Analysis for the Employee Dataset 67% of the observations have missing values! Modeling Setup For our analysis goals we would like to do: Y X N (X, 2 I) and then interpret the coefficients

More information

Part 5: Structured Support Vector Machines

Part 5: Structured Support Vector Machines Part 5: Structured Support Vector Machines Sebastian Noozin and Christoph H. Lampert Colorado Springs, 25th June 2011 1 / 56 Problem (Loss-Minimizing Parameter Learning) Let d(x, y) be the (unknon) true

More information

Semi-Supervised Construction of General Visualization Hierarchies

Semi-Supervised Construction of General Visualization Hierarchies Semi-Supervised Construction of General Visualization Hierarchies Peter Tiňo Yi Sun Ian Nabney Aston University, Aston Triangle, Birmingham, B4 7ET United Kingdom Abstract We have recently developed a

More information

Learning Kernels with Random Features

Learning Kernels with Random Features Learning Kernels with Random Features Aman Sinha John Duchi Stanford University NIPS, 2016 Presenter: Ritambhara Singh Outline 1 Introduction Motivation Background State-of-the-art 2 Proposed Approach

More information

An Efficient Model Selection for Gaussian Mixture Model in a Bayesian Framework

An Efficient Model Selection for Gaussian Mixture Model in a Bayesian Framework IEEE SIGNAL PROCESSING LETTERS, VOL. XX, NO. XX, XXX 23 An Efficient Model Selection for Gaussian Mixture Model in a Bayesian Framework Ji Won Yoon arxiv:37.99v [cs.lg] 3 Jul 23 Abstract In order to cluster

More information

Machine Learning. Supervised Learning. Manfred Huber

Machine Learning. Supervised Learning. Manfred Huber Machine Learning Supervised Learning Manfred Huber 2015 1 Supervised Learning Supervised learning is learning where the training data contains the target output of the learning system. Training data D

More information

Scalable Bayes Clustering for Outlier Detection Under Informative Sampling

Scalable Bayes Clustering for Outlier Detection Under Informative Sampling Scalable Bayes Clustering for Outlier Detection Under Informative Sampling Based on JMLR paper of T. D. Savitsky Terrance D. Savitsky Office of Survey Methods Research FCSM - 2018 March 7-9, 2018 1 / 21

More information

University of Cambridge Engineering Part IIB Paper 4F10: Statistical Pattern Processing Handout 11: Non-Parametric Techniques.

University of Cambridge Engineering Part IIB Paper 4F10: Statistical Pattern Processing Handout 11: Non-Parametric Techniques. . Non-Parameteric Techniques University of Cambridge Engineering Part IIB Paper 4F: Statistical Pattern Processing Handout : Non-Parametric Techniques Mark Gales mjfg@eng.cam.ac.uk Michaelmas 23 Introduction

More information

Machine Learning. Semi-Supervised Learning. Manfred Huber

Machine Learning. Semi-Supervised Learning. Manfred Huber Machine Learning Semi-Supervised Learning Manfred Huber 2015 1 Semi-Supervised Learning Semi-supervised learning refers to learning from data where part contains desired output information and the other

More information

Multiple Kernel Machines Using Localized Kernels

Multiple Kernel Machines Using Localized Kernels Multiple Kernel Machines Using Localized Kernels Mehmet Gönen and Ethem Alpaydın Department of Computer Engineering Boğaziçi University TR-3434, Bebek, İstanbul, Turkey gonen@boun.edu.tr alpaydin@boun.edu.tr

More information

Mixture Models and EM

Mixture Models and EM Table of Content Chapter 9 Mixture Models and EM -means Clustering Gaussian Mixture Models (GMM) Expectation Maximiation (EM) for Mixture Parameter Estimation Introduction Mixture models allows Complex

More information

SD 372 Pattern Recognition

SD 372 Pattern Recognition SD 372 Pattern Recognition Lab 2: Model Estimation and Discriminant Functions 1 Purpose This lab examines the areas of statistical model estimation and classifier aggregation. Model estimation will be

More information

Voxel selection algorithms for fmri

Voxel selection algorithms for fmri Voxel selection algorithms for fmri Henryk Blasinski December 14, 2012 1 Introduction Functional Magnetic Resonance Imaging (fmri) is a technique to measure and image the Blood- Oxygen Level Dependent

More information

Kernel Methods & Support Vector Machines

Kernel Methods & Support Vector Machines & Support Vector Machines & Support Vector Machines Arvind Visvanathan CSCE 970 Pattern Recognition 1 & Support Vector Machines Question? Draw a single line to separate two classes? 2 & Support Vector

More information

Structured Learning. Jun Zhu

Structured Learning. Jun Zhu Structured Learning Jun Zhu Supervised learning Given a set of I.I.D. training samples Learn a prediction function b r a c e Supervised learning (cont d) Many different choices Logistic Regression Maximum

More information

University of Cambridge Engineering Part IIB Paper 4F10: Statistical Pattern Processing Handout 11: Non-Parametric Techniques

University of Cambridge Engineering Part IIB Paper 4F10: Statistical Pattern Processing Handout 11: Non-Parametric Techniques University of Cambridge Engineering Part IIB Paper 4F10: Statistical Pattern Processing Handout 11: Non-Parametric Techniques Mark Gales mjfg@eng.cam.ac.uk Michaelmas 2015 11. Non-Parameteric Techniques

More information

Lecture 8: The EM algorithm

Lecture 8: The EM algorithm 10-708: Probabilistic Graphical Models 10-708, Spring 2017 Lecture 8: The EM algorithm Lecturer: Manuela M. Veloso, Eric P. Xing Scribes: Huiting Liu, Yifan Yang 1 Introduction Previous lecture discusses

More information

k-means demo Administrative Machine learning: Unsupervised learning" Assignment 5 out

k-means demo Administrative Machine learning: Unsupervised learning Assignment 5 out Machine learning: Unsupervised learning" David Kauchak cs Spring 0 adapted from: http://www.stanford.edu/class/cs76/handouts/lecture7-clustering.ppt http://www.youtube.com/watch?v=or_-y-eilqo Administrative

More information

Machine Learning Classifiers and Boosting

Machine Learning Classifiers and Boosting Machine Learning Classifiers and Boosting Reading Ch 18.6-18.12, 20.1-20.3.2 Outline Different types of learning problems Different types of learning algorithms Supervised learning Decision trees Naïve

More information

Experts-Shift: Learning Active Spatial Classification Experts for Keyframe-based Video Segmentation

Experts-Shift: Learning Active Spatial Classification Experts for Keyframe-based Video Segmentation Experts-Shift: Learning Active Spatial Classification Experts for Keyframe-based Video Segmentation Yibiao Zhao 1,3, Yanbiao Duan 2,3, Xiaohan Nie 2,3, Yaping Huang 1, Siwei Luo 1 1 Beijing Jiaotong University,

More information

Clustering web search results

Clustering web search results Clustering K-means Machine Learning CSE546 Emily Fox University of Washington November 4, 2013 1 Clustering images Set of Images [Goldberger et al.] 2 1 Clustering web search results 3 Some Data 4 2 K-means

More information

Client Dependent GMM-SVM Models for Speaker Verification

Client Dependent GMM-SVM Models for Speaker Verification Client Dependent GMM-SVM Models for Speaker Verification Quan Le, Samy Bengio IDIAP, P.O. Box 592, CH-1920 Martigny, Switzerland {quan,bengio}@idiap.ch Abstract. Generative Gaussian Mixture Models (GMMs)

More information

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning Associate Instructor: Herke van Hoof (herke.vanhoof@mail.mcgill.ca) Slides mostly by: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551

More information

Machine Learning / Jan 27, 2010

Machine Learning / Jan 27, 2010 Revisiting Logistic Regression & Naïve Bayes Aarti Singh Machine Learning 10-701/15-781 Jan 27, 2010 Generative and Discriminative Classifiers Training classifiers involves learning a mapping f: X -> Y,

More information

CS281 Section 9: Graph Models and Practical MCMC

CS281 Section 9: Graph Models and Practical MCMC CS281 Section 9: Graph Models and Practical MCMC Scott Linderman November 11, 213 Now that we have a few MCMC inference algorithms in our toolbox, let s try them out on some random graph models. Graphs

More information

Clustering. Mihaela van der Schaar. January 27, Department of Engineering Science University of Oxford

Clustering. Mihaela van der Schaar. January 27, Department of Engineering Science University of Oxford Department of Engineering Science University of Oxford January 27, 2017 Many datasets consist of multiple heterogeneous subsets. Cluster analysis: Given an unlabelled data, want algorithms that automatically

More information

Bilevel Sparse Coding

Bilevel Sparse Coding Adobe Research 345 Park Ave, San Jose, CA Mar 15, 2013 Outline 1 2 The learning model The learning algorithm 3 4 Sparse Modeling Many types of sensory data, e.g., images and audio, are in high-dimensional

More information

Generative and discriminative classification

Generative and discriminative classification Generative and discriminative classification Machine Learning and Object Recognition 2017-2018 Jakob Verbeek Classification in its simplest form Given training data labeled for two or more classes Classification

More information

Divide and Conquer Kernel Ridge Regression

Divide and Conquer Kernel Ridge Regression Divide and Conquer Kernel Ridge Regression Yuchen Zhang John Duchi Martin Wainwright University of California, Berkeley COLT 2013 Yuchen Zhang (UC Berkeley) Divide and Conquer KRR COLT 2013 1 / 15 Problem

More information

More Data, Less Work: Runtime as a decreasing function of data set size. Nati Srebro. Toyota Technological Institute Chicago

More Data, Less Work: Runtime as a decreasing function of data set size. Nati Srebro. Toyota Technological Institute Chicago More Data, Less Work: Runtime as a decreasing function of data set size Nati Srebro Toyota Technological Institute Chicago Outline we are here SVM speculations, other problems Clustering wild speculations,

More information

All lecture slides will be available at CSC2515_Winter15.html

All lecture slides will be available at  CSC2515_Winter15.html CSC2515 Fall 2015 Introduc3on to Machine Learning Lecture 9: Support Vector Machines All lecture slides will be available at http://www.cs.toronto.edu/~urtasun/courses/csc2515/ CSC2515_Winter15.html Many

More information

Computer Vision Group Prof. Daniel Cremers. 4a. Inference in Graphical Models

Computer Vision Group Prof. Daniel Cremers. 4a. Inference in Graphical Models Group Prof. Daniel Cremers 4a. Inference in Graphical Models Inference on a Chain (Rep.) The first values of µ α and µ β are: The partition function can be computed at any node: Overall, we have O(NK 2

More information

Support Vector Machine Learning for Interdependent and Structured Output Spaces

Support Vector Machine Learning for Interdependent and Structured Output Spaces Support Vector Machine Learning for Interdependent and Structured Output Spaces I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun, ICML, 2004. And also I. Tsochantaridis, T. Joachims, T. Hofmann,

More information

LTI Thesis Defense: Riemannian Geometry and Statistical Machine Learning

LTI Thesis Defense: Riemannian Geometry and Statistical Machine Learning Outline LTI Thesis Defense: Riemannian Geometry and Statistical Machine Learning Guy Lebanon Motivation Introduction Previous Work Committee:John Lafferty Geoff Gordon, Michael I. Jordan, Larry Wasserman

More information

Markov Random Fields and Gibbs Sampling for Image Denoising

Markov Random Fields and Gibbs Sampling for Image Denoising Markov Random Fields and Gibbs Sampling for Image Denoising Chang Yue Electrical Engineering Stanford University changyue@stanfoed.edu Abstract This project applies Gibbs Sampling based on different Markov

More information

Bayesian Classification Using Probabilistic Graphical Models

Bayesian Classification Using Probabilistic Graphical Models San Jose State University SJSU ScholarWorks Master's Projects Master's Theses and Graduate Research Spring 2014 Bayesian Classification Using Probabilistic Graphical Models Mehal Patel San Jose State University

More information

Robust 1-Norm Soft Margin Smooth Support Vector Machine

Robust 1-Norm Soft Margin Smooth Support Vector Machine Robust -Norm Soft Margin Smooth Support Vector Machine Li-Jen Chien, Yuh-Jye Lee, Zhi-Peng Kao, and Chih-Cheng Chang Department of Computer Science and Information Engineering National Taiwan University

More information

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013

Machine Learning. Topic 5: Linear Discriminants. Bryan Pardo, EECS 349 Machine Learning, 2013 Machine Learning Topic 5: Linear Discriminants Bryan Pardo, EECS 349 Machine Learning, 2013 Thanks to Mark Cartwright for his extensive contributions to these slides Thanks to Alpaydin, Bishop, and Duda/Hart/Stork

More information

Data Mining in Bioinformatics Day 1: Classification

Data Mining in Bioinformatics Day 1: Classification Data Mining in Bioinformatics Day 1: Classification Karsten Borgwardt February 18 to March 1, 2013 Machine Learning & Computational Biology Research Group Max Planck Institute Tübingen and Eberhard Karls

More information

Computational Cognitive Science

Computational Cognitive Science Computational Cognitive Science Lecture 5: Maximum Likelihood Estimation; Parameter Uncertainty Chris Lucas (Slides adapted from Frank Keller s) School of Informatics University of Edinburgh clucas2@inf.ed.ac.uk

More information

Image analysis. Computer Vision and Classification Image Segmentation. 7 Image analysis

Image analysis. Computer Vision and Classification Image Segmentation. 7 Image analysis 7 Computer Vision and Classification 413 / 458 Computer Vision and Classification The k-nearest-neighbor method The k-nearest-neighbor (knn) procedure has been used in data analysis and machine learning

More information

CS 229 Midterm Review

CS 229 Midterm Review CS 229 Midterm Review Course Staff Fall 2018 11/2/2018 Outline Today: SVMs Kernels Tree Ensembles EM Algorithm / Mixture Models [ Focus on building intuition, less so on solving specific problems. Ask

More information

Posterior Regularization for Structured Latent Varaible Models

Posterior Regularization for Structured Latent Varaible Models University of Pennsylvania ScholarlyCommons Departmental Papers (CIS) Department of Computer & Information Science 7-200 Posterior Regularization for Structured Latent Varaible Models Kuzman Ganchev University

More information

SVM in Analysis of Cross-Sectional Epidemiological Data Dmitriy Fradkin. April 4, 2005 Dmitriy Fradkin, Rutgers University Page 1

SVM in Analysis of Cross-Sectional Epidemiological Data Dmitriy Fradkin. April 4, 2005 Dmitriy Fradkin, Rutgers University Page 1 SVM in Analysis of Cross-Sectional Epidemiological Data Dmitriy Fradkin April 4, 2005 Dmitriy Fradkin, Rutgers University Page 1 Overview The goals of analyzing cross-sectional data Standard methods used

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Sources Hastie, Tibshirani, Friedman: The Elements of Statistical Learning James, Witten, Hastie, Tibshirani: An Introduction to Statistical Learning Andrew Ng:

More information

1) Give decision trees to represent the following Boolean functions:

1) Give decision trees to represent the following Boolean functions: 1) Give decision trees to represent the following Boolean functions: 1) A B 2) A [B C] 3) A XOR B 4) [A B] [C Dl Answer: 1) A B 2) A [B C] 1 3) A XOR B = (A B) ( A B) 4) [A B] [C D] 2 2) Consider the following

More information

Today. Logistic Regression. Decision Trees Redux. Graphical Models. Maximum Entropy Formulation. Now using Information Theory

Today. Logistic Regression. Decision Trees Redux. Graphical Models. Maximum Entropy Formulation. Now using Information Theory Today Logistic Regression Maximum Entropy Formulation Decision Trees Redux Now using Information Theory Graphical Models Representing conditional dependence graphically 1 Logistic Regression Optimization

More information

Collective classification in network data

Collective classification in network data 1 / 50 Collective classification in network data Seminar on graphs, UCSB 2009 Outline 2 / 50 1 Problem 2 Methods Local methods Global methods 3 Experiments Outline 3 / 50 1 Problem 2 Methods Local methods

More information

ECE 5424: Introduction to Machine Learning

ECE 5424: Introduction to Machine Learning ECE 5424: Introduction to Machine Learning Topics: Unsupervised Learning: Kmeans, GMM, EM Readings: Barber 20.1-20.3 Stefan Lee Virginia Tech Tasks Supervised Learning x Classification y Discrete x Regression

More information

Clustering and The Expectation-Maximization Algorithm

Clustering and The Expectation-Maximization Algorithm Clustering and The Expectation-Maximization Algorithm Unsupervised Learning Marek Petrik 3/7 Some of the figures in this presentation are taken from An Introduction to Statistical Learning, with applications

More information

Mixture models and frequent sets: combining global and local methods for 0 1 data

Mixture models and frequent sets: combining global and local methods for 0 1 data Mixture models and frequent sets: combining global and local methods for 1 data Jaakko Hollmén Jouni K. Seppänen Heikki Mannila Abstract We study the interaction between global and local techniques in

More information

Second Order SMO Improves SVM Online and Active Learning

Second Order SMO Improves SVM Online and Active Learning Second Order SMO Improves SVM Online and Active Learning Tobias Glasmachers and Christian Igel Institut für Neuroinformatik, Ruhr-Universität Bochum 4478 Bochum, Germany Abstract Iterative learning algorithms

More information

Markov Chain Monte Carlo (part 1)

Markov Chain Monte Carlo (part 1) Markov Chain Monte Carlo (part 1) Edps 590BAY Carolyn J. Anderson Department of Educational Psychology c Board of Trustees, University of Illinois Spring 2018 Depending on the book that you select for

More information

Data mining techniques for actuaries: an overview

Data mining techniques for actuaries: an overview Data mining techniques for actuaries: an overview Emiliano A. Valdez joint work with Banghee So and Guojun Gan University of Connecticut Advances in Predictive Analytics (APA) Conference University of

More information

Equation to LaTeX. Abhinav Rastogi, Sevy Harris. I. Introduction. Segmentation.

Equation to LaTeX. Abhinav Rastogi, Sevy Harris. I. Introduction. Segmentation. Equation to LaTeX Abhinav Rastogi, Sevy Harris {arastogi,sharris5}@stanford.edu I. Introduction Copying equations from a pdf file to a LaTeX document can be time consuming because there is no easy way

More information

Markov Networks in Computer Vision

Markov Networks in Computer Vision Markov Networks in Computer Vision Sargur Srihari srihari@cedar.buffalo.edu 1 Markov Networks for Computer Vision Some applications: 1. Image segmentation 2. Removal of blur/noise 3. Stereo reconstruction

More information

Feature LDA: a Supervised Topic Model for Automatic Detection of Web API Documentations from the Web

Feature LDA: a Supervised Topic Model for Automatic Detection of Web API Documentations from the Web Feature LDA: a Supervised Topic Model for Automatic Detection of Web API Documentations from the Web Chenghua Lin, Yulan He, Carlos Pedrinaci, and John Domingue Knowledge Media Institute, The Open University

More information