Musculoskeletal Modeling and Simulation of Human Movement Workshop (WS5)

Size: px
Start display at page:

Download "Musculoskeletal Modeling and Simulation of Human Movement Workshop (WS5)"

Transcription

1 Musculoskeletal Modeling and Simulation of Human Movement Workshop (WS5) Massimo Sartori Department of Neurorehabilitation Engineering University Medical Center Göttingen, Germany Monica Reggiani Department of Management and Engineering University of Padova, Italy September 15-18, 2014 Summer School on Neurorehabilitation Baiona, Spain

2 Our Research neuro- musculoskeletal modeling real-time

3 EMG-driven Modeling EMGs neuro- musculoskeletal model joint rotation forces joint compressive force joint compliance real-time modeling patient-machine interaction

4 EMG-driven Modeling how do people modulate bone-to-bone forces? joint rotation forces joint compressive force joint compliance real-time modeling patient-machine interaction

5 Patient-Prosthesis Interaction trans-femoral amputees different motor-tasks different prostheses contra-lateral leg behavior 5

6 Towards Neurorehabilitation Technologies muscle excitation multi-joint configuration Fleischer et al. IEEE T-RO 2008 EMG-driven musculoskeletal model EMG-based proportional control 6

7 Your Turn!

8 Purpose of the Workshop CREATE musculoskeletal models ground up INVESTIGATE musculoskeletal movement ACCESS low-level OpenSim through MATLAB OpenSim MATLAB 8

9 MOtoNMS Two Hands-on Examples batch process IK and ID THE INVERSE PROBLEM MATLAB scripting Dynamic Simulation THE FORWARD PROBLEM 9

10 What is Now OpenSim? OpenSim is an application 10

11 Visualize complex movement patterns Probe forces that are difficult to measure Perform what if studies Identify cause-effect relationships

12 MOtoNMS Hands-on Exercise 1 batch process IK and ID Forces Musculoskeletal Geometry Moments Accelerations Velocities. Multibody d dt d dt Angles Position Data Force Data Video Cameras Reflec7ve Markers The inverse problem 12

13 MOtoNMS Hands-on Exercise 1 batch process IK and ID Forces Musculoskeletal Geometry Moments Accelerations Velocities. Multibody d dt d dt Angles Position Data Force Data Video Cameras Reflec7ve Markers 13

14 MOtoNMS Hands-on Exercise 1 batch process IK and ID Forces Musculoskeletal Geometry Moments Accelerations Velocities. Multibody d dt d dt Angles Position Data Force Data Inverse Kinematics Identify research question for the inverse problem Determine what should be measured and modeled Compute joint kinematics Filter and differentiate joint kinematics 14

15 MOtoNMS Hands-on Exercise 1 batch process IK and ID Computing Joint Kinematics 15

16 MOtoNMS Hands-on Exercise 1 batch process IK and ID Differentiation Amplifies High-Frequency Noise x xʹ ( t) xʹ ʹ ( t) x ʹ 1 Hz signal ( t) = 20 sin( 2π t) + sin( 20π t) t ( t) = 40 π cos( 2π t) + 20π cos( 20π t) t x ʹ ʹ x 10 Hz noise SNR = 20 SNR = 2 ( t) = 80π sin( 2π t) 400π sin( 20π t) SNR =

17 MOtoNMS Hands-on Exercise 1 batch process IK and ID Forces Musculoskeletal Geometry Moments Accelerations Velocities. Multibody d dt d dt Angles Position Data Inverse Force Data Inverse Kinematics mg T m! y I! θ m, I m! x Fy Fx θ r x, x!,! x y, y!,! y θ,! θ,! θ ΣF x = mx! ΣF y = my! ΣT = I! θ Derive equations of motion defining the model Solve equations of motion for joint moments 17

18 MOtoNMS Hands-on Exercise 1 batch process IK and ID Forces Musculoskeletal Geometry Moments Accelerations Velocities. Multibody d dt d dt Angles Position Data Static Optimization Inverse Force Data Inverse Kinematics Major extensors Major flexors g Gastrocnemius Tibialis anterior ta s Soleus Extensor digitorum ed tp Tibialis posterior Net ankle moment M a Use musculoskeletal geometry and assumptions about force distribution to estimate individual muscle forces 18

19 MOtoNMS Hands-on Exercise 1 batch process IK and ID Static Optimization Determines the best set of muscle forces that Produce net joint moments at a discrete time Do not violate muscle force limits Optimize a performance criterion Performance criterion attempts to capture the goal of the neural control system Minimize muscle force? Minimize muscle stress? Major flexors Tibialis anterior ta Extensor digitorum g Net ankle moment Major extensors s ed tp Gastrocnemius Soleus Tibialis posterior M a 19

20 MOtoNMS Hands-on Exercise 1 batch process IK and ID Static Optimization minimize subject to f M ( ) F m Function of muscle forces [ ] ( t) = [ F ( t) r ( t) + F ( t) r ( t) ] F ( t) r ( t) + F ( t) r ( t) F ( t) r ( t) a ta ta ed ed g g s s + tp tp F ta ( t) 900N Fed( ( t) 800 Fg( t) Fs t) 2500 ( t) Ftp N 1500N N 1500N Major flexors Tibialis anterior ta Extensor digitorum g Major extensors s ed tp Gastrocnemius Soleus Tibialis posterior Net ankle moment M a 20

21 MOtoNMS Hands-on Exercise 1 batch process IK and ID Static Optimization f f f nm ( ) = F m F m m= 1 nm ( Fm ) = m= 1 3 F m PCSAm F m k PCSAm ( F ) = ( a ) m nm m= 1 Possible validations 2 m= 1 Muscle force Use output to drive a forward dynamic simulation Compare qualitatively to experimental EMG Compare to measured forces (instrumented hip implant, buckle transducer in tendon) nm m 2 Difficult to define and validate a good criterion (Muscle stress) 3 ~ Metabolic energy (Muscle activation) 2 Major flexors Tibialis anterior ta Extensor digitorum g Net ankle moment Major extensors s ed tp Gastrocnemius Soleus Tibialis posterior M a 21

22 Hands-on Exercise 2 Inverse Forces Moments Accelerations Velocities. Angles Neural Command Muscle Physiology Musculoskeletal Geometry Multibody d dt d dt Observed Movement Forward Neural Command EMGs Musculotendon Forces Musculoskeletal Geometry Moments Multibody Velocities. Accelerations Angles Observed Movement MATLAB scripting Dynamic Simulation THE FORWARD PROBLEM 22

23 Hands-on Exercise 2 Neural Command EMGs Musculotendon Forces Musculoskeletal Geometry Moments Multibody Velocities. Accelerations Angles Observed Movement CONTROLS muscle excitation SOURCES EMG Static optimization Controller INITIAL STATES joint angles joint velocities muscle activations fiber lengths STATES joint angles fiber lengths ANALYSES Point Kinematics Actuator Power MATLAB scripting Dynamic Simulation THE FORWARD PROBLEM 23

24 Hands-on Exercise 2 Neural Command EMGs Musculotendon Forces Musculoskeletal Geometry Moments Multibody Velocities. Accelerations Angles Observed Movement x(t) a(t) muscle activation, a fiber length, l! MATLAB scripting Dynamic Simulation THE FORWARD PROBLEM 24

25 Hands-on Exercise 2 Neural Command EMGs Forces Moments Musculotendon Musculoskeletal Geometry Multibody Velocities. Accelerations Angles Observed Movement muscle lines of action moment arms MATLAB scripting Dynamic Simulation THE FORWARD PROBLEM 25

26 Hands-on Exercise 2 Neural Command EMGs Musculotendon Forces Musculoskeletal Geometry Moments Multibody Velocities. Accelerations Angles Observed Movement m 3, I 3 joint angles, q joint velocities, u! q 2 q 3 m 2, I 2 m 1, I 1 y MATLAB scripting q 1 z x Dynamic Simulation THE FORWARD PROBLEM 26

27 Hands-on Exercise 2 Neural Command EMGs Musculotendon Forces Musculoskeletal Geometry Moments Accelerations Velocities. Angles Multibody Observed Movement MATLAB scripting Integration of system equations: a! l! [ ] 1 M( q) { τ( a, l, l! ) C( q,q! ) + ( q) } q! = G = Α( a, x) = Λ( a, l, q) Numerical Integration: 5 th order Runge-Kutta-Feldberg Variable Step Integrator Dynamic Simulation THE FORWARD PROBLEM 27

28 OpenSim Achitecture: Interface Layers Application main() OpenSim (GUI) Application Object interfaces define the tool library plug-in Analysis Solver Manager Analysis Modeling Model ModelComponent SimTK API SimTK::System Common, Math, Simbody

29 OpenSim Achitecture: Interface Layers MATLAB scripting Application main() tool OpenSim (GUI) Application library plug-in Solver Manager Analysis Model ModelComponent SimTK API SimTK::System Common, Math, Simbody Create and Simulate Models

30 OpenSim Model Class Structure Model Body Joint Constraint Force Controller

31 Tree Topology of Multibody Models Each body is connected by ONE joint to create a chain or open tree structure. Body Torso FreeJoint Body Ground Body Left Hand PinJoint Body WeldConstraint Weight WeldJoint Body Weight WeldJoint PinJoint Body Right Hand Constraint is required to form a closed loop

32 Joint Reference Frames parent body P P Joint B child body B B o P o B specified by joint location and orientation P specified by joint locationinparent and orientationinparent Joint coordinates specify the kinematics of B relative to P

33 Organization vs Computation An OpenSim model and its components encapsulate properties of the physical system (mass, inertia, strength, etc ) and know how to add themselves to the underlying computational system (equations) to be solved. Model Body Joint Constraint State compute something SimTK::System (MultibodySystem) Force Controller

34 Force::Muscles Force::Contact Force::Spring Force::Actuator Controller::Ac:va:on Controller::Coordinate WeldJoint Body Ground Body PlaAorm FreeJoint Body Trunk PinJoint Body Arm Body Sphere WeldJoint Contact::Geometry 5 bodies 4 joints 2 contact geometries 9 forces 2 controllers

Documents. OpenSim Tutorial. March 10, 2009 GCMAS Annual Meeting, Denver, CO. Jeff Reinbolt, Ajay Seth, Scott Delp. Website: SimTK.

Documents. OpenSim Tutorial. March 10, 2009 GCMAS Annual Meeting, Denver, CO. Jeff Reinbolt, Ajay Seth, Scott Delp. Website: SimTK. Documents OpenSim Tutorial March 10, 2009 GCMAS Annual Meeting, Denver, CO Jeff Reinbolt, Ajay Seth, Scott Delp Website: SimTK.org/home/opensim OpenSim Tutorial Agenda 10:30am 10:40am Welcome and goals

More information

Documents. OpenSim Workshop. September 20-22, 2011 HYPER Summer School, La Alberca, Spain. Jeff Reinbolt, Jen Hicks. Website: SimTK.

Documents. OpenSim Workshop. September 20-22, 2011 HYPER Summer School, La Alberca, Spain. Jeff Reinbolt, Jen Hicks. Website: SimTK. Documents OpenSim Workshop September 20-22, 2011 HYPER Summer School, La Alberca, Spain Jeff Reinbolt, Jen Hicks Website: SimTK.org/home/opensim OpenSim Workshop Agenda 14:00 14:15 Welcome and goals of

More information

Interfacing OpenSim models with MATLAB /Simulink. OpenSim Workshop

Interfacing OpenSim models with MATLAB /Simulink. OpenSim Workshop Interfacing OpenSim models with MATLAB /Simulink Acknowledgements Why do we care about MATLAB and OpenSim? MATLAB Simulink S- func5on OpenSim Pros World s leading mathematical computing software Used by

More information

Step-by-Step Guide to OpenSim Exercises and Team Project

Step-by-Step Guide to OpenSim Exercises and Team Project Step-by-Step Guide to OpenSim Exercises and Team Project To present some of the tools and capabilities of OpenSim, we will use a simplified model (leg6dof9muscles.osim) throughout this workshop. The model

More information

MUSCULOSKELETAL SIMULATION :

MUSCULOSKELETAL SIMULATION : TUTORIAL MUSCULOSKELETAL SIMULATION : FROM MOTION CAPTURE TO MUSCULAR ACTIVITY IN LOWER LIMB MODELS Nicolas Pronost and Anders Sandholm Musculoskeletal simulation? What is it? 2 Musculoskeletal simulation?

More information

SIMULATION LAB #5: Muscle-Actuated Simulation of Kicking

SIMULATION LAB #5: Muscle-Actuated Simulation of Kicking SIMULATION LAB #5: Muscle-Actuated Simulation of Kicking Modeling and Simulation of Human Movement BME 599 Laboratory Developers: Jeff Reinbolt, Hoa Hoang, B.J. Fregley, Kate Saul Holzbaur, Darryl Thelen,

More information

Is my simulation good enough? Validation & Verification for Biomechanical Modeling and Simulation

Is my simulation good enough? Validation & Verification for Biomechanical Modeling and Simulation Is my simulation good enough? Validation & Verification for Biomechanical Modeling and Simulation Definitions: Validation and Verification Verification The process of determining that a computational model

More information

OpenSim. Developer s Guide. Release 2.4 April 4, Website:

OpenSim. Developer s Guide. Release 2.4 April 4, Website: OpenSim Developer s Guide Release 2.4 April 4, 2012 Website: http://opensim.stanford.edu 1. Developer's Guide...........................................................................................

More information

Applications. Systems. Motion capture pipeline. Biomechanical analysis. Graphics research

Applications. Systems. Motion capture pipeline. Biomechanical analysis. Graphics research Motion capture Applications Systems Motion capture pipeline Biomechanical analysis Graphics research Applications Computer animation Biomechanics Robotics Cinema Video games Anthropology What is captured?

More information

INPUT PARAMETERS FOR MODELS I

INPUT PARAMETERS FOR MODELS I 9A-1 INPUT PARAMETERS FOR MODELS I Lecture Overview Equations of motion Estimation of muscle forces Required model parameters Body segment inertial parameters Muscle moment arms and length Osteometric

More information

Multibody dynamics and numerical modelling of muscles LORENZO GRASSI

Multibody dynamics and numerical modelling of muscles LORENZO GRASSI Multibody dynamics and numerical modelling of muscles LORENZO GRASSI Agenda 10:15 Lecture: Introduction to modelling locomotion and inverse dynamics 11:00 Break/questions 11:15 Opportunities in the biomechanics

More information

OpenSim Tutorial #3 Scaling, Inverse Kinematics, and Inverse Dynamics

OpenSim Tutorial #3 Scaling, Inverse Kinematics, and Inverse Dynamics OpenSim Tutorial #3 Scaling, Inverse Kinematics, and Inverse Dynamics Samuel Hamner, Clay Anderson, Eran Guendelman, Chand John, Jeff Reinbolt, Scott Delp Neuromuscular Biomechanics Laboratory Stanford

More information

Calcaneal Fixation Plate Test Method Development

Calcaneal Fixation Plate Test Method Development Calcaneal Fixation Plate Test Method Development Dana J. Coombs, Sherri Wykosky, and Michael Bushelow DePuy Synthes Trauma Abstract: Standard ASTM test methods, such as four point bend tests based on ASTM

More information

Motion Control of Wearable Walking Support System with Accelerometer Considering Swing Phase Support

Motion Control of Wearable Walking Support System with Accelerometer Considering Swing Phase Support Proceedings of the 17th IEEE International Symposium on Robot and Human Interactive Communication, Technische Universität München, Munich, Germany, August 1-3, Motion Control of Wearable Walking Support

More information

BIOMECHANICAL MODELLING

BIOMECHANICAL MODELLING BIOMECHANICAL MODELLING SERDAR ARITAN serdar.aritan@hacettepe.edu.tr Biomechanics Research Group www.biomech.hacettepe.edu.tr School of Sport Science&Technology www.sbt.hacettepe.edu.tr Hacettepe University,

More information

Motion Capture. Motion Capture in Movies. Motion Capture in Games

Motion Capture. Motion Capture in Movies. Motion Capture in Games Motion Capture Motion Capture in Movies 2 Motion Capture in Games 3 4 Magnetic Capture Systems Tethered Sensitive to metal Low frequency (60Hz) Mechanical Capture Systems Any environment Measures joint

More information

Sensor-Driven Musculoskeletal Dynamic Modeling

Sensor-Driven Musculoskeletal Dynamic Modeling Sensor-Driven Musculoskeletal Dynamic Modeling Laura Hallock Robert Matthew Sarah Seko Ruzena Bajcsy Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No.

More information

Using Algebraic Geometry to Study the Motions of a Robotic Arm

Using Algebraic Geometry to Study the Motions of a Robotic Arm Using Algebraic Geometry to Study the Motions of a Robotic Arm Addison T. Grant January 28, 206 Abstract In this study we summarize selected sections of David Cox, John Little, and Donal O Shea s Ideals,

More information

Making soccer kicks better: A Study in Particle Swarm Optimization and Evolution Strategies

Making soccer kicks better: A Study in Particle Swarm Optimization and Evolution Strategies Making soccer kicks better: A Study in Particle Swarm Optimization and Evolution Strategies Namrata Khemka Dept. of Computer Science University of Calgary Calgary, Canada khemka@cpsc.ucalgary.ca Christian

More information

Last Time? Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based Animation Forward and

More information

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Animation, Motion Capture, & Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based

More information

Using RecurDyn. Contents

Using RecurDyn. Contents Using RecurDyn Contents 1.0 Multibody Dynamics Overview... 2 2.0 Multibody Dynamics Applications... 3 3.0 What is RecurDyn and how is it different?... 4 4.0 Types of RecurDyn Analysis... 5 5.0 MBD Simulation

More information

COMP 175 COMPUTER GRAPHICS. Lecture 10: Animation. COMP 175: Computer Graphics March 12, Erik Anderson 08 Animation

COMP 175 COMPUTER GRAPHICS. Lecture 10: Animation. COMP 175: Computer Graphics March 12, Erik Anderson 08 Animation Lecture 10: Animation COMP 175: Computer Graphics March 12, 2018 1/37 Recap on Camera and the GL Matrix Stack } Go over the GL Matrix Stack 2/37 Topics in Animation } Physics (dynamics, simulation, mechanics)

More information

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Animation, Motion Capture, & Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based

More information

Virtual Modelling of a Real Exoskeleton Constrained to a Human Musculoskeletal Model

Virtual Modelling of a Real Exoskeleton Constrained to a Human Musculoskeletal Model Virtual Modelling of a Real Exoskeleton Constrained to a Human Musculoskeletal Model Francesco Ferrati, Roberto Bortoletto, and Enrico Pagello Intelligent Autonomous Systems Laboratory Department of Information

More information

Application of Optimal Control in the Simulation of Human Motion

Application of Optimal Control in the Simulation of Human Motion ABSTRACT Optimal control techniques are nowadays used in human motion prediction and allow to anticipate the result of surgery and to improve the design and control of rehabilitation robots, prosthetic

More information

Animation Lecture 10 Slide Fall 2003

Animation Lecture 10 Slide Fall 2003 Animation Lecture 10 Slide 1 6.837 Fall 2003 Conventional Animation Draw each frame of the animation great control tedious Reduce burden with cel animation layer keyframe inbetween cel panoramas (Disney

More information

Musculoskeletal modelling from scratch

Musculoskeletal modelling from scratch The webcast will start in a few minutes. Musculoskeletal modelling from scratch CONCEPTS M A DE EA SY Outline Introduction by the Host Musculoskeletal modelling from scratch - concepts made easy Webcast

More information

Developing a Robot Model using System-Level Design

Developing a Robot Model using System-Level Design Developing a Robot Model using System-Level Design What was once the stuff of dreams, being secretly developed in high-security government labs for applications in defense and space exploration, is now

More information

Development of an optomechanical measurement system for dynamic stability analysis

Development of an optomechanical measurement system for dynamic stability analysis Development of an optomechanical measurement system for dynamic stability analysis Simone Pasinetti Dept. of Information Engineering (DII) University of Brescia Brescia, Italy simone.pasinetti@unibs.it

More information

MathWorks Technology Session at GE Physical System Modeling with Simulink / Simscape

MathWorks Technology Session at GE Physical System Modeling with Simulink / Simscape SimPowerSystems SimMechanics SimHydraulics SimDriveline SimElectronics MathWorks Technology Session at GE Physical System Modeling with Simulink / Simscape Simscape MATLAB, Simulink September 13, 2012

More information

Appendix A Physiological Model of the Elbow in MATLAB/Simulink

Appendix A Physiological Model of the Elbow in MATLAB/Simulink Appendix A Physiological Model of the Elbow in MATLAB/Simulink This section contains a complete description of the implementation of the physiological model of the elbow joint in the MATLAB/Simulink environment.

More information

Research Subject. Dynamics Computation and Behavior Capture of Human Figures (Nakamura Group)

Research Subject. Dynamics Computation and Behavior Capture of Human Figures (Nakamura Group) Research Subject Dynamics Computation and Behavior Capture of Human Figures (Nakamura Group) (1) Goal and summary Introduction Humanoid has less actuators than its movable degrees of freedom (DOF) which

More information

Beginners Guide Maya. To be used next to Learning Maya 5 Foundation. 15 juni 2005 Clara Coepijn Raoul Franker

Beginners Guide Maya. To be used next to Learning Maya 5 Foundation. 15 juni 2005 Clara Coepijn Raoul Franker Beginners Guide Maya To be used next to Learning Maya 5 Foundation 15 juni 2005 Clara Coepijn 0928283 Raoul Franker 1202596 Index Index 1 Introduction 2 The Interface 3 Main Shortcuts 4 Building a Character

More information

Lesson 1: Introduction to Pro/MECHANICA Motion

Lesson 1: Introduction to Pro/MECHANICA Motion Lesson 1: Introduction to Pro/MECHANICA Motion 1.1 Overview of the Lesson The purpose of this lesson is to provide you with a brief overview of Pro/MECHANICA Motion, also called Motion in this book. Motion

More information

State Estimation and Parameter Identification of Flexible Manipulators Based on Visual Sensor and Virtual Joint Model

State Estimation and Parameter Identification of Flexible Manipulators Based on Visual Sensor and Virtual Joint Model Proceedings of the 2001 IEEE International Conference on Robotics & Automation Seoul, Korea May 21-26, 2001 State Estimation and Parameter Identification of Flexible Manipulators Based on Visual Sensor

More information

Human Character Animation in 3D-Graphics: The EMOTE System as a Plug-in for Maya

Human Character Animation in 3D-Graphics: The EMOTE System as a Plug-in for Maya Hartmann - 1 Bjoern Hartman Advisor: Dr. Norm Badler Applied Senior Design Project - Final Report Human Character Animation in 3D-Graphics: The EMOTE System as a Plug-in for Maya Introduction Realistic

More information

Jacobian: Velocities and Static Forces 1/4

Jacobian: Velocities and Static Forces 1/4 Jacobian: Velocities and Static Forces /4 Models of Robot Manipulation - EE 54 - Department of Electrical Engineering - University of Washington Kinematics Relations - Joint & Cartesian Spaces A robot

More information

Patient-Specific Model-building and Scaling with the Musculoskeletal. Statistical Shape Modeling

Patient-Specific Model-building and Scaling with the Musculoskeletal. Statistical Shape Modeling Patient-Specific Model-building and Scaling with the Musculoskeletal Atlas Project and Statistical Shape Modeling Can t hear us? Select Audio -> Integrated VoIP -> Join Conference Thor Besier and Ju Zhang

More information

System modeling using Simulink and Simscape

System modeling using Simulink and Simscape System modeling using Simulink and Simscape Abhisek Roy Sruthi Geetha Veer Alakshendra 2015 The MathWorks, Inc. 1 Multi-domain Systems 2 Common challenges 1. Multi-domain simulation 2. Capturing the system

More information

SIMULATION ENVIRONMENT PROPOSAL, ANALYSIS AND CONTROL OF A STEWART PLATFORM MANIPULATOR

SIMULATION ENVIRONMENT PROPOSAL, ANALYSIS AND CONTROL OF A STEWART PLATFORM MANIPULATOR SIMULATION ENVIRONMENT PROPOSAL, ANALYSIS AND CONTROL OF A STEWART PLATFORM MANIPULATOR Fabian Andres Lara Molina, Joao Mauricio Rosario, Oscar Fernando Aviles Sanchez UNICAMP (DPM-FEM), Campinas-SP, Brazil,

More information

What Is SimMechanics?

What Is SimMechanics? SimMechanics 1 simulink What Is Simulink? Simulink is a tool for simulating dynamic systems with a graphical interface specially developed for this purpose. Physical Modeling runs within the Simulink environment

More information

Modeling and kinematics simulation of freestyle skiing robot

Modeling and kinematics simulation of freestyle skiing robot Acta Technica 62 No. 3A/2017, 321 334 c 2017 Institute of Thermomechanics CAS, v.v.i. Modeling and kinematics simulation of freestyle skiing robot Xiaohua Wu 1,3, Jian Yi 2 Abstract. Freestyle skiing robot

More information

John Hsu Nate Koenig ROSCon 2012

John Hsu Nate Koenig ROSCon 2012 John Hsu Nate Koenig ROSCon 2012 Outline What is Gazebo, and why should you use it Overview and architecture Environment modeling Robot modeling Interfaces Getting Help Simulation for Robots Towards accurate

More information

CS 231. Basics of Computer Animation

CS 231. Basics of Computer Animation CS 231 Basics of Computer Animation Animation Techniques Keyframing Motion capture Physics models Keyframe animation Highest degree of control, also difficult Interpolation affects end result Timing must

More information

CS 231. Inverse Kinematics Intro to Motion Capture. 3D characters. Representation. 1) Skeleton Origin (root) Joint centers/ bones lengths

CS 231. Inverse Kinematics Intro to Motion Capture. 3D characters. Representation. 1) Skeleton Origin (root) Joint centers/ bones lengths CS Inverse Kinematics Intro to Motion Capture Representation D characters ) Skeleton Origin (root) Joint centers/ bones lengths ) Keyframes Pos/Rot Root (x) Joint Angles (q) Kinematics study of static

More information

Kinematics of the Stewart Platform (Reality Check 1: page 67)

Kinematics of the Stewart Platform (Reality Check 1: page 67) MATH 5: Computer Project # - Due on September 7, Kinematics of the Stewart Platform (Reality Check : page 7) A Stewart platform consists of six variable length struts, or prismatic joints, supporting a

More information

Design and Optimization of the Thigh for an Exoskeleton based on Parallel Mechanism

Design and Optimization of the Thigh for an Exoskeleton based on Parallel Mechanism Design and Optimization of the Thigh for an Exoskeleton based on Parallel Mechanism Konstantin Kondak, Bhaskar Dasgupta, Günter Hommel Technische Universität Berlin, Institut für Technische Informatik

More information

: A Fast Symbolic, Dynamic Simulator interfaced with

: A Fast Symbolic, Dynamic Simulator interfaced with 18/11/2014 : A Fast Symbolic, Dynamic Simulator interfaced with Timothée Habra (Université catholique de Louvain) Houman Dallali (Instituto Italiano di Technologia) 1 Introduction Robots model complexity

More information

WHITE PAPER: Mischa Muehling 1,Tim Weber 1, 2, Philipp Russ 3, Sebastian Dendorfer 1, 2 1

WHITE PAPER: Mischa Muehling 1,Tim Weber 1, 2, Philipp Russ 3, Sebastian Dendorfer 1, 2 1 WHITE PAPER: 1 Prediction of ground reaction s and moments by using gait analysis silhouette tracking method compared to marker tracking and platform method Mischa Muehling 1,Tim Weber 1, 2, Philipp Russ

More information

Teleoperation of a Robot Arm in 2D Catching Movements using EMG Signals and a Bio-inspired Motion Law

Teleoperation of a Robot Arm in 2D Catching Movements using EMG Signals and a Bio-inspired Motion Law Teleoperation of a Robot Arm in 2D Catching Movements using EMG Signals and a Bio-inspired Motion Law Panagiotis K. Artemiadis, and Kostas J. Kyriakopoulos Control Systems Lab, Mechanical Eng. Dept. National

More information

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute Jane Li Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute What are the DH parameters for describing the relative pose of the two frames?

More information

Properties of Hyper-Redundant Manipulators

Properties of Hyper-Redundant Manipulators Properties of Hyper-Redundant Manipulators A hyper-redundant manipulator has unconventional features such as the ability to enter a narrow space while avoiding obstacles. Thus, it is suitable for applications:

More information

MotionLab: A Matlab toolbox for extracting and processing experimental motion capture data for neuromuscular simulations

MotionLab: A Matlab toolbox for extracting and processing experimental motion capture data for neuromuscular simulations MotionLab: A Matlab toolbox for extracting and processing experimental motion capture data for neuromuscular simulations Anders Sandholm, Nicolas Pronost, and Daniel Thalmann Ecole Polytechnique Fédérale

More information

Computer Animation. Courtesy of Adam Finkelstein

Computer Animation. Courtesy of Adam Finkelstein Computer Animation Courtesy of Adam Finkelstein Advertisement Computer Animation What is animation? o Make objects change over time according to scripted actions What is simulation? o Predict how objects

More information

PRACTICAL SESSION 4: FORWARD DYNAMICS. Arturo Gil Aparicio.

PRACTICAL SESSION 4: FORWARD DYNAMICS. Arturo Gil Aparicio. PRACTICAL SESSION 4: FORWARD DYNAMICS Arturo Gil Aparicio arturo.gil@umh.es OBJECTIVES After this practical session, the student should be able to: Simulate the movement of a simple mechanism using the

More information

Computer Animation Fundamentals. Animation Methods Keyframing Interpolation Kinematics Inverse Kinematics

Computer Animation Fundamentals. Animation Methods Keyframing Interpolation Kinematics Inverse Kinematics Computer Animation Fundamentals Animation Methods Keyframing Interpolation Kinematics Inverse Kinematics Lecture 21 6.837 Fall 2001 Conventional Animation Draw each frame of the animation great control

More information

animation projects in digital art animation 2009 fabio pellacini 1

animation projects in digital art animation 2009 fabio pellacini 1 animation projects in digital art animation 2009 fabio pellacini 1 animation shape specification as a function of time projects in digital art animation 2009 fabio pellacini 2 how animation works? flip

More information

Serial Manipulator Statics. Robotics. Serial Manipulator Statics. Vladimír Smutný

Serial Manipulator Statics. Robotics. Serial Manipulator Statics. Vladimír Smutný Serial Manipulator Statics Robotics Serial Manipulator Statics Vladimír Smutný Center for Machine Perception Czech Institute for Informatics, Robotics, and Cybernetics (CIIRC) Czech Technical University

More information

Optimal Control Prediction of Dynamically Consistent Walking Motions

Optimal Control Prediction of Dynamically Consistent Walking Motions Treball de Fi de Grau Enginyeria en Tecnologies Industrials Optimal Control Prediction of Dynamically Consistent Walking Motions MEMÒRIA Autor: Roger Pallarès López Directors: Josep Maria Font Llagunes,

More information

Motion Capture & Simulation

Motion Capture & Simulation Motion Capture & Simulation Motion Capture Character Reconstructions Joint Angles Need 3 points to compute a rigid body coordinate frame 1 st point gives 3D translation, 2 nd point gives 2 angles, 3 rd

More information

Session #5 2D Mechanisms: Mobility, Kinematic Analysis & Synthesis

Session #5 2D Mechanisms: Mobility, Kinematic Analysis & Synthesis Session #5 2D Mechanisms: Mobility, Kinematic Analysis & Synthesis Courtesy of Design Simulation Technologies, Inc. Used with permission. Dan Frey Today s Agenda Collect assignment #2 Begin mechanisms

More information

Lecture «Robot Dynamics»: Multi-body Kinematics

Lecture «Robot Dynamics»: Multi-body Kinematics Lecture «Robot Dynamics»: Multi-body Kinematics 151-0851-00 V lecture: CAB G11 Tuesday 10:15 12:00, every week exercise: HG E1.2 Wednesday 8:15 10:00, according to schedule (about every 2nd week) Marco

More information

Non Linear Control of Four Wheel Omnidirectional Mobile Robot: Modeling, Simulation and Real-Time Implementation

Non Linear Control of Four Wheel Omnidirectional Mobile Robot: Modeling, Simulation and Real-Time Implementation Non Linear Control of Four Wheel Omnidirectional Mobile Robot: Modeling, Simulation and Real-Time Implementation eer Alakshendra Research Scholar Robotics Lab Dr Shital S.Chiddarwar Supervisor Robotics

More information

Robotics kinematics and Dynamics

Robotics kinematics and Dynamics Robotics kinematics and Dynamics C. Sivakumar Assistant Professor Department of Mechanical Engineering BSA Crescent Institute of Science and Technology 1 Robot kinematics KINEMATICS the analytical study

More information

Cecilia Laschi The BioRobotics Institute Scuola Superiore Sant Anna, Pisa

Cecilia Laschi The BioRobotics Institute Scuola Superiore Sant Anna, Pisa University of Pisa Master of Science in Computer Science Course of Robotics (ROB) A.Y. 2016/17 cecilia.laschi@santannapisa.it http://didawiki.cli.di.unipi.it/doku.php/magistraleinformatica/rob/start Robot

More information

Robotics. SAAST Robotics Robot Arms

Robotics. SAAST Robotics Robot Arms SAAST Robotics 008 Robot Arms Vijay Kumar Professor of Mechanical Engineering and Applied Mechanics and Professor of Computer and Information Science University of Pennsylvania Topics Types of robot arms

More information

Features of the new AnyBody Modeling System, version 5.2

Features of the new AnyBody Modeling System, version 5.2 Features of the new AnyBody Modeling System, version 5.2 Amir Al-Munajjed aa@anybodytech.com The web cast will start in a few minutes. Agenda & Presenters Who is AnyBody? AnyBody Modeling System AnyBody

More information

Data fusion using marker-based gait analysis and patient-specific bone geometry generated from MRI data

Data fusion using marker-based gait analysis and patient-specific bone geometry generated from MRI data Data fusion using marker-based gait analysis and patient-specific bone geometry generated from MRI data Euromech Colloquium 511: Biomechanics of Human Motion New Frontiers of Multibody Techniques for Clinical

More information

Lecture «Robot Dynamics»: Kinematics 3

Lecture «Robot Dynamics»: Kinematics 3 Lecture «Robot Dynamics»: Kinematics 3 151-0851-00 V lecture: CAB G11 Tuesday 10:15 12:00, every week exercise: HG E1.2 Wednesday 8:15 10:00, according to schedule (about every 2nd week) Marco Hutter,

More information

Introduction to Solid Modeling Using SolidWorks 2008 COSMOSMotion Tutorial Page 1

Introduction to Solid Modeling Using SolidWorks 2008 COSMOSMotion Tutorial Page 1 Introduction to Solid Modeling Using SolidWorks 2008 COSMOSMotion Tutorial Page 1 In this tutorial, we will learn the basics of performing motion analysis using COSMOSMotion. Although the tutorial can

More information

Method for determining musculotendon parameters in subject-specific musculoskeletal models of children developed from MRI data

Method for determining musculotendon parameters in subject-specific musculoskeletal models of children developed from MRI data Multibody Syst Dyn (2012) 28:143 156 DOI 10.1007/s11044-011-9289-0 Method for determining musculotendon parameters in subject-specific musculoskeletal models of children developed from MRI data Reinhard

More information

Dynamic Analysis of Manipulator Arm for 6-legged Robot

Dynamic Analysis of Manipulator Arm for 6-legged Robot American Journal of Mechanical Engineering, 2013, Vol. 1, No. 7, 365-369 Available online at http://pubs.sciepub.com/ajme/1/7/42 Science and Education Publishing DOI:10.12691/ajme-1-7-42 Dynamic Analysis

More information

Lecture VI: Constraints and Controllers

Lecture VI: Constraints and Controllers Lecture VI: Constraints and Controllers Motion Constraints In practice, no rigid body is free to move around on its own. Movement is constrained: wheels on a chair human body parts trigger of a gun opening

More information

Human Motion. Session Speaker Dr. M. D. Deshpande. AML2506 Biomechanics and Flow Simulation PEMP-AML2506

Human Motion. Session Speaker Dr. M. D. Deshpande. AML2506 Biomechanics and Flow Simulation PEMP-AML2506 AML2506 Biomechanics and Flow Simulation Day 02A Kinematic Concepts for Analyzing Human Motion Session Speaker Dr. M. D. Deshpande 1 Session Objectives At the end of this session the delegate would have

More information

Lecture «Robot Dynamics»: Kinematics 3

Lecture «Robot Dynamics»: Kinematics 3 Lecture «Robot Dynamics»: Kinematics 3 151-0851-00 V lecture: CAB G11 Tuesday 10:15 12:00, every week exercise: HG E1.2 Wednesday 8:15 10:00, according to schedule (about every 2nd week) office hour: LEE

More information

STUDY OF HUMAN WALKING BY SIMMECHANICS

STUDY OF HUMAN WALKING BY SIMMECHANICS STUDY OF HUMAN WALKING BY SIMMECHANICS Patrik Kutilek, Ondrej Hajny Czech Technical University in Prague, Faculty of Biomedical Engineering, Czech Republic Abstract In this paper we describe our designed

More information

SM2231 :: 3D Animation I :: Basic. Rigging

SM2231 :: 3D Animation I :: Basic. Rigging SM2231 :: 3D Animation I :: Basic Rigging Object arrangements Hierarchical Hierarchical Separate parts arranged in a hierarchy can be animated without a skeleton Flat Flat Flat hierarchy is usually preferred,

More information

SOFTWARE TOOL FOR SIGNIFICANT ANALYSIS OF COMPLEMENTARY DOMAINS ON HUMAN GAIT

SOFTWARE TOOL FOR SIGNIFICANT ANALYSIS OF COMPLEMENTARY DOMAINS ON HUMAN GAIT 15 th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering and 3 rd Conference on Imaging and Visualization CMBBE 2018 P. R. Fernandes and J. M. Tavares (Editors) SOFTWARE

More information

Chapter 4 Dynamics. Part Constrained Kinematics and Dynamics. Mobile Robotics - Prof Alonzo Kelly, CMU RI

Chapter 4 Dynamics. Part Constrained Kinematics and Dynamics. Mobile Robotics - Prof Alonzo Kelly, CMU RI Chapter 4 Dynamics Part 2 4.3 Constrained Kinematics and Dynamics 1 Outline 4.3 Constrained Kinematics and Dynamics 4.3.1 Constraints of Disallowed Direction 4.3.2 Constraints of Rolling without Slipping

More information

MTRX4700 Experimental Robotics

MTRX4700 Experimental Robotics MTRX 4700 : Experimental Robotics Lecture 2 Stefan B. Williams Slide 1 Course Outline Week Date Content Labs Due Dates 1 5 Mar Introduction, history & philosophy of robotics 2 12 Mar Robot kinematics &

More information

Getting Started With AnyBody

Getting Started With AnyBody Getting Started With AnyBody Disclaimer All information presented in this tutorial has been compiled from AnyBody TM Tutorials Version 5.0.0, December 2010 provided by AnyBody TM Technology. Tugba Ozedirne

More information

Towards a multi-segment ambulatory microrobot

Towards a multi-segment ambulatory microrobot 2 IEEE International Conference on Robotics and Automation Anchorage Convention District May 3-8, 2, Anchorage, Alaska, USA Towards a multi-segment ambulatory microrobot Katie L. Hoffman and Robert J.

More information

Plug in Gait WebEx Training Session 3 Interpreting PiG results: PiG biomechanical modelling

Plug in Gait WebEx Training Session 3 Interpreting PiG results: PiG biomechanical modelling Plug in Gait WebEx Training Session 3 Interpreting PiG results: PiG biomechanical modelling Gabriele Paolini Support Engineer INTRODUCTION What is Plug in Gait?? INTRODUCTION What is Plug in Gait?? Plug

More information

Announcements: Quiz. Animation, Motion Capture, & Inverse Kinematics. Last Time? Today: How do we Animate? Keyframing. Procedural Animation

Announcements: Quiz. Animation, Motion Capture, & Inverse Kinematics. Last Time? Today: How do we Animate? Keyframing. Procedural Animation Announcements: Quiz Animation, Motion Capture, & Inverse Kinematics On Friday (3/1), in class One 8.5x11 sheet of notes allowed Sample quiz (from a previous year) on website Focus on reading comprehension

More information

EXPLOITING MOTION SYMMETRY IN CONTROL OF EXOSKELETON LIMBS

EXPLOITING MOTION SYMMETRY IN CONTROL OF EXOSKELETON LIMBS EXPLOITING MOTION SYMMETRY IN CONTROL OF EXOSKELETON LIMBS Christian Reinicke Institut für Technische Informatik und Mikroelektronik, Technische Universität Berlin Berlin, Germany email: reinicke@cs.tu-berlin.de

More information

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane?

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane? Math 4 Practice Problems for Midterm. A unit vector that is perpendicular to both V =, 3, and W = 4,, is (a) V W (b) V W (c) 5 6 V W (d) 3 6 V W (e) 7 6 V W. In three dimensions, the graph of the equation

More information

Kinematics. CS 448D: Character Animation Prof. Vladlen Koltun Stanford University

Kinematics. CS 448D: Character Animation Prof. Vladlen Koltun Stanford University Kinematics CS 448D: Character Animation Prof. Vladlen Koltun Stanford University Kinematics Kinematics: The science of pure motion, considered without reference to the matter of objects moved, or to the

More information

Compound Movements in Multi-joint Systems

Compound Movements in Multi-joint Systems Compound movements in multi-joint systems almost never have a fixed center of rotation, with no translation In fact, the principal advantage of compound movements is often that they convert rotations into

More information

Computational Models for Neuromuscular Function

Computational Models for Neuromuscular Function 110 IEEE REVIEWS IN BIOMEDICAL ENGINEERING, VOL. 2, 2009 Computational Models for Neuromuscular Function Francisco J. Valero-Cuevas, Member, IEEE, Heiko Hoffmann, Manish U. Kurse, Jason J. Kutch, and Evangelos

More information

A three finger tendon driven robotic hand design and its kinematics model

A three finger tendon driven robotic hand design and its kinematics model A three finger tendon driven robotic hand design and its kinematics model IA Sainul 1, Sankha Deb 2, and AK Deb 3 Advanced Technology Development Centre, IIT Kharagpur, Kharagpur -721302 Mechanical Engineering

More information

Kinematic and dynamic performance of prosthetic knee joint using six-bar mechanism

Kinematic and dynamic performance of prosthetic knee joint using six-bar mechanism Journal of Rehabilitation Research and Development Vol. 40, No., January/February 003 Pages 3948 Kinematic and dynamic performance of prosthetic knee joint using six-bar mechanism Dewen Jin, Professor;

More information

Animator Friendly Rigging Part 3b

Animator Friendly Rigging Part 3b Animator Friendly Rigging Part 3b Creating animation rigs which solve problems, are fun to use, and don t cause nervous breakdowns. - 1- CONTENTS Biped Arms... 6 Why Are Arms Important?... 7 Requirements

More information

Rigid Dynamic Analysis in Workbench

Rigid Dynamic Analysis in Workbench Rigid Dynamic Analysis in Workbench 1-1 Introduction Rigid Dynamic Analysis: Calculates dynamic response of an assembly of rigid bodies. Can be used to study the kinematics of an assembly. Bodies are linked

More information

Development of a Model of the Muscle Skeletal System using Adams. Its Application to an Ergonomic Study in Automotive Industry

Development of a Model of the Muscle Skeletal System using Adams. Its Application to an Ergonomic Study in Automotive Industry Copyright 2004 SAE International 2004-01-2169 Development of a Model of the Muscle Skeletal System using Adams. Its Application to an Ergonomic Study in Automotive Industry G. Esteves IST- UTL C. Ferreira,

More information

FORCE CONTROL OF LINK SYSTEMS USING THE PARALLEL SOLUTION SCHEME

FORCE CONTROL OF LINK SYSTEMS USING THE PARALLEL SOLUTION SCHEME FORCE CONTROL OF LIN SYSTEMS USING THE PARALLEL SOLUTION SCHEME Daigoro Isobe Graduate School of Systems and Information Engineering, University of Tsukuba 1-1-1 Tennodai Tsukuba-shi, Ibaraki 35-8573,

More information

2. Motion Analysis - Sim-Mechanics

2. Motion Analysis - Sim-Mechanics 2 Motion Analysis - Sim-Mechanics Figure 1 - The RR manipulator frames The following table tabulates the summary of different types of analysis that is performed for the RR manipulator introduced in the

More information

Week 7: 2-D Haptic Rendering

Week 7: 2-D Haptic Rendering ME 20N: Haptics: Engineering Touch Autumn 2017 Week 7: 2-D Haptic Rendering Allison M. Okamura Stanford University 2-D Rendering 1 2 The Haptic Joint sensors Haptic device Θ Forward kinematic equations

More information

16-811: Math Fundamentals for Robotics, Fall 2014 Finding minimum energy trajectories of a two linked pendulum

16-811: Math Fundamentals for Robotics, Fall 2014 Finding minimum energy trajectories of a two linked pendulum 16-811: Math Fundamentals for Robotics, Fall 014 Finding minimum energy trajectories of a two linked pendulum Lerrel Pinto < lerrelp > December 1th 014 Problem Statement: Find a zero energy end effector

More information

Simulation. x i. x i+1. degrees of freedom equations of motion. Newtonian laws gravity. ground contact forces

Simulation. x i. x i+1. degrees of freedom equations of motion. Newtonian laws gravity. ground contact forces Dynamic Controllers Simulation x i Newtonian laws gravity ground contact forces x i+1. x degrees of freedom equations of motion Simulation + Control x i Newtonian laws gravity ground contact forces internal

More information