Human Motion. Session Speaker Dr. M. D. Deshpande. AML2506 Biomechanics and Flow Simulation PEMP-AML2506

Size: px
Start display at page:

Download "Human Motion. Session Speaker Dr. M. D. Deshpande. AML2506 Biomechanics and Flow Simulation PEMP-AML2506"

Transcription

1 AML2506 Biomechanics and Flow Simulation Day 02A Kinematic Concepts for Analyzing Human Motion Session Speaker Dr. M. D. Deshpande 1

2 Session Objectives At the end of this session the delegate would have understood Mechanical-Kinematics Concepts Reference positions, planes, and axes associated with the human body Human movement and its analysis 2

3 Session Topics 1. Review of Mechanical-Kinematics Concept 2. Description of the reference positions, planes, and axes associated with the human body 3. Definition and use of directional terms and joint movement terminology 4. A plan to conduct an effective qualitative human movement analysis 5. Identification and description of the uses of available instrumentation for measuring kinematic quantities 3

4 Kinematics of a Particle A particle is a body that is assumed to have mass but negligible physical dimensions. Whenever the dimensions of a body are irrelevant to the problem then the use of particle mechanics may be expected to provide accurate results. Typical applications would be the analysis of the motion of a spacecraft orbiting the earth Rigid-body mechanics which is an approach that needs to be adopted when the dimensions of the body cannot be neglected 4

5 Linear Motion of a Particle under Variable Acceleration 5

6 6

7 Two-Dimensional Motion of a Particle 7

8 Tangential and Normal Coordinates Velocity- Curvilinear Motion It is often convenient to describe curvilinear motion using path variables, i.e., measurements made along the tangent t and normal n to the path. The frame can be pictured as a right-angled bracket moving along with the particle. The t arm always points in the direction of travel, while the n arm points towards the centre of curvature. Unit vectors e t and e n are shown in the Figure. The velocity vector is tangential to path 8

9 Acceleration- Curvilinear Motion 9

10 10

11 Circular Motion 11

12 Polar Coordinates The third option is to locate the particle by the radial distance r and angular position with respect to a chosen fixed direction. We choose unit vectors e r and e as shown Velocity Acceleration 12

13 Kinematics of a Rigid Body Rigid bodies are different from particles: rigid bodies are extended in space, and the connection between different parts of a rigid body are permanent and unchanged throughout their motion. When we try to imagine i the position i of a rigid id body, we may first think of an arbitrary point, a marker (let s call it A), on that body. The position and motion of this chosen point can be described in exactly the same way we used for particles, e.g. using rectangular or polar coordinates. 13

14 Kinematics of a Rigid Body However, the description is insufficient to describe the motion of the rigid body, since the body as a whole may rotate around point A. In order to fix the position of the body we must specify a direction from point A to another arbitrarily chosen point on the body, say B. Once the position of A is fixed, and the direction from A to B is given as well, position of the rigid body is fully specified. e.g. a rigid rod connecting two points A and B is a rigid body. 14

15 Kinematics of a Rigid Body A rigid body is in plane motion if all point of the body move parallel to one plane, which is called the plane of motion. We can classify the kinds of plane motion into: (a) translation (rectilinear) (b) translation (curvilinear) (c) rotation (around fixed axis) (d) general plane motion In translation every line in the body remains parallel to its original position, and no rotation is allowed. The trajectory of motion is the line traced by a point in the body. Translation is rectilinear if this line is straight, and curvilinear otherwise. 15

16 Kinematics of a Rigid Body Rotation about a fixed axis is the angular motion about this axis, when all points on the body follow concentric circular paths. It is important to picture and understand that all lines on the solid body, even those that do not pass through the centre, rotate through the same angle in the same time General plane motion of a rigid body is a combination of translation and rotation. The concept of relative motion comes into picture in order to describe this case. 16

17 Rigid Body Rotation All lines on a rigid body have the same angular displacement, the same angular velocity and the same angular acceleration. 17

18 Relative Motion Let A and B be two points on the rigid body. We start with the following vector relation: R a = R b + R a/b Here Ra and Rb represent absolute position vectors of A and B with respect to some fixed axes, and Ra/b stands for the relative position vector of A with respect to B By differentiating the above equation with respect to time, we obtain the basis of the relative motion analysis, known as the relative velocity equation: V a = V b + V a/b To determine the velocity of A with respect to the fixed axes (the absolute velocity V a ) we represent it as the sum of the absolute velocity of point B, V b, and the relative velocity of point A with respect to point B, V a/b 18

19 When the solid body is rotating around a fixed axis with angular velocity ω, all vectors on that solid body also rotate with the same angular velocity. 19

20 Instantaneous Centre of Rotation The point of reference (about which the references have been made in the previous discussion) is not always fixed. The reference point will be moving along with the body and the coordinate system. The reference point can be taken as centre at a given instant, that is why the centre is known as Instantaneous Centre. 20

21 Kinematic Constraints Two or more rigid bodies in space are collectively called a rigid body system. The motion of independent rigid bodies can be hindered with kinematic constraints. Kinematic constraints are constraints between rigid bodies that result in the decrease of the degrees of freedom of rigid bd body system. The term kinematic pairs actually refers to kinematic constraints between rigid bodies. The kinematic pairs are divided into lower pairs and higher pairs, depending on how the two bodies are in contact. Surface-contact contact pairs are called lower pairs. There are two subcategories of lower pairs -- revolute pairs and prismatic pairs. Point-, line-, or curve-contact pairs are called higher pairs. 21

22 Kinematic Constraints There are two kinds of lower pairs in planar mechanisms: revolute pairs and prismatic pairs. A rigid body in a plane has only three independent motions -- two translational and one rotary -- so introducing either a revolute pair or a prismatic pair between two rigid bodies removes two degrees of freedom. A planar revolute A planar prismatic pair (R-pair) pair (P-pair) 22

23 Kinematic Constraints There are six kinds of lower pairs under the category of spatial mechanisms. The types are: spherical pair, plane pair, cylindrical i lpair, revolute pair, prismatic pair, and screw pair. A spherical pair keeps two spherical centres together. Two rigid bodies connected by this constraint will be able to rotate relatively around x, y and z axes, but there will be no relative translation along any of these axes. Therefore, a spherical pair removes three degrees of freedom in spatial mechanism. DOF = 3. 23

24 Kinematic Constraints A plane pair keeps the surfaces of two rigid bodies together. To visualize this, imagine a book lying on a table where is can move in any direction except off the table. Two rigid bodies connected by this kind of pair will have two independent translational motions in the plane, and a rotary motion around the axis that is perpendicular to the plane. Therefore, a plane pair removes three degrees of freedom in spatial mechanism. In our example, the book would not be able to rise off the table or to rotate into the table. DOF = 3. 24

25 Kinematic Constraints A cylindrical pair keeps two axes of two rigid bodies aligned. Two rigid bodies that are part of this kind of system will have an independent d translational motion along the axis and a relative rotary motion around the axis. Therefore, a cylindrical pair removes four degrees of freedom from spatial mechanism. DOF = 2. Compare with a spatial A3D 3-D cylindrical i lpair (C-pair) i) revolute pair (R-pair). Next figure 25

26 Kinematic Constraints ARevolute pair keeps the axes of two rigid bodies together. Two rigid bodies constrained by a revolute pair have an independent rotary motion around their common axis. Therefore, a revolute pair removes five degrees of ffreedom in spatial mechanism. DOF = 1 A planar revolute A spatial revolute pair (R-pair) pair (R-pair) 26

27 Kinematic Constraints A prismatic pair keeps two axes of two rigid bodies aligned and allows no relative rotation. Two rigid bodies constrained by this kind of constraint will be able to have an independent translational motion along the axis. Therefore, a prismatic pair removes five degrees of freedom in spatial mechanism. DOF = 1. 27

28 Kinematic Constraints A screw pair keeps two axes of two rigid bodies aligned and allows a relative screw motion. Two rigid bodies constrained by a screw pair of motion which is a composition of a translational motion along the axis and a corresponding rotary motion around the axis. Therefore, a screw pair removes five degrees of freedom in spatial mechanism. DOF = 1. 28

29 Gruebler's Equation F = total degrees of freedom in the mechanism n = number of links (including the frame) l = number of lower pairs (one degree of freedom) h = number of fhigher h pairs (two degrees of freedom) This equation is known as Gruebler's Equation 29

30 Gruebler's Equation Type of kinematic pairs (constraints) n Number of links l Number of lower pairs (Surface s) h Number of higher pairs (Points & Lines) F Degrees of freedom (= Translation + Rotation Comments on constraints 1 2-D Free motion (= 2 + 1) n =2 (fixed, Bar) 2 2-D Revolute pair (= 0+ 1) 3 2-D prismatic pair (= 1 + 0) 4 3-D Free motion (= 3 + 3) n =3 (fixed, Bar, Bar in transverse direction) 5 3-D spherical pair ( (= 0+3) Spherical surface, Sphere centre 6 3-D plane pair (= 2 + 1) Planar surface, Line stops rotation 7 3-D cylindrical pair (= 1 + 1) Cylindrical surface allows Translation & Rotation 8 3-D revolute pair (= 0 + 1) Translation is blocked n = D prismatic pair (= 1 + 0) 10 3-D screw pair 3 1( (= 0 + 1) 2 1 or (= 1 + 0) Two planar surfaces l = 2 block rotation Translation & Rotation are coupled 30

31 Kinematic Analysis Ideas discussed in the context of kinematics of particles and rigid bodies will now be used in the analysis of human linkages The objective of kinematic analysis of a mechanism is to determine the linear and angular velocities of the various components of the mechanism when some part of it is subjected to a known linear or angular velocity. Graphical, Analytical and Computer Based Methods are followed for Kinematic Analysis. Here we use LifeMod and ADAMS software packages to do the analysis 31

32 Example-Kinematic Analysis Analytical Approach Find the velocity of C and the angular velocity of link BC in the crankslider mechanism at the instant shown below. The crank AB is rotating anti-clockwise with angular velocity ω = d /dt = 500 rad/s (approx rpm). 32

33 Using the analytical approach, we first write down equations defining the geometry of the mechanism: Next, we need to differentiate the expressions for z and cos. The derivative of the expression for z gives: 33

34 We are now able to calculate the velocity of point C by inserting the appropriate values of r,, d /dt and l into the above expression (noting that d /dt is simply the angular velocity of link AB and therefore equal to 500 rad/s). In this particular case this leads to the solution The angular velocity of link BC is given by d /dt. To evaluate this expression we differentiate the expression for sin (above) to give: 34

35 If specific values of r,,, d /dt and l are substituted into the above expression then this gives a value for the angular velocity of link BC of 189 rad/s. In addition to computing the values of linear and angular velocity for the particular position of the mechanism shown in the example, the results of the analysis can alsobe used to determine the kinematics of the mechanism for all values of. 35

36 36 36

37 37

38 Example-Kinematic Analysis Graphical lapproach 38

39 Example-Kinematic Analysis Solution Using ADAMS 39

40 Anatomical Reference Position Erect standing position with all body parts facing forward considered the starting point for all body segment movements 40

41 Directional Terms superior: closer to the head inferior: farther away from the head anterior: toward the front of the body posterior: toward the back of the body medial: toward the midline of the body lateral: away form the midline of the body proximal: closer to the trunk distal: away from the trunk superficial: toward the surface of the body deep: inside the body away from the surface 41

42 Anatomical Reference Planes Longitudinal axis Anteroposterior axis Medio-lateral axis Frontal plane 42 M.S. Ramaiah School of Advanced Studies - Bangalore 02A

43 Anatomical Reference Planes Cardinal Planes: Three imaginary perpendicular reference planes that divide the body in hlaf by mass Sagittal plane Plane in which forward and backward movements of the body and body segments occur. It is also known as anteroposterior (AP) plane, divides the body vertically into left and right halves of equal mass Frontal plane plane in which lateral movements of the body and body segments occur. It is also known as coronal plane, divides the body vertically into front and back halves of equal mass Transverse plane Plane in which horizontal body and body segments movement occur when the body is an erect standing position. It is also known as horizontal plane, divides the body into top and bottom halves of equal mass For an individual standing in anatomical reference position, the three cardinal planes all intersect at a single point known as the body s centre of mass or centre of gravity Although most human movements are not strictly planar, the cardinal planes provide a useful way to describe movements that are primarily planar 43

44 Sagittal plane movements-example 44

45 Anatomical Reference Axes Mediolateral axis - around which rotations in the sagittal plane occur. It is also known as the frontal-horizontal axis, is perpendicular to the sagittal plane Anteroposterior axis - around which rotations in the sagittal plane occur. It is also known as sagittal horizontal axis and perpendicular to frontal plane. Longitudinal axis - around which rotational movements occur. It is also known as vertical axis. 45

46 Joint Movement All body segments are considered to be at zero degrees at anatomical reference position. Rotation of a body segment away from anatomical position is named according to the direction of motion and measured as the angle between the body segment ss position and anatomical position 46

47 Sagittal Plane Movements Flexion: Extension: Hyperextension: Dorsiflexion: Plantar flexion: Flexion Extension Hyperextension Flexion Extension Hyperextension Dorsiflexion Plantar flexion 47

48 Frontal Plane Movements Abduction & Adduction Lateral flexion Elevation & Depression Inversion &Eversion Radial & Ulnar deviation Radial deviation Ulnar deviation Abduction Adduction Lateral flexion Elevation Depression Eversion Inversion 48

49 Movements in Horizontal Plane Left & Right rotation Medial & Lateral rotation Supination & Pronation Horizontal abduction & adduction Horizontal adduction Medial Lateral rotation ti rotation Pronation Supination Horizontal abduction 49

50 Spatial Reference Systems Useful for standardizing descriptions of human motion Most commonly used is the Cartesian coordinate system Human body joint centers are labeled with numerical x and y coordinates Y (x,y) = (3,7) (0,0) 50 X

51 Qualitative Human Movement Analysis Planning for human movement analysis Performer attire Lighting conditions Background Use of video 51

52 Qualitative Analysis: Conducting Movement Analysis Identify Question/Problem Refine Question Communicate with Performer Make Decisions End Analysis Collect Observations Interpret Observations Viewing Angle Viewing Distance Performer Attire Environmental Modifications Use of Video Visual Auditory From Performer From Other Analysts 52

53 Tools for Measuring Kinematic Quantities Videocamera Electrogoniometer: is a device that can be interfaced to a recorder to provide a graphical record of the angle present at a joint Lights, photocell and Timer are used to measure movement e velocity 53

54 Demos Dynamic Human CD - Available in Windows (ISBN ) Further Demos Ariel Dynamics Worldwide Motion Analysis Corporation SIMI Reality Motion Systems i 54

55 Laboratory Refer laboratory exercises 55

56 Review In this session the delegates are taught: Kinematics of a particle Curvilinear motion Kinematics of a rigid body Kinematic constraints Reference planes and axes associated with the human body Qualitative human movement analysis Identification and description of the uses of instrumentation for measuring kinematic quantities 56

57 Thank you 57

Modelling of mechanical system CREATING OF KINEMATIC CHAINS

Modelling of mechanical system CREATING OF KINEMATIC CHAINS Modelling of mechanical system CREATING OF KINEMATIC CHAINS Mechanism Definitions 1. a system or structure of moving parts that performs some function 2. is each system reciprocally joined moveable bodies

More information

Human Posture Analysis

Human Posture Analysis Human Posture Analysis Page 1 Preface Using This Guide Where to Find More Information Conventions What's New? Getting Started Creating a Manikin User Tasks Using the Posture Editor Segments Degree of Freedom

More information

Human Posture Analysis

Human Posture Analysis Human Posture Analysis Overview Conventions What's New? Getting Started Creating a Manikin User Tasks Using the Posture Editor Selecting or Editing the DOF (Degree of Freedom) Displaying and Editing Angular

More information

Kinematics Fundamentals CREATING OF KINEMATIC CHAINS

Kinematics Fundamentals CREATING OF KINEMATIC CHAINS Kinematics Fundamentals CREATING OF KINEMATIC CHAINS Mechanism Definitions 1. a system or structure of moving parts that performs some function 2. is each system reciprocally joined moveable bodies the

More information

ME 321 Kinematics and Dynamics of Machines

ME 321 Kinematics and Dynamics of Machines .0 INTRODUCTION ME Kinematics and Dynamics of Machines All Text References in these notes are for: Mechanism Design: Analysis and Synthesis, Volume, Fourth Edition, Erdman, Sandor and Kota, Prentice-Hall,

More information

WEEKS 1-2 MECHANISMS

WEEKS 1-2 MECHANISMS References WEEKS 1-2 MECHANISMS (METU, Department of Mechanical Engineering) Text Book: Mechanisms Web Page: http://www.me.metu.edu.tr/people/eres/me301/in dex.ht Analitik Çözümlü Örneklerle Mekanizma

More information

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module - 3 Lecture - 1

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module - 3 Lecture - 1 Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur Module - 3 Lecture - 1 In an earlier lecture, we have already mentioned that there

More information

Theory of Machines Course # 1

Theory of Machines Course # 1 Theory of Machines Course # 1 Ayman Nada Assistant Professor Jazan University, KSA. arobust@tedata.net.eg March 29, 2010 ii Sucess is not coming in a day 1 2 Chapter 1 INTRODUCTION 1.1 Introduction Mechanisms

More information

10/25/2018. Robotics and automation. Dr. Ibrahim Al-Naimi. Chapter two. Introduction To Robot Manipulators

10/25/2018. Robotics and automation. Dr. Ibrahim Al-Naimi. Chapter two. Introduction To Robot Manipulators Robotics and automation Dr. Ibrahim Al-Naimi Chapter two Introduction To Robot Manipulators 1 Robotic Industrial Manipulators A robot manipulator is an electronically controlled mechanism, consisting of

More information

COPYRIGHTED MATERIAL INTRODUCTION CHAPTER 1

COPYRIGHTED MATERIAL INTRODUCTION CHAPTER 1 CHAPTER 1 INTRODUCTION Modern mechanical and aerospace systems are often very complex and consist of many components interconnected by joints and force elements such as springs, dampers, and actuators.

More information

SAMPLE STUDY MATERIAL. Mechanical Engineering. Postal Correspondence Course. Theory of Machines. GATE, IES & PSUs

SAMPLE STUDY MATERIAL. Mechanical Engineering. Postal Correspondence Course. Theory of Machines. GATE, IES & PSUs TOM - ME GATE, IES, PSU 1 SAMPLE STUDY MATERIAL Mechanical Engineering ME Postal Correspondence Course Theory of Machines GATE, IES & PSUs TOM - ME GATE, IES, PSU 2 C O N T E N T TOPIC 1. MACHANISMS AND

More information

INTRODUCTION CHAPTER 1

INTRODUCTION CHAPTER 1 CHAPTER 1 INTRODUCTION Modern mechanical and aerospace systems are often very complex and consist of many components interconnected by joints and force elements such as springs, dampers, and actuators.

More information

Robotics. SAAST Robotics Robot Arms

Robotics. SAAST Robotics Robot Arms SAAST Robotics 008 Robot Arms Vijay Kumar Professor of Mechanical Engineering and Applied Mechanics and Professor of Computer and Information Science University of Pennsylvania Topics Types of robot arms

More information

Lab # 3 - Angular Kinematics

Lab # 3 - Angular Kinematics Purpose: Lab # 3 - Angular Kinematics The objective of this lab is to understand the relationship between segment angles and joint angles. Upon completion of this lab you will: Understand and know how

More information

Fall 2016 Semester METR 3113 Atmospheric Dynamics I: Introduction to Atmospheric Kinematics and Dynamics

Fall 2016 Semester METR 3113 Atmospheric Dynamics I: Introduction to Atmospheric Kinematics and Dynamics Fall 2016 Semester METR 3113 Atmospheric Dynamics I: Introduction to Atmospheric Kinematics and Dynamics Lecture 5 August 31 2016 Topics: Polar coordinate system Conversion of polar coordinates to 2-D

More information

Chapter 4. Mechanism Design and Analysis

Chapter 4. Mechanism Design and Analysis Chapter 4. Mechanism Design and Analysis All mechanical devices containing moving parts are composed of some type of mechanism. A mechanism is a group of links interacting with each other through joints

More information

EEE 187: Robotics Summary 2

EEE 187: Robotics Summary 2 1 EEE 187: Robotics Summary 2 09/05/2017 Robotic system components A robotic system has three major components: Actuators: the muscles of the robot Sensors: provide information about the environment and

More information

Planar Robot Kinematics

Planar Robot Kinematics V. Kumar lanar Robot Kinematics The mathematical modeling of spatial linkages is quite involved. t is useful to start with planar robots because the kinematics of planar mechanisms is generally much simpler

More information

1. Introduction 1 2. Mathematical Representation of Robots

1. Introduction 1 2. Mathematical Representation of Robots 1. Introduction 1 1.1 Introduction 1 1.2 Brief History 1 1.3 Types of Robots 7 1.4 Technology of Robots 9 1.5 Basic Principles in Robotics 12 1.6 Notation 15 1.7 Symbolic Computation and Numerical Analysis

More information

Introduction to Solid Modeling Using SolidWorks 2008 COSMOSMotion Tutorial Page 1

Introduction to Solid Modeling Using SolidWorks 2008 COSMOSMotion Tutorial Page 1 Introduction to Solid Modeling Using SolidWorks 2008 COSMOSMotion Tutorial Page 1 In this tutorial, we will learn the basics of performing motion analysis using COSMOSMotion. Although the tutorial can

More information

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module 10 Lecture 1

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module 10 Lecture 1 Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur Module 10 Lecture 1 So far, in this course we have discussed planar linkages, which

More information

Mechanisms. Updated: 18Apr16 v7

Mechanisms. Updated: 18Apr16 v7 Mechanisms Updated: 8Apr6 v7 Mechanism Converts input motion or force into a desired output with four combinations of input and output motion Rotational to Oscillating Rotational to Rotational Rotational

More information

MC-E - Motion Control

MC-E - Motion Control IDC Technologies - Books - 1031 Wellington Street West Perth WA 6005 Phone: +61 8 9321 1702 - Email: books@idconline.com MC-E - Motion Control Price: $139.94 Ex Tax: $127.22 Short Description This manual

More information

Analytical and Applied Kinematics

Analytical and Applied Kinematics Analytical and Applied Kinematics Vito Moreno moreno@engr.uconn.edu 860-614-2365 (cell) http://www.engr.uconn.edu/~moreno Office EB1, hours Thursdays 10:00 to 5:00 1 This course introduces a unified and

More information

Kinematics: Intro. Kinematics is study of motion

Kinematics: Intro. Kinematics is study of motion Kinematics is study of motion Kinematics: Intro Concerned with mechanisms and how they transfer and transform motion Mechanisms can be machines, skeletons, etc. Important for CG since need to animate complex

More information

Structural Configurations of Manipulators

Structural Configurations of Manipulators Structural Configurations of Manipulators 1 In this homework, I have given information about the basic structural configurations of the manipulators with the concerned illustrations. 1) The Manipulator

More information

Position and Displacement Analysis

Position and Displacement Analysis Position and Displacement Analysis Introduction: In this chapter we introduce the tools to identifying the position of the different points and links in a given mechanism. Recall that for linkages with

More information

Plug in Gait WebEx Training Session 3 Interpreting PiG results: PiG biomechanical modelling

Plug in Gait WebEx Training Session 3 Interpreting PiG results: PiG biomechanical modelling Plug in Gait WebEx Training Session 3 Interpreting PiG results: PiG biomechanical modelling Gabriele Paolini Support Engineer INTRODUCTION What is Plug in Gait?? INTRODUCTION What is Plug in Gait?? Plug

More information

Lesson 1: Introduction to Pro/MECHANICA Motion

Lesson 1: Introduction to Pro/MECHANICA Motion Lesson 1: Introduction to Pro/MECHANICA Motion 1.1 Overview of the Lesson The purpose of this lesson is to provide you with a brief overview of Pro/MECHANICA Motion, also called Motion in this book. Motion

More information

Kinematics, Kinematics Chains CS 685

Kinematics, Kinematics Chains CS 685 Kinematics, Kinematics Chains CS 685 Previously Representation of rigid body motion Two different interpretations - as transformations between different coord. frames - as operators acting on a rigid body

More information

Lecture 3. Planar Kinematics

Lecture 3. Planar Kinematics Matthew T. Mason Mechanics of Manipulation Outline Where are we? s 1. Foundations and general concepts. 2.. 3. Spherical and spatial kinematics. Readings etc. The text: By now you should have read Chapter

More information

Articulated Robots! Robert Stengel! Robotics and Intelligent Systems! MAE 345, Princeton University, 2017

Articulated Robots! Robert Stengel! Robotics and Intelligent Systems! MAE 345, Princeton University, 2017 Articulated Robots! Robert Stengel! Robotics and Intelligent Systems! MAE 345, Princeton University, 2017 Robot configurations Joints and links Joint-link-joint transformations! Denavit-Hartenberg representation

More information

CO-OPERATIVE ACTION OF EXTRA-OCULAR MUSCLES*

CO-OPERATIVE ACTION OF EXTRA-OCULAR MUSCLES* Brit. J. Ophthal. (1962) 46, 397. CO-OPERATIVE ACTION OF EXTRA-OCULAR MUSCLES* BY PAUL BOEDER Iowa City, Iowa, U.S.A. IN every excursion of the eyes, two times six muscles act with extraordinary speed,

More information

Using Algebraic Geometry to Study the Motions of a Robotic Arm

Using Algebraic Geometry to Study the Motions of a Robotic Arm Using Algebraic Geometry to Study the Motions of a Robotic Arm Addison T. Grant January 28, 206 Abstract In this study we summarize selected sections of David Cox, John Little, and Donal O Shea s Ideals,

More information

A simple example. Assume we want to find the change in the rotation angles to get the end effector to G. Effect of changing s

A simple example. Assume we want to find the change in the rotation angles to get the end effector to G. Effect of changing s CENG 732 Computer Animation This week Inverse Kinematics (continued) Rigid Body Simulation Bodies in free fall Bodies in contact Spring 2006-2007 Week 5 Inverse Kinematics Physically Based Rigid Body Simulation

More information

Robot mechanics and kinematics

Robot mechanics and kinematics University of Pisa Master of Science in Computer Science Course of Robotics (ROB) A.Y. 2016/17 cecilia.laschi@santannapisa.it http://didawiki.cli.di.unipi.it/doku.php/magistraleinformatica/rob/start Robot

More information

Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves

Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves Block #1: Vector-Valued Functions Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves 1 The Calculus of Moving Objects Problem.

More information

Robotics kinematics and Dynamics

Robotics kinematics and Dynamics Robotics kinematics and Dynamics C. Sivakumar Assistant Professor Department of Mechanical Engineering BSA Crescent Institute of Science and Technology 1 Robot kinematics KINEMATICS the analytical study

More information

Jacobians. 6.1 Linearized Kinematics. Y: = k2( e6)

Jacobians. 6.1 Linearized Kinematics. Y: = k2( e6) Jacobians 6.1 Linearized Kinematics In previous chapters we have seen how kinematics relates the joint angles to the position and orientation of the robot's endeffector. This means that, for a serial robot,

More information

Cam makes a higher kinematic pair with follower. Cam mechanisms are widely used because with them, different types of motion can be possible.

Cam makes a higher kinematic pair with follower. Cam mechanisms are widely used because with them, different types of motion can be possible. CAM MECHANISMS Cam makes a higher kinematic pair with follower. Cam mechanisms are widely used because with them, different types of motion can be possible. Cams can provide unusual and irregular motions

More information

MAE 342 Dynamics of Machines. Types of Mechanisms. type and mobility

MAE 342 Dynamics of Machines. Types of Mechanisms. type and mobility MAE 342 Dynamics of Machines Types of Mechanisms Classification of Mechanisms by type and mobility MAE 342 Dynamics of Machines 2 Planar, Spherical and Spatial Mechanisms Planar Mechanisms: all points

More information

INSTITUTE OF AERONAUTICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING Name Code Class Branch Page 1 INSTITUTE OF AERONAUTICAL ENGINEERING : ROBOTICS (Autonomous) Dundigal, Hyderabad - 500 0 MECHANICAL ENGINEERING TUTORIAL QUESTION BANK : A7055 : IV B. Tech I Semester : MECHANICAL

More information

MATH 31A HOMEWORK 9 (DUE 12/6) PARTS (A) AND (B) SECTION 5.4. f(x) = x + 1 x 2 + 9, F (7) = 0

MATH 31A HOMEWORK 9 (DUE 12/6) PARTS (A) AND (B) SECTION 5.4. f(x) = x + 1 x 2 + 9, F (7) = 0 FROM ROGAWSKI S CALCULUS (2ND ED.) SECTION 5.4 18.) Express the antiderivative F (x) of f(x) satisfying the given initial condition as an integral. f(x) = x + 1 x 2 + 9, F (7) = 28.) Find G (1), where

More information

What Is SimMechanics?

What Is SimMechanics? SimMechanics 1 simulink What Is Simulink? Simulink is a tool for simulating dynamic systems with a graphical interface specially developed for this purpose. Physical Modeling runs within the Simulink environment

More information

Vectors and the Geometry of Space

Vectors and the Geometry of Space Vectors and the Geometry of Space In Figure 11.43, consider the line L through the point P(x 1, y 1, z 1 ) and parallel to the vector. The vector v is a direction vector for the line L, and a, b, and c

More information

Chapter 4: Kinematics of Rigid Bodies

Chapter 4: Kinematics of Rigid Bodies Chapter 4: Kinematics of Rigid Bodies Advanced Dynamics Lecturer: Hossein Nejat Fall 2016 A rigid body is defined to be a collection of particles whose distance of separation is invariant. In this circumstance,

More information

Kinematics of Machines. Brown Hills College of Engineering & Technology

Kinematics of Machines. Brown Hills College of Engineering & Technology Introduction: mechanism and machines, kinematic links, kinematic pairs, kinematic chains, plane and space mechanism, kinematic inversion, equivalent linkages, four link planar mechanisms, mobility and

More information

Manipulator Path Control : Path Planning, Dynamic Trajectory and Control Analysis

Manipulator Path Control : Path Planning, Dynamic Trajectory and Control Analysis Manipulator Path Control : Path Planning, Dynamic Trajectory and Control Analysis Motion planning for industrial manipulators is a challenging task when obstacles are present in the workspace so that collision-free

More information

Robot mechanics and kinematics

Robot mechanics and kinematics University of Pisa Master of Science in Computer Science Course of Robotics (ROB) A.Y. 2017/18 cecilia.laschi@santannapisa.it http://didawiki.cli.di.unipi.it/doku.php/magistraleinformatica/rob/start Robot

More information

KINEMATICS OF MACHINES. Dr.V.SUNDARESWARAN PROFESSOR OF MECHANICAL ENGG. COLLEGE OF ENGINEERING, GUINDY ANNA UNIVERSITY CHENNAI

KINEMATICS OF MACHINES. Dr.V.SUNDARESWARAN PROFESSOR OF MECHANICAL ENGG. COLLEGE OF ENGINEERING, GUINDY ANNA UNIVERSITY CHENNAI KINEMATICS OF MACHINES Dr.V.SUNDARESWARAN PROFESSOR OF MECHANICAL ENGG. COLLEGE OF ENGINEERING, GUINDY ANNA UNIVERSITY CHENNAI 600 025 MECHANICS Science dealing with motion DIVISIONS OF MECHANICS Statics

More information

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES YINGYING REN Abstract. In this paper, the applications of homogeneous coordinates are discussed to obtain an efficient model

More information

Kinematic Synthesis. October 6, 2015 Mark Plecnik

Kinematic Synthesis. October 6, 2015 Mark Plecnik Kinematic Synthesis October 6, 2015 Mark Plecnik Classifying Mechanisms Several dichotomies Serial and Parallel Few DOFS and Many DOFS Planar/Spherical and Spatial Rigid and Compliant Mechanism Trade-offs

More information

MODELLING AND MOTION ANALYSIS OF FIVE-BAR 5R MECHANISM

MODELLING AND MOTION ANALYSIS OF FIVE-BAR 5R MECHANISM Int. J. of Applied Mechanics and Engineering, 1, vol.19, No., pp.677-686 DOI: 1.78/ijame-1-6 MODELLING AND MOTION ANALYSIS OF FIVE-BAR 5R MECHANISM Z. BUDNIAK * and T. BIL Faculty of Mechanical Engineering

More information

Kinematics. Kinematics analyzes the geometry of a manipulator, robot or machine motion. The essential concept is a position.

Kinematics. Kinematics analyzes the geometry of a manipulator, robot or machine motion. The essential concept is a position. Kinematics Kinematics analyzes the geometry of a manipulator, robot or machine motion. The essential concept is a position. 1/31 Statics deals with the forces and moments which are aplied on the mechanism

More information

Robotics (Kinematics) Winter 1393 Bonab University

Robotics (Kinematics) Winter 1393 Bonab University Robotics () Winter 1393 Bonab University : most basic study of how mechanical systems behave Introduction Need to understand the mechanical behavior for: Design Control Both: Manipulators, Mobile Robots

More information

Compound Movements in Multi-joint Systems

Compound Movements in Multi-joint Systems Compound movements in multi-joint systems almost never have a fixed center of rotation, with no translation In fact, the principal advantage of compound movements is often that they convert rotations into

More information

Configuration Space. Chapter 2

Configuration Space. Chapter 2 Chapter 2 Configuration Space A typical robot is mechanically constructed from several bodies, or links, that are connected by various types of joints. The robot moves when certain joints are driven by

More information

Forward kinematics and Denavit Hartenburg convention

Forward kinematics and Denavit Hartenburg convention Forward kinematics and Denavit Hartenburg convention Prof. Enver Tatlicioglu Department of Electrical & Electronics Engineering Izmir Institute of Technology Chapter 5 Dr. Tatlicioglu (EEE@IYTE) EE463

More information

Industrial Robots : Manipulators, Kinematics, Dynamics

Industrial Robots : Manipulators, Kinematics, Dynamics Industrial Robots : Manipulators, Kinematics, Dynamics z z y x z y x z y y x x In Industrial terms Robot Manipulators The study of robot manipulators involves dealing with the positions and orientations

More information

Lecture Note 2: Configuration Space

Lecture Note 2: Configuration Space ECE5463: Introduction to Robotics Lecture Note 2: Configuration Space Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture 2 (ECE5463

More information

5/27/12. Objectives. Plane Curves and Parametric Equations. Sketch the graph of a curve given by a set of parametric equations.

5/27/12. Objectives. Plane Curves and Parametric Equations. Sketch the graph of a curve given by a set of parametric equations. Objectives Sketch the graph of a curve given by a set of parametric equations. Eliminate the parameter in a set of parametric equations. Find a set of parametric equations to represent a curve. Understand

More information

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 3: Forward and Inverse Kinematics

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 3: Forward and Inverse Kinematics MCE/EEC 647/747: Robot Dynamics and Control Lecture 3: Forward and Inverse Kinematics Denavit-Hartenberg Convention Reading: SHV Chapter 3 Mechanical Engineering Hanz Richter, PhD MCE503 p.1/12 Aims of

More information

Spatial R-C-C-R Mechanism for a Single DOF Gripper

Spatial R-C-C-R Mechanism for a Single DOF Gripper NaCoMM-2009-ASMRL28 Spatial R-C-C-R Mechanism for a Single DOF Gripper Rajeev Lochana C.G * Mechanical Engineering Department Indian Institute of Technology Delhi, New Delhi, India * Email: rajeev@ar-cad.com

More information

Kinematics of Closed Chains

Kinematics of Closed Chains Chapter 7 Kinematics of Closed Chains Any kinematic chain that contains one or more loops is called a closed chain. Several examples of closed chains were encountered in Chapter 2, from the planar four-bar

More information

Basilio Bona ROBOTICA 03CFIOR 1

Basilio Bona ROBOTICA 03CFIOR 1 Kinematic chains 1 Readings & prerequisites Chapter 2 (prerequisites) Reference systems Vectors Matrices Rotations, translations, roto-translations Homogeneous representation of vectors and matrices Chapter

More information

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences Page 1 UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences Exam in INF3480 Introduction to Robotics Day of exam: May 31 st 2010 Exam hours: 3 hours This examination paper consists of 5 page(s).

More information

SolidWorks Assembly Files. Assemblies Mobility. The Mating Game Mating features. Mechanical Mates Relative rotation about axes

SolidWorks Assembly Files. Assemblies Mobility. The Mating Game Mating features. Mechanical Mates Relative rotation about axes Assemblies Mobility SolidWorks Assembly Files An assembly file is a collection of parts The first part brought into an assembly file is fixed Other parts are constrained relative to that part (or other

More information

East Penn School District Secondary Curriculum

East Penn School District Secondary Curriculum East Penn School District Secondary Curriculum A Planned Course Statement for Analytic Geometry and Calculus (BC) AP Course # 360 Grade(s) 12 Department: Math ength of Period (mins.) 41 Total Clock Hours:

More information

Position Analysis

Position Analysis Position Analysis 2015-03-02 Position REVISION The position of a point in the plane can be defined by the use of a position vector Cartesian coordinates Polar coordinates Each form is directly convertible

More information

OPTIMAL KINEMATIC DESIGN OF A CAR AXLE GUIDING MECHANISM IN MBS SOFTWARE ENVIRONMENT

OPTIMAL KINEMATIC DESIGN OF A CAR AXLE GUIDING MECHANISM IN MBS SOFTWARE ENVIRONMENT OPTIMAL KINEMATIC DESIGN OF A CAR AXLE GUIDING MECHANISM IN MBS SOFTWARE ENVIRONMENT Dr. eng. Cătălin ALEXANDRU Transilvania University of Braşov, calex@unitbv.ro Abstract: This work deals with the optimal

More information

Mobile Robot Kinematics

Mobile Robot Kinematics Mobile Robot Kinematics Dr. Kurtuluş Erinç Akdoğan kurtuluserinc@cankaya.edu.tr INTRODUCTION Kinematics is the most basic study of how mechanical systems behave required to design to control Manipulator

More information

Motion Control (wheeled robots)

Motion Control (wheeled robots) Motion Control (wheeled robots) Requirements for Motion Control Kinematic / dynamic model of the robot Model of the interaction between the wheel and the ground Definition of required motion -> speed control,

More information

Overview. What is mechanism? What will I learn today? ME 311: Dynamics of Machines and Mechanisms Lecture 2: Synthesis

Overview. What is mechanism? What will I learn today? ME 311: Dynamics of Machines and Mechanisms Lecture 2: Synthesis Overview ME 311: Dynamics of Machines and Mechanisms Lecture 2: Synthesis By Suril Shah Some fundamentals Synthesis Function, path and motion generation Limiting condition Dimensional synthesis 1 2 What

More information

Model Library Mechanics

Model Library Mechanics Model Library Mechanics Using the libraries Mechanics 1D (Linear), Mechanics 1D (Rotary), Modal System incl. ANSYS interface, and MBS Mechanics (3D) incl. CAD import via STL and the additional options

More information

3. Manipulator Kinematics. Division of Electronic Engineering Prof. Jaebyung Park

3. Manipulator Kinematics. Division of Electronic Engineering Prof. Jaebyung Park 3. Manipulator Kinematics Division of Electronic Engineering Prof. Jaebyung Park Introduction Kinematics Kinematics is the science of motion which treats motion without regard to the forces that cause

More information

MACHINES AND MECHANISMS

MACHINES AND MECHANISMS MACHINES AND MECHANISMS APPLIED KINEMATIC ANALYSIS Fourth Edition David H. Myszka University of Dayton PEARSON ж rentice Hall Pearson Education International Boston Columbus Indianapolis New York San Francisco

More information

2. Motion Analysis - Sim-Mechanics

2. Motion Analysis - Sim-Mechanics 2 Motion Analysis - Sim-Mechanics Figure 1 - The RR manipulator frames The following table tabulates the summary of different types of analysis that is performed for the RR manipulator introduced in the

More information

Kinematics - Introduction. Robotics. Kinematics - Introduction. Vladimír Smutný

Kinematics - Introduction. Robotics. Kinematics - Introduction. Vladimír Smutný Kinematics - Introduction Robotics Kinematics - Introduction Vladimír Smutný Center for Machine Perception Czech Institute for Informatics, Robotics, and Cybernetics (CIIRC) Czech Technical University

More information

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane?

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane? Math 4 Practice Problems for Midterm. A unit vector that is perpendicular to both V =, 3, and W = 4,, is (a) V W (b) V W (c) 5 6 V W (d) 3 6 V W (e) 7 6 V W. In three dimensions, the graph of the equation

More information

Kinematic Model of Robot Manipulators

Kinematic Model of Robot Manipulators Kinematic Model of Robot Manipulators Claudio Melchiorri Dipartimento di Ingegneria dell Energia Elettrica e dell Informazione (DEI) Università di Bologna email: claudio.melchiorri@unibo.it C. Melchiorri

More information

1) Find. a) b) c) d) e) 2) The function g is defined by the formula. Find the slope of the tangent line at x = 1. a) b) c) e) 3) Find.

1) Find. a) b) c) d) e) 2) The function g is defined by the formula. Find the slope of the tangent line at x = 1. a) b) c) e) 3) Find. 1 of 7 1) Find 2) The function g is defined by the formula Find the slope of the tangent line at x = 1. 3) Find 5 1 The limit does not exist. 4) The given function f has a removable discontinuity at x

More information

CHAPTER 1 : KINEMATICS

CHAPTER 1 : KINEMATICS KINEMATICS : It relates to the study of the relative motion between the parts of a machine. Let us consider a reciprocating engine, in this the piston is made to reciprocate in the cylinderdue to the applied

More information

CHAPTER 3 MATHEMATICAL MODEL

CHAPTER 3 MATHEMATICAL MODEL 38 CHAPTER 3 MATHEMATICAL MODEL 3.1 KINEMATIC MODEL 3.1.1 Introduction The kinematic model of a mobile robot, represented by a set of equations, allows estimation of the robot s evolution on its trajectory,

More information

Lecture Note 6: Forward Kinematics

Lecture Note 6: Forward Kinematics ECE5463: Introduction to Robotics Lecture Note 6: Forward Kinematics Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture 6 (ECE5463

More information

Connection Elements and Connection Library

Connection Elements and Connection Library Connection Elements and Connection Library Lecture 2 L2.2 Overview Introduction Defining Connector Elements Understanding Connector Sections Understanding Connection Types Understanding Connector Local

More information

AC : AN ALTERNATIVE APPROACH FOR TEACHING MULTIBODY DYNAMICS

AC : AN ALTERNATIVE APPROACH FOR TEACHING MULTIBODY DYNAMICS AC 2009-575: AN ALTERNATIVE APPROACH FOR TEACHING MULTIBODY DYNAMICS George Sutherland, Rochester Institute of Technology DR. GEORGE H. SUTHERLAND is a professor in the Manufacturing & Mechanical Engineering

More information

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module - 2 Lecture - 1

Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur. Module - 2 Lecture - 1 Kinematics of Machines Prof. A. K. Mallik Department of Mechanical Engineering Indian Institute of Technology, Kanpur Module - 2 Lecture - 1 The topic of today s lecture is mobility analysis. By mobility

More information

PPGEE Robot Dynamics I

PPGEE Robot Dynamics I PPGEE Electrical Engineering Graduate Program UFMG April 2014 1 Introduction to Robotics 2 3 4 5 What is a Robot? According to RIA Robot Institute of America A Robot is a reprogrammable multifunctional

More information

Robotics Configuration of Robot Manipulators

Robotics Configuration of Robot Manipulators Robotics Configuration of Robot Manipulators Configurations for Robot Manipulators Cartesian Spherical Cylindrical Articulated Parallel Kinematics I. Cartesian Geometry Also called rectangular, rectilinear,

More information

10/11/07 1. Motion Control (wheeled robots) Representing Robot Position ( ) ( ) [ ] T

10/11/07 1. Motion Control (wheeled robots) Representing Robot Position ( ) ( ) [ ] T 3 3 Motion Control (wheeled robots) Introduction: Mobile Robot Kinematics Requirements for Motion Control Kinematic / dynamic model of the robot Model of the interaction between the wheel and the ground

More information

AP CALCULUS BC 2014 SCORING GUIDELINES

AP CALCULUS BC 2014 SCORING GUIDELINES SCORING GUIDELINES Question The graphs of the polar curves r = and r = sin ( θ ) are shown in the figure above for θ. (a) Let R be the shaded region that is inside the graph of r = and inside the graph

More information

ON THE VELOCITY OF A WEIGHTED CYLINDER DOWN AN INCLINED PLANE

ON THE VELOCITY OF A WEIGHTED CYLINDER DOWN AN INCLINED PLANE ON THE VELOCITY OF A WEIGHTED CYLINDER DOWN AN INCLINED PLANE Raghav Grover and Aneesh Agarwal RG (Grade 12 High School), AA (Grade 11 High School) Department of Physics, The Doon School, Dehradun. raghav.503.2019@doonschool.com,

More information

9. Representing constraint

9. Representing constraint 9. Representing constraint Mechanics of Manipulation Matt Mason matt.mason@cs.cmu.edu http://www.cs.cmu.edu/~mason Carnegie Mellon Lecture 9. Mechanics of Manipulation p.1 Lecture 9. Representing constraint.

More information

On the Kinematics of Undulator Girder Motion

On the Kinematics of Undulator Girder Motion LCLS-TN-09-02 On the Kinematics of Undulator Girder Motion J. Welch March 23, 2009 The theory of rigid body kinematics is used to derive equations that govern the control and measurement of the position

More information

Chapter 4 Dynamics. Part Constrained Kinematics and Dynamics. Mobile Robotics - Prof Alonzo Kelly, CMU RI

Chapter 4 Dynamics. Part Constrained Kinematics and Dynamics. Mobile Robotics - Prof Alonzo Kelly, CMU RI Chapter 4 Dynamics Part 2 4.3 Constrained Kinematics and Dynamics 1 Outline 4.3 Constrained Kinematics and Dynamics 4.3.1 Constraints of Disallowed Direction 4.3.2 Constraints of Rolling without Slipping

More information

Introduction to Robotics

Introduction to Robotics Introduction to Robotics Ph.D. Antonio Marin-Hernandez Artificial Intelligence Department Universidad Veracruzana Sebastian Camacho # 5 Xalapa, Veracruz Robotics Action and Perception LAAS-CNRS 7, av du

More information

Mechanism Synthesis. Introduction: Design of a slider-crank mechanism

Mechanism Synthesis. Introduction: Design of a slider-crank mechanism Mechanism Synthesis Introduction: Mechanism synthesis is the procedure by which upon identification of the desired motion a specific mechanism (synthesis type), and appropriate dimensions of the linkages

More information

Modeling of Humanoid Systems Using Deductive Approach

Modeling of Humanoid Systems Using Deductive Approach INFOTEH-JAHORINA Vol. 12, March 2013. Modeling of Humanoid Systems Using Deductive Approach Miloš D Jovanović Robotics laboratory Mihailo Pupin Institute Belgrade, Serbia milos.jovanovic@pupin.rs Veljko

More information

A Simplified Vehicle and Driver Model for Vehicle Systems Development

A Simplified Vehicle and Driver Model for Vehicle Systems Development A Simplified Vehicle and Driver Model for Vehicle Systems Development Martin Bayliss Cranfield University School of Engineering Bedfordshire MK43 0AL UK Abstract For the purposes of vehicle systems controller

More information

Abstract. Introduction

Abstract. Introduction The efficient calculation of the Cartesian geometry of non-cartesian structures J.M. Freeman and D.G. Ford Engineering Control and Metrology Research Group, The School of Engineering, University of Huddersfield.

More information