Coding elements related to Catalan numbers by Dyck words

Size: px
Start display at page:

Download "Coding elements related to Catalan numbers by Dyck words"

Transcription

1 Coding elements related to Catalan numbers by Dyck words Zoltán Kása January 9, 009 Catalan numbers The Catalan numbers, named after the mathematician E. C. Catalan, defined as C n = ( ) n, n + n are as known as the Fibonacci numbers. The Catalan numbers are the solution of the following recurrence equation: C n+ = C 0 C n + C C n C n C 0 for n 0, with C 0 =. () Another recurrence equation for the Catalan numbers is: (n + )C n+ = (n + )C n for n 0, with C 0 =. () Catalan numbers can be expressed also as ([]): C n+ = + ( ) n k ( ) k C n k. () k + k 0 C n being equal to the number of binary trees with n vertices, can be expressed [] as C n = b k n = ( )( ) k n n k, n k k k 0 k where b k n is the number of binary trees with n vertices and k leaves. From this a new recurrence equation will result: C n = ( ) n (k + ) n k C k. () n k k Sapientia Hungarian University of Transylvania, Cluj/Kolozsvár, Department of Mathematics and Informatics, Târgu Mureş/Marosvásárhely kasa@ms.sapientia.ro

2 The generating function of Catalan numbers is n 0 C n z n = z. z Catalan numbers arise in a lot of combinatorial problems as the number of some elements. The Catalan number C n describe, among other things [], the number of binary trees with n vertices, the number of ways in which parantheses can be placed in a sequence of n + numbers to be multiplied two at a time, the number of well-formed reverse Polish expressions with n operands and n + operators, the number of paths in a grid from (0, 0) to (n, n), increasing just one coordinate by one at each step, without crossing the main diagonal, the number of n-bit sequences that the number of s never exceeds the number of 0s in each position from left to right, the number of ways you can draw non-crossing segments between n points on a circle in the plane, the number of sequences (x, x,..., x n ), with x i {, } for all i between and n and having the following properties for all partial sums: x 0, x +x 0,..., x +x +...+x n 0, x +x +...+x n = 0, the number of ways a polygon with n + sides can be cut into n triangles, using n diagonals, the number of frieze pattern with n + rows, the number of mountain ranges you can draw using n upstrokes and n downstrokes, the number of ways n votes can come in for each of two candidates in an election, with the first never behind the second. Dyck words Let B = {0, } be a binary alphabet and x x... x n B n. Let h : B {, } be a valuation function with h(0) =, h() =, and h(x x... x n ) = n h(x i ). i=

3 A word x x... x n B n is called a Dyck word [] if it satisfy the following conditions: n is the semilength of the word. h(x x... x i ) 0, for i n h(x x... x n ) = 0. Encoding and decoding In [] a method for coding elements whose number is the Catalan number C n is presented. If O is a set of C n elements, Dyck words can be used for encoding the elements of O. In the following encoding and decoding algorithms are presented for different elements.. Binary trees Algorithm for encoding a binary tree The encoding of a binary tree is the following: when a vertex has only one descendant, we put the sequence 0 for a single left edge, 0 for a single right edge, and 00 for the left edge resp. for the right edge when there are two descendants. We complete the resulting sequence with 0 at the beginning and at the end. The encoding is made using a preorder traversal of the binary tree Encoding of binary trees for n =.

4 Let B L be the left and B R the right subtree of the binary tree B. w0 means the concatenation of word w with 0, and w is considered a global variable. EncodingBT(B) if B L and B R = then w w0 EncodingBT(B L ) if B L = and B R then w w0 EncodingBT(B R ) 7 if B L and B R 8 then w w00 9 EncodingBT(B L ) 8 w w 9 EncodingBT (B R ) 0 return Call: w 0 EncodingBT(B) w w Algorithm for decoding a Dyck word into a binary tree At the beginning the root of the generated binary tree is the current vertex. When an edge is drawn, its endvertex becomes the current vertex. DecodingBT(w) Let ab be the first two letters of w. Delete ab from w. if ab = 0 then draw a left edge from the current vertex DecodingBT(w) if ab = 0 7 then draw a right edge from the current vertex 8 DecodingBT(w) 9 if ab = 00 0 then put in the stack the position of the current vertex draw a left edge from the current vertex DecodingBT(w) if ab = then get from the stack the position of the new current vertex draw a right edge from the current vertex DecodingBT(w) 7 return

5 Call: delete 0 from the beginning and from the end of the input word w draw a vertex (the root of the tree) as current vertex DecodingBT(w). Paths in grid A Dyck path is a path in the grid from (0,0) to (n, n) using only horizontal and vertical segments, not crossing the diagonal x = y. For encoding we shall put 0 for a horizontal unit of the path and for a vertical one. The resulting word is a Dyck word because the path never cross the main diagonal of the grid. The decoding is immediate Encoding of paths in grid. Expressions with multiplications To encode expressions we first attach to each expression for multiplication a binary tree by a very simple method. If we multiple a by b, this yields a binary tree with a root and two descendant nodes a and b. A multiplication of two expressions yields a binary tree with two subtrees which are the binary trees corresponding to the two expressions. In the resulting binary tree each internal nodes has exactly two descendants. Such trees are called extended binary trees. To encode an extended binary tree we shall omit all leaves (with of course the corresponding edges) in the tree corresponding to the multiplication expression and use the encoding method presented before for the resulting binary tree. For n = we shall have the expressions and the corresponding extended binary trees in Fig.. If we omit all leaves with the adjacent edges in these extended trees the binary trees and the corresponding encoding result.

6 ((( ) ) ) (( ( )) ) ( (( ) )) ( ( ( ))) (( ) ( )) Encoding of multiplications For decoding we first draw the corresponding binary tree, complete it to having two descendants for each node. The resulting extended binary tree give us the order of multiplications.. Sequences We encode sequences (x, x,..., x n ), with x i {, } for all i between and n and having the following properties for all partial sums: x 0, x + x 0,..., x +x +...+x n 0, x +x +...+x n = 0. We shall code in the sequence by and by 0. It is easy to see that in any positions the number of s never exceeds the number of 0s, and they are equals in the sequence (because the sum of all n elements is equal to 0), so the resulting word is a Dyck one. For example:,,,, coded by: 000,,,, coded by: 000,,,, coded by: 000,,,, coded by: 000,,,, coded by: 000. Segments If we have n points on a circle in the plane and n non-crossing segments between them, the encoding is the following: Let us mark the points clockwise on the circle with numbers from to n. For a segment between i and j (i < j) put 0 in the i th position and in the j th position in the code sequence. For n = see Fig.. It is easy to see that the resulting word is a Dyck one.

7 Encoding of segments For decoding we search for the first subword 0, trace the corresponding segment, omit it from the word and continue with the remaining word (keeping the original positions).. Reverse Polish expressions We shall code each operand by 0 and each operator by, and then delete one 0 from ther beginning. For example, if we have the reverse Polish expression aaa a which corresponds to the expression (a ((a a) a)) the resulting code is 000. For decoding let us add an 0 at the begining of the Dyck word, and put an operand for an 0, and operator for an. 7

8 .7 Polygons The polygon is divided into triangles. We consider one node in each triangle, and one outside of each side of the polygon. Join by an edge two nodes if the corresponding triangles (or a triangle and the outside of the polygon) have a side in common. We shall get a tree, on which the encoding will be made. If we mark one side of the polygon and the corresponding edge of the tree, and eliminate all edges from the tree that have an endpoint as a leave, we shall get a binary tree (the root will be the node which is adjacent with the marked edge). The exemplification will be made for n = (pentagon). The marked side is AB. a b a b a b a b a b Encoding of polygons References [] Bege, A., Kása, Z., Coding objects related to Catalan numbers, Studia Universitatis Babes-Bolyai, Informatica,, (00), pp. 0. [] Duchon, P., On the enumeration and generation of generalized Dyck words, Discrete Mathematics, (000). [] Kása, Z., Ţâmbulea L., Binary trees and the number of states in buddy systems, Annales Universitatis Scientiarium Budapestinensis de Rolando Eötvös Nominatae Sectio Computatorica, 7 (987) 0. 8

9 [] Kása, Z., Generating and ranking of Dyck words, Acta Universitatis Sapientiae, Informatica,, (009) [] Stanley, R. P., Enumerative combinatorics II., Cambridge University Press, 00. 9

Basic Properties The Definition of Catalan Numbers

Basic Properties The Definition of Catalan Numbers 1 Basic Properties 1.1. The Definition of Catalan Numbers There are many equivalent ways to define Catalan numbers. In fact, the main focus of this monograph is the myriad combinatorial interpretations

More information

Catalan Numbers. Table 1: Balanced Parentheses

Catalan Numbers. Table 1: Balanced Parentheses Catalan Numbers Tom Davis tomrdavis@earthlink.net http://www.geometer.org/mathcircles November, 00 We begin with a set of problems that will be shown to be completely equivalent. The solution to each problem

More information

Section 5.5. Left subtree The left subtree of a vertex V on a binary tree is the graph formed by the left child L of V, the descendents

Section 5.5. Left subtree The left subtree of a vertex V on a binary tree is the graph formed by the left child L of V, the descendents Section 5.5 Binary Tree A binary tree is a rooted tree in which each vertex has at most two children and each child is designated as being a left child or a right child. Thus, in a binary tree, each vertex

More information

where each number (after the first two 1 s) is the sum of the previous two numbers.

where each number (after the first two 1 s) is the sum of the previous two numbers. Fibonacci Numbers The Fibonacci numbers are the numbers in the sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,... where each number (after the first two 1 s) is the sum of the previous

More information

PLC Papers Created For:

PLC Papers Created For: PLC Papers Created For: Year 10 Topic Practice Papers: Polygons Polygons 1 Grade 4 Look at the shapes below A B C Shape A, B and C are polygons Write down the mathematical name for each of the polygons

More information

RECURSIVE BIJECTIONS FOR CATALAN OBJECTS.

RECURSIVE BIJECTIONS FOR CATALAN OBJECTS. RECURSIVE BIJECTIONS FOR CATALAN OBJECTS. STEFAN FORCEY, MOHAMMADMEHDI KAFASHAN, MEHDI MALEKI, AND MICHAEL STRAYER Abstract. In this note we introduce several instructive examples of bijections found between

More information

#A55 INTEGERS 10 (2010), A LEFT WEIGHTED CATALAN EXTENSION 1

#A55 INTEGERS 10 (2010), A LEFT WEIGHTED CATALAN EXTENSION 1 #A55 INTEGERS 10 (2010), 771-792 A LEFT WEIGHTED CATALAN EXTENSION 1 Paul R. F. Schumacher Department of Mathematics, Texas A&M University at Qatar, Doha, Qatar paul.schumacher@qatar.tamu.edu Received:

More information

Polygon Dissections and Marked Dyck Paths

Polygon Dissections and Marked Dyck Paths Polygon Dissections and Marked Dyck Paths DAVID CALLAN Department of Statistics University of Wisconsin-Madison Medical Science Center 00 University Ave Madison, WI 5706-5 callan@statwiscedu February 5,

More information

7.1 Introduction. A (free) tree T is A simple graph such that for every pair of vertices v and w there is a unique path from v to w

7.1 Introduction. A (free) tree T is A simple graph such that for every pair of vertices v and w there is a unique path from v to w Chapter 7 Trees 7.1 Introduction A (free) tree T is A simple graph such that for every pair of vertices v and w there is a unique path from v to w Tree Terminology Parent Ancestor Child Descendant Siblings

More information

1/25 Warm Up Find the value of the indicated measure

1/25 Warm Up Find the value of the indicated measure 1/25 Warm Up Find the value of the indicated measure. 1. 2. 3. 4. Lesson 7.1(2 Days) Angles of Polygons Essential Question: What is the sum of the measures of the interior angles of a polygon? What you

More information

#A14 INTEGERS 15A (2015) ON SUBSETS OF ORDERED TREES ENUMERATED BY A SUBSEQUENCE OF FIBONACCI NUMBERS

#A14 INTEGERS 15A (2015) ON SUBSETS OF ORDERED TREES ENUMERATED BY A SUBSEQUENCE OF FIBONACCI NUMBERS #A4 INTEGERS 5A (205) ON SUBSETS OF ORDERED TREES ENUMERATED BY A SUBSEQUENCE OF FIBONACCI NUMBERS Melkamu Zeleke Department of Mathematics, William Paterson University, Wayne, New Jersey Mahendra Jani

More information

Recursive Bijections for Catalan Objects

Recursive Bijections for Catalan Objects 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 16 (2013), Article 13.5.3 Recursive Bijections for Catalan Objects Stefan Forcey Department of Mathematics The University of Akron Akron, OH 44325-4002

More information

Angles of Polygons. Essential Question What is the sum of the measures of the interior angles of a polygon?

Angles of Polygons. Essential Question What is the sum of the measures of the interior angles of a polygon? 7.1 Angles of Polygons Essential Question What is the sum of the measures of the interior angles of a polygon? The Sum of the Angle Measures of a Polygon Work with a partner. Use dynamic geometry software.

More information

Words, Words, I Am So Sick of Words! Joseph Malkevitch Mathematics (York College)

Words, Words, I Am So Sick of Words! Joseph Malkevitch Mathematics (York College) Words, Words, I Am So Sick of Words! Joseph Malkevitch Mathematics (York College) What is mathematics about? The study of numbers. The study of shapes. But it should be viewed as: The study of patterns.

More information

DAVID CALLAN. Department of Statistics W. Dayton St. August 9, Abstract

DAVID CALLAN. Department of Statistics W. Dayton St. August 9, Abstract A Combinatorial Interpretation for a Super-Catalan Recurrence DAVID CAAN Department of Statistics University of Wisconsin-Madison 1210 W. Dayton St Madison, WI 53706-1693 callan@stat.wisc.edu August 9,

More information

Chapter 1-2 Points, Lines, and Planes

Chapter 1-2 Points, Lines, and Planes Chapter 1-2 Points, Lines, and Planes Undefined Terms: A point has no size but is often represented by a dot and usually named by a capital letter.. A A line extends in two directions without ending. Lines

More information

Input/Output Machines

Input/Output Machines UNIT 1 1 STUDENT BOOK / Machines LESSON Quick Review t Home c h o o l This is an / machine It can be used to make a growing pattern Each input is multiplied by 9 to get the output If you input 1, the output

More information

Analysis of Algorithms

Analysis of Algorithms Algorithm An algorithm is a procedure or formula for solving a problem, based on conducting a sequence of specified actions. A computer program can be viewed as an elaborate algorithm. In mathematics and

More information

Catalan numbers. 2. In how many ways can you place 3 pairs of parentheses in the expression

Catalan numbers. 2. In how many ways can you place 3 pairs of parentheses in the expression Catalan numbers 1. In how many ways can you cut up a regular hexagon (6-sided polygon) into triangles using 3 nonintersecting diagonals? For example, there are 5 ways for a pentagon: 2. In how many ways

More information

TILING PROBLEMS: FROM DOMINOES, CHECKERBOARDS, AND MAZES TO DISCRETE GEOMETRY

TILING PROBLEMS: FROM DOMINOES, CHECKERBOARDS, AND MAZES TO DISCRETE GEOMETRY TILING PROBLEMS: FROM DOMINOES, CHECKERBOARDS, AND MAZES TO DISCRETE GEOMETRY BERKELEY MATH CIRCLE 1. Looking for a number Consider an 8 8 checkerboard (like the one used to play chess) and consider 32

More information

An undirected graph is a tree if and only of there is a unique simple path between any 2 of its vertices.

An undirected graph is a tree if and only of there is a unique simple path between any 2 of its vertices. Trees Trees form the most widely used subclasses of graphs. In CS, we make extensive use of trees. Trees are useful in organizing and relating data in databases, file systems and other applications. Formal

More information

Theta Circles & Polygons 2015 Answer Key 11. C 2. E 13. D 4. B 15. B 6. C 17. A 18. A 9. D 10. D 12. C 14. A 16. D

Theta Circles & Polygons 2015 Answer Key 11. C 2. E 13. D 4. B 15. B 6. C 17. A 18. A 9. D 10. D 12. C 14. A 16. D Theta Circles & Polygons 2015 Answer Key 1. C 2. E 3. D 4. B 5. B 6. C 7. A 8. A 9. D 10. D 11. C 12. C 13. D 14. A 15. B 16. D 17. A 18. A 19. A 20. B 21. B 22. C 23. A 24. C 25. C 26. A 27. C 28. A 29.

More information

CS 2336 Discrete Mathematics

CS 2336 Discrete Mathematics CS 2336 Discrete Mathematics Lecture 15 Graphs: Planar Graphs 1 Outline What is a Planar Graph? Euler Planar Formula Platonic Solids Five Color Theorem Kuratowski s Theorem 2 What is a Planar Graph? Definition

More information

Chapter 4 Trees. Theorem A graph G has a spanning tree if and only if G is connected.

Chapter 4 Trees. Theorem A graph G has a spanning tree if and only if G is connected. Chapter 4 Trees 4-1 Trees and Spanning Trees Trees, T: A simple, cycle-free, loop-free graph satisfies: If v and w are vertices in T, there is a unique simple path from v to w. Eg. Trees. Spanning trees:

More information

pine cone Ratio = 13:8 or 8:5

pine cone Ratio = 13:8 or 8:5 Chapter 10: Introducing Geometry 10.1 Basic Ideas of Geometry Geometry is everywhere o Road signs o Carpentry o Architecture o Interior design o Advertising o Art o Science Understanding and appreciating

More information

Lecture 6: Combinatorics Steven Skiena. skiena

Lecture 6: Combinatorics Steven Skiena.  skiena Lecture 6: Combinatorics Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Learning to Count Combinatorics problems are

More information

Transformation, tessellation and symmetry line symmetry

Transformation, tessellation and symmetry line symmetry Transformation, tessellation and symmetry line symmetry Reflective or line symmetry describes mirror image, when one half of a shape or picture matches the other exactly. The middle line that divides the

More information

F453 Module 7: Programming Techniques. 7.2: Methods for defining syntax

F453 Module 7: Programming Techniques. 7.2: Methods for defining syntax 7.2: Methods for defining syntax 2 What this module is about In this module we discuss: explain how functions, procedures and their related variables may be used to develop a program in a structured way,

More information

Lesson 7.1. Angles of Polygons

Lesson 7.1. Angles of Polygons Lesson 7.1 Angles of Polygons Essential Question: How can I find the sum of the measures of the interior angles of a polygon? Polygon A plane figure made of three or more segments (sides). Each side intersects

More information

Intermediate Mathematics League of Eastern Massachusetts

Intermediate Mathematics League of Eastern Massachusetts Meet # January 010 Intermediate Mathematics League of Eastern Massachusetts Meet # January 010 Category 1 - Mystery Meet #, January 010 1. Of all the number pairs whose sum equals their product, what is

More information

March 20/2003 Jayakanth Srinivasan,

March 20/2003 Jayakanth Srinivasan, Definition : A simple graph G = (V, E) consists of V, a nonempty set of vertices, and E, a set of unordered pairs of distinct elements of V called edges. Definition : In a multigraph G = (V, E) two or

More information

Chapter 10: Trees. A tree is a connected simple undirected graph with no simple circuits.

Chapter 10: Trees. A tree is a connected simple undirected graph with no simple circuits. Chapter 10: Trees A tree is a connected simple undirected graph with no simple circuits. Properties: o There is a unique simple path between any 2 of its vertices. o No loops. o No multiple edges. Example

More information

Grade 6 Mathematics Item Specifications Florida Standards Assessments

Grade 6 Mathematics Item Specifications Florida Standards Assessments Content Standard MAFS.6.G Geometry MAFS.6.G.1 Solve real-world and mathematical problems involving area, surface area, and volume. Assessment Limits Calculator s Context A shape is shown. MAFS.6.G.1.1

More information

Shape & Space Part C: Transformations

Shape & Space Part C: Transformations Name: Homeroom: Shape & Space Part C: Transformations Student Learning Expectations Outcomes: I can describe and analyze position and motion of objects and shapes by Checking for Understanding identifying

More information

Figuring Areas. Instructions. Name Date

Figuring Areas. Instructions. Name Date Name Date A C T I V I T Y 8 Instructions Figuring Areas 1. Press to turn on the Voyage 200 PLT. To reset to the default settings, press e, select 1:RAM, select 2:Default, and press šš. 2. To begin a geometry

More information

A Generalization of the Catalan Numbers

A Generalization of the Catalan Numbers 2 3 47 6 23 Journal of Integer Sequences, Vol 6 (203, Article 368 A Generalization of the Catalan Numbers Reza Kahkeshani Department of Pure Mathematics Faculty of Mathematical Sciences University of Kashan

More information

Digits. Value The numbers a digit. Standard Form. Expanded Form. The symbols used to show numbers: 0,1,2,3,4,5,6,7,8,9

Digits. Value The numbers a digit. Standard Form. Expanded Form. The symbols used to show numbers: 0,1,2,3,4,5,6,7,8,9 Digits The symbols used to show numbers: 0,1,2,3,4,5,6,7,8,9 Value The numbers a digit represents, which is determined by the position of the digits Standard Form Expanded Form A common way of the writing

More information

Lines, Rays, and Angles

Lines, Rays, and Angles Lesson 10.1 Lines, Rays, and Angles Name What it looks like Think point D D A point names a location in space. line AB; _ AB line BA; _ BA A B A line extends without end in opposite directions. line segment

More information

PRACTICAL GEOMETRY SYMMETRY AND VISUALISING SOLID SHAPES

PRACTICAL GEOMETRY SYMMETRY AND VISUALISING SOLID SHAPES UNIT 12 PRACTICAL GEOMETRY SYMMETRY AND VISUALISING SOLID SHAPES (A) Main Concepts and Results Let a line l and a point P not lying on it be given. By using properties of a transversal and parallel lines,

More information

c 2011 BRITTANY NICOLE MOTT ALL RIGHTS RESERVED

c 2011 BRITTANY NICOLE MOTT ALL RIGHTS RESERVED c 2011 BRITTANY NICOLE MOTT ALL RIGHTS RESERVED ANALYSIS OF THE GENERALIZED CATALAN ORBITS A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements

More information

Fun with Diagonals. 1. Now draw a diagonal between your chosen vertex and its non-adjacent vertex. So there would be a diagonal between A and C.

Fun with Diagonals. 1. Now draw a diagonal between your chosen vertex and its non-adjacent vertex. So there would be a diagonal between A and C. Name Date Fun with Diagonals In this activity, we will be exploring the different properties of polygons. We will be constructing polygons in Geometer s Sketchpad in order to discover these properties.

More information

Friday, March 30. Last time we were talking about traversal of a rooted ordered tree, having defined preorder traversal. We will continue from there.

Friday, March 30. Last time we were talking about traversal of a rooted ordered tree, having defined preorder traversal. We will continue from there. Friday, March 30 Last time we were talking about traversal of a rooted ordered tree, having defined preorder traversal. We will continue from there. Postorder traversal (recursive definition) If T consists

More information

Proper Partitions of a Polygon and k-catalan Numbers

Proper Partitions of a Polygon and k-catalan Numbers Proper Partitions of a Polygon and k-catalan Numbers Bruce E. Sagan Department of Mathematics Michigan State University East Lansing, MI 48824-1027 USA sagan@math.msu.edu July 13, 2005 Abstract Let P be

More information

Unit 1, Lesson 1: Moving in the Plane

Unit 1, Lesson 1: Moving in the Plane Unit 1, Lesson 1: Moving in the Plane Let s describe ways figures can move in the plane. 1.1: Which One Doesn t Belong: Diagrams Which one doesn t belong? 1.2: Triangle Square Dance m.openup.org/1/8-1-1-2

More information

Commando: Solution. Solution 3 O(n): Consider two decisions i<j, we choose i instead of j if and only if : A S j S i

Commando: Solution. Solution 3 O(n): Consider two decisions i<j, we choose i instead of j if and only if : A S j S i Commando: Solution Commando: Solution Solution 1 O(n 3 ): Using dynamic programming, let f(n) indicate the maximum battle effectiveness after adjustment. We have transfer equations below: n f(n) = max

More information

Polygons in the Coordinate Plane

Polygons in the Coordinate Plane Polygons in the Coordinate Plane LAUNCH (8 MIN) Before How can you find the perimeter of the sandbox that the park worker made? During How will you determine whether the park worker s plan for the sandbox

More information

Measurement and Geometry (M&G3)

Measurement and Geometry (M&G3) MPM1DE Measurement and Geometry (M&G3) Please do not write in this package. Record your answers to the questions on lined paper. Make notes on new definitions such as midpoint, median, midsegment and any

More information

DATE PERIOD. Lesson Reading Guide

DATE PERIOD. Lesson Reading Guide NAME DATE PERIOD Lesson Reading Guide Get Ready for the Lesson Read the introduction at the top of page 316 in your textbook. Write your answers below. 1. Predict the number of triangles and the sum of

More information

Moore Catholic High School Math Department

Moore Catholic High School Math Department Moore Catholic High School Math Department Geometry Vocabulary The following is a list of terms and properties which are necessary for success in a Geometry class. You will be tested on these terms during

More information

Geometry Unit 6 Properties of Quadrilaterals Classifying Polygons Review

Geometry Unit 6 Properties of Quadrilaterals Classifying Polygons Review Geometry Unit 6 Properties of Quadrilaterals Classifying Polygons Review Polygon a closed plane figure with at least 3 sides that are segments -the sides do not intersect except at the vertices N-gon -

More information

Let a line l and a point P not lying on it be given. By using properties of a transversal and parallel lines, a line which passes through the point P

Let a line l and a point P not lying on it be given. By using properties of a transversal and parallel lines, a line which passes through the point P Let a line l and a point P not lying on it be given. By using properties of a transversal and parallel lines, a line which passes through the point P and parallel to l, can be drawn. A triangle can be

More information

Convex polygon - a polygon such that no line containing a side of the polygon will contain a point in the interior of the polygon.

Convex polygon - a polygon such that no line containing a side of the polygon will contain a point in the interior of the polygon. Chapter 7 Polygons A polygon can be described by two conditions: 1. No two segments with a common endpoint are collinear. 2. Each segment intersects exactly two other segments, but only on the endpoints.

More information

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 165

S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 165 S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani 165 5.22. You are given a graph G = (V, E) with positive edge weights, and a minimum spanning tree T = (V, E ) with respect to these weights; you may

More information

Grade 9 Math Terminology

Grade 9 Math Terminology Unit 1 Basic Skills Review BEDMAS a way of remembering order of operations: Brackets, Exponents, Division, Multiplication, Addition, Subtraction Collect like terms gather all like terms and simplify as

More information

Noncrossing sets and a Graßmann associahedron

Noncrossing sets and a Graßmann associahedron Noncrossing sets and a Graßmann associahedron Francisco Santos, Christian Stump, Volkmar Welker (in partial rediscovering work of T. K. Petersen, P. Pylyavskyy, and D. E. Speyer, 2008) (in partial rediscovering

More information

Special Lines and Constructions of Regular Polygons

Special Lines and Constructions of Regular Polygons Special Lines and Constructions of Regular Polygons A regular polygon with a center A is made up of congruent isosceles triangles with a principal angle A. The red line in the regular pentagon below is

More information

January Regional Geometry Team: Question #1. January Regional Geometry Team: Question #2

January Regional Geometry Team: Question #1. January Regional Geometry Team: Question #2 January Regional Geometry Team: Question #1 Points P, Q, R, S, and T lie in the plane with S on and R on. If PQ = 5, PS = 3, PR = 5, QS = 3, and RT = 4, what is ST? 3 January Regional Geometry Team: Question

More information

The National Strategies Secondary Mathematics exemplification: Y8, 9

The National Strategies Secondary Mathematics exemplification: Y8, 9 Mathematics exemplification: Y8, 9 183 As outcomes, Year 8 pupils should, for example: Understand a proof that the sum of the angles of a triangle is 180 and of a quadrilateral is 360, and that the exterior

More information

Section Summary. Introduction to Trees Rooted Trees Trees as Models Properties of Trees

Section Summary. Introduction to Trees Rooted Trees Trees as Models Properties of Trees Chapter 11 Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. Chapter Summary Introduction to Trees Applications

More information

Noncrossing Trees and Noncrossing Graphs

Noncrossing Trees and Noncrossing Graphs Noncrossing Trees and Noncrossing Graphs William Y. C. Chen and Sherry H. F. Yan 2 Center for Combinatorics, LPMC, Nanai University, 30007 Tianjin, P.R. China chen@nanai.edu.cn, 2 huifangyan@eyou.com Mathematics

More information

Helpful Hint When you are given a frieze pattern, you may assume that the pattern continues forever in both directions Notes: Tessellations

Helpful Hint When you are given a frieze pattern, you may assume that the pattern continues forever in both directions Notes: Tessellations A pattern has translation symmetry if it can be translated along a vector so that the image coincides with the preimage. A frieze pattern is a pattern that has translation symmetry along a line. Both of

More information

Combinatorics: The Fine Art of Counting

Combinatorics: The Fine Art of Counting Week Three Solutions Note: in these notes multiplication is assumed to take precedence over division, so 4!/2!2! = 4!/(2!*2!), and binomial coefficients are written horizontally: (4 2) denotes 4 choose

More information

Weighted Catalan Numbers and Their Divisibility Properties

Weighted Catalan Numbers and Their Divisibility Properties Weighted Catalan Numbers and Their Divisibility Properties Sarah Shader under the direction of Mr. Gaku Liu Massachusetts Institute of Technology Research Science Institute Abstract The weighted Catalan

More information

Encryption à la Mod Name

Encryption à la Mod Name Rock Around the Clock Part Encryption à la Mod Let s call the integers,, 3,, 5, and the mod 7 encryption numbers and define a new mod 7 multiplication operation, denoted by, in the following manner: a

More information

List of Practical for Master in Computer Application (5 Year Integrated) (Through Distance Education)

List of Practical for Master in Computer Application (5 Year Integrated) (Through Distance Education) List of Practical for Master in Computer Application (5 Year Integrated) (Through Distance Education) Directorate of Distance Education Guru Jambeshwar University of Science & Technology, Hissar First

More information

Math 9: Chapter Review Assignment

Math 9: Chapter Review Assignment Class: Date: Math 9: Chapter 7.5-7.7 Review Assignment Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which shapes have at least 2 lines of symmetry?

More information

UNIT B3 Number Sequences: Activities

UNIT B3 Number Sequences: Activities B Number Sequences Activities Activities B. Lines B. Regular Polygons B. Towers B.4 Fibonacci Sequence Notes and Solutions ( page) ACTIVITY B. Lines If three lines are arranged as in the diagram, there

More information

An angle that has a measure less than a right angle.

An angle that has a measure less than a right angle. Unit 1 Study Strategies: Two-Dimensional Figures Lesson Vocab Word Definition Example Formed by two rays or line segments that have the same 1 Angle endpoint. The shared endpoint is called the vertex.

More information

On a coordinate plane, such a change can be described by counting the number of spaces, vertically and horizontally, that the figure has moved.

On a coordinate plane, such a change can be described by counting the number of spaces, vertically and horizontally, that the figure has moved. Transformations We have studied four different kinds of transformations: translation, rotation, reflection, and dilation. Each one involves moving a figure to a new location on a plane. Translation Translation

More information

3 Identify shapes as two-dimensional (lying in a plane, flat ) or three-dimensional ( solid ).

3 Identify shapes as two-dimensional (lying in a plane, flat ) or three-dimensional ( solid ). Geometry Kindergarten Identify and describe shapes (squares, circles, triangles, rectangles, hexagons, cubes, cones, cylinders, and spheres). 1 Describe objects in the environment using names of shapes,

More information

Combinatorics: The Fine Art of Counting

Combinatorics: The Fine Art of Counting This week s menu is divided into two sections. The first part is a set of appetizer problems which can all be solved using a straight-forward application of concepts covered in class. The second part consists

More information

PERFORMANCE COMPARISON OF TRADITIONAL SCHEDULERS IN DIFFSERV ARCHITECTURE USING NS

PERFORMANCE COMPARISON OF TRADITIONAL SCHEDULERS IN DIFFSERV ARCHITECTURE USING NS PERFORMANCE COMPARISON OF TRADITIONAL SCHEDULERS IN DIFFSERV ARCHITECTURE USING NS Miklós Lengyel János Sztrik Department of Informatics Systems and Networks University of Debrecen H-4010 Debrecen, P.O.

More information

Unit 10 Study Guide: Plane Figures

Unit 10 Study Guide: Plane Figures Unit 10 Study Guide: Plane Figures *Be sure to watch all videos within each lesson* You can find geometric shapes in art. Whether determining the amount of leading or the amount of glass needed for a piece

More information

Moore Catholic High School Math Department

Moore Catholic High School Math Department Moore Catholic High School Math Department Geometry Vocabulary The following is a list of terms and properties which are necessary for success in a Geometry class. You will be tested on these terms during

More information

The Shoelace Formula

The Shoelace Formula Section The Shoelace ormula inding the area of simple polygons on a coordinate grid. simple polygon is a flat shape consisting of straight, non-intersecting line segments or "sides" that are joined pair-wise

More information

What is a tessellation???? Give an example... Daily Do from last class Homework Answers 10 7 These are similar: What does y =? x =?

What is a tessellation???? Give an example... Daily Do from last class Homework Answers 10 7 These are similar: What does y =? x =? Daily Do from last class Homework Answers 10 7 These are similar: What does y =? x =? 36 74 0 78 0 154 o 44 48 54 o y x 154 o 78 0 12 74 0 9 1. 8 ft 2. 21m 3. 21 ft 4. 30cm 5. 6mm 6. 16 in 7. yes 9 = 7

More information

February Regional Geometry Team: Question #1

February Regional Geometry Team: Question #1 February Regional Geometry Team: Question #1 A = area of an equilateral triangle with a side length of 4. B = area of a square with a side length of 3. C = area of a regular hexagon with a side length

More information

REPORT A SEPARATOR THEOREM FOR PLANAR GRAPHS

REPORT A SEPARATOR THEOREM FOR PLANAR GRAPHS REPORT A SEPARATOR THEOREM FOR PLANAR GRAPHS Yun Luo Section: 95.573 Abstract: The vertices of any n-vertex planar graph can be partitioned into three sets A, B, C such that no edge joins a vertex in A

More information

Appendix E. Plane Geometry

Appendix E. Plane Geometry Appendix E Plane Geometry A. Circle A circle is defined as a closed plane curve every point of which is equidistant from a fixed point within the curve. Figure E-1. Circle components. 1. Pi In mathematics,

More information

Friezes and tilings. Thorsten Holm

Friezes and tilings. Thorsten Holm Snapshots of modern mathematics from Oberwolfach 4/205 Friezes and tilings Thorsten Holm Friezes have occured as architectural ornaments for many centuries In this snapshot, we consider the mathematical

More information

Elementary Planar Geometry

Elementary Planar Geometry Elementary Planar Geometry What is a geometric solid? It is the part of space occupied by a physical object. A geometric solid is separated from the surrounding space by a surface. A part of the surface

More information

STAIRCASE TILINGS AND LATTICE PATHS

STAIRCASE TILINGS AND LATTICE PATHS STAIRCASE TILINGS AND LATTICE PATHS Silvia Heubach Department of Mathematics, California State University Los Angeles 55 State University Drive, Los Angeles, CA 9-84 USA sheubac@calstatela.edu Toufik Mansour

More information

Math 8803/4803, Spring 2008: Discrete Mathematical Biology

Math 8803/4803, Spring 2008: Discrete Mathematical Biology Math 8803/4803, Spring 2008: Discrete Mathematical Biology Prof. Christine Heitsch School of Mathematics Georgia Institute of Technology Lecture 11 February 1, 2008 and give one secondary structure for

More information

Chapter 12 Transformations: Shapes in Motion

Chapter 12 Transformations: Shapes in Motion Name Geometry Honors Date Per. Teacher Chapter 12 Transformations: Shapes in Motion 1 Table of Contents Reflections Day 1.... Page 3 Translations Day 2....... Page 10 Rotations/Dilations Day 3.... Page

More information

Review Interior Angle Sum New: Exterior Angle Sum

Review Interior Angle Sum New: Exterior Angle Sum Review Interior Angle Sum New: Exterior Angle Sum QUIZ: Prove that the diagonal connecting the vertex angles of a kite cut the kite into two congruent triangles. 1 Interior Angle Sum Formula: Some Problems

More information

2003/2010 ACOS MATHEMATICS CONTENT CORRELATION GEOMETRY 2003 ACOS 2010 ACOS

2003/2010 ACOS MATHEMATICS CONTENT CORRELATION GEOMETRY 2003 ACOS 2010 ACOS CURRENT ALABAMA CONTENT PLACEMENT G.1 Determine the equation of a line parallel or perpendicular to a second line through a given point. G.2 Justify theorems related to pairs of angles, including angles

More information

arxiv: v1 [math.co] 4 Sep 2017

arxiv: v1 [math.co] 4 Sep 2017 Abstract Maximal chord diagrams up to all isomorphisms are enumerated. The enumerating formula is based on a bijection between rooted one-vertex one-face maps on locally orientable surfaces andacertain

More information

Spiral Back: Evaluate the following when x = -2 and y = 3 1) -4y x + (3+ x 2 ) Solve the following equations: 2) x 6 = -20 3) 2x 2 = -16 4)

Spiral Back: Evaluate the following when x = -2 and y = 3 1) -4y x + (3+ x 2 ) Solve the following equations: 2) x 6 = -20 3) 2x 2 = -16 4) Name: Date: / / Spiral Back: Evaluate the following when x = -2 and y = 3 1) -4y x + (3+ x 2 ) Let s see what you remember! Sticker Challenge! Solve the following equations: 2) x 6 = -20 3) 2x 2 = -16

More information

Problem Set 6 Solutions

Problem Set 6 Solutions Introduction to Algorithms October 29, 2001 Massachusetts Institute of Technology 6.046J/18.410J Singapore-MIT Alliance SMA5503 Professors Erik Demaine, Lee Wee Sun, and Charles E. Leiserson Handout 24

More information

CMSC th Lecture: Graph Theory: Trees.

CMSC th Lecture: Graph Theory: Trees. CMSC 27100 26th Lecture: Graph Theory: Trees. Lecturer: Janos Simon December 2, 2018 1 Trees Definition 1. A tree is an acyclic connected graph. Trees have many nice properties. Theorem 2. The following

More information

Geometry Ch 7 Quadrilaterals January 06, 2016

Geometry Ch 7 Quadrilaterals January 06, 2016 Theorem 17: Equal corresponding angles mean that lines are parallel. Corollary 1: Equal alternate interior angles mean that lines are parallel. Corollary 2: Supplementary interior angles on the same side

More information

The Boundary of Ordered Trees

The Boundary of Ordered Trees 2 3 47 6 23 Journal of Integer Sequences, Vol. 8 (205), Article 5.5.8 The Boundary of Ordered Trees Dennis E. Davenport and Louis W. Shapiro Mathematics Department Howard University Washington, DC 20059

More information

Exercise set 2 Solutions

Exercise set 2 Solutions Exercise set 2 Solutions Let H and H be the two components of T e and let F E(T ) consist of the edges of T with one endpoint in V (H), the other in V (H ) Since T is connected, F Furthermore, since T

More information

January 10-12, NIT Surathkal Introduction to Graph and Geometric Algorithms

January 10-12, NIT Surathkal Introduction to Graph and Geometric Algorithms Geometric data structures Sudebkumar Prasant Pal Department of Computer Science and Engineering IIT Kharagpur, 721302. email: spp@cse.iitkgp.ernet.in January 10-12, 2012 - NIT Surathkal Introduction to

More information

ame Date Class Practice A 11. What is another name for a regular quadrilateral with four right angles?

ame Date Class Practice A 11. What is another name for a regular quadrilateral with four right angles? ame Date Class Practice A Polygons Name each polygon. 1. 2. 3. 4. 5. 6. Tell whether each polygon appears to be regular or not regular. 7. 8. 9. 10. What is another name for a regular triangle? 11. What

More information

M8WSB-C07.qxd 4/4/08 7:00 PM Page NEL

M8WSB-C07.qxd 4/4/08 7:00 PM Page NEL 8 NEL GOAL Chapter 7 Tessellations You will be able to use angle measurements to identify regular and irregular polygons that might tessellate identify and describe translations, reflections, or rotations

More information

For full credit, show all work. Study all geometry vocabulary words from your chapter packet.

For full credit, show all work. Study all geometry vocabulary words from your chapter packet. Accelerated Review 9: Geometric Relationships Name: For full credit, show all work. Study all geometry vocabulary words from your chapter packet. Caleb drew a quadrilateral on his paper. Which of the following

More information

2.) From the set {A, B, C, D, E, F, G, H}, produce all of the four character combinations. Be sure that they are in lexicographic order.

2.) From the set {A, B, C, D, E, F, G, H}, produce all of the four character combinations. Be sure that they are in lexicographic order. Discrete Mathematics 2 - Test File - Spring 2013 Exam #1 1.) RSA - Suppose we choose p = 5 and q = 11. You're going to be sending the coded message M = 23. a.) Choose a value for e, satisfying the requirements

More information

2x + 3x = 180 5x = (5x) = 1 5 (180) x = 36. Angle 1: 2(36) = 72 Angle 2: 3(36) = 108

2x + 3x = 180 5x = (5x) = 1 5 (180) x = 36. Angle 1: 2(36) = 72 Angle 2: 3(36) = 108 GRADE 7 MODULE 6 TOPIC A LESSONS 1 4 KEY CONCEPT OVERVIEW In this topic, students return to using equations to find unknown angle measures. Students write equations to model various angle relationships

More information

Tree. A path is a connected sequence of edges. A tree topology is acyclic there is no loop.

Tree. A path is a connected sequence of edges. A tree topology is acyclic there is no loop. Tree A tree consists of a set of nodes and a set of edges connecting pairs of nodes. A tree has the property that there is exactly one path (no more, no less) between any pair of nodes. A path is a connected

More information