6 Computing Derivatives the Quick and Easy Way

Size: px
Start display at page:

Download "6 Computing Derivatives the Quick and Easy Way"

Transcription

1 Jay Daigle Occiental College Mat 4: Calculus Experience 6 Computing Derivatives te Quick an Easy Way In te previous section we talke about wat te erivative is, an we compute several examples, an ten we got quite tire of computing tose examples over an over. In tis section we ll come up wit some tecniques to make computation of erivatives easier. It correspons rougly to sections 2.3 an 2.4 in your textbook. 6. Basics: Te simple rules. If c is a constant an fx c ten f x 0. f x fx + fx c c 0 0. Conceptually, a constant function never canges, so te rate of cange is 0. Geometrically, a constant function is a orizontal line; tus we tink of te slope everywere as being 0. Example If fx x, ten f x. f x fx + fx x + x. Conceptually, if we ave te ientity function, ten wenever we cange te input ten te output soul cange by exactly te same amount. Tus te rate of cange is. Geometrically, tis is a line wit slope. 3. If c is a constant an g is a function an fx c gx, ten f x cg x. f x cgx + cgx c gx + gx c g x. Conceptually, if canging x by a bit canges gx by a certain amount, ten it will cange 2gx by twice tat amount multiplying by a scalar soul just cange te rate of cange by te same amount everywere. Geometrically, multiplying by a constant is just stretcing vertically an all te slopes will be stretce by tat same amount. ttp://jayaigle.net/teacing/courses/208-spring-4/ 59

2 Jay Daigle Occiental College Mat 4: Calculus Experience Example 6.2. If fx 5x ten f x 5 x 5 x If f an g are functions ten f + g x f x + g x. f + g fx + + gx + fx gx x fx + fx gx + gx + f x + g x. Conceptually, if canging te input by a bit canges f by a certain amount an g by a ifferent amount, ten it canges f + g by te sum of tose two amounts figure out ow muc it canges eac part an ten a tem togeter to fin out ow muc it canges te wole. Geometrically, if we a two functions togeter it s just like stacking tem on top of one anoter, so te slope at any point will be te sum of te slopes. Example 6.3. Let fx 3x 7. Ten f x 3x 7 3x 0 3. Tis rule is really important but so far we can t o muc wit it we on t ave quite enoug rules yet. 5. Power Rule If fx x n were n is a positive integer, ten f x nx n. In fact, if gx x r an r is any real number, ten g x rx r. We ll only prove tis for integers, using te ifference-of-nt-powers rule. f z n x n x z x z x z xz n + z n 2 x + + zx n 2 + x n z x z x z x z n + z n 2 x + + zx n 2 + x n x n + + x n nx n. Now tat we ave tis, we can compute all sorts of erivatives. Example 6.4. x 2 + 2x + 0 2x. x x /2 2 x /2 2 x. 3 x x /3 3 x 2/3 3 3 x 2. 3 x + x x + 5x ttp://jayaigle.net/teacing/courses/208-spring-4/ 60

3 Jay Daigle Occiental College Mat 4: Calculus Experience 6. Prouct Rule If f an g are functions ten fg x f xgx + fxg x. Conceptually, we sort of know tis alreay; if we a a bit on to f an a bit on to g, ten we get f + f g + g fg + fg + gf + g f, an in te it we can treat g f as being zero. So tis is te same as multiplying te bit we a to g wit f, an multiplying te bit we a to f wit g, an ten aing te two. Example x 2x 3x 2 5x + 2 6x 5. Alternatively, 3x 2x 3x 2 x +3x 2x 3 x + 3x 2 6x 5. Tis rule isn t terribly important as long as we re only working wit rational functions. Once we inclue anyting else, like trig functions, it is critical. Remark 6.6. We can get te power rule from te prouct rule instea of trying to get it irectly. 7. Quotient Rule: If f an g are functions ten f/g x fx+ fx gx+ gx f/g x f xgx fxg x gx 2. fx + gx fxgx + gx + gx fx + gx fxgx + fxgx fxgx + gx + gx fx + gx fxgx + gx + gx gx 2 fx + fx gx + gx gx fx f xgx fxg x gx 2 x Example 6.7. x 2 x 3 2x 3 + 3x 4. x 3 fxgx fxgx + Alternatively, x x x 3 x 3x 2 x3 3x 3 + 3x 2 2x 3 + 3x 4. x 3 x 6 x x 2 + 3x 3 5x 2 + 3x3 5x 9 5x x 9 3 5x 3 5x 2 3 5x 2 3 5x 2 ttp://jayaigle.net/teacing/courses/208-spring-4/ 6

4 Jay Daigle Occiental College Mat 4: Calculus Experience 6.2 Trigonometric erivatives We cannot neglect te trigonometric functions no matter ow muc we migt wis to on occasion. All of te rules for trigonometric erivatives rely on wat are known as te angle aition formulas: sina + b sina cosb + cosa sinb cosa + b cosa cosb sina sinb. Note: you probably won t ever nee to know tese formulas again in tis class. But I will nee tem for anoter page or so of tese notes. Using tis we can compute. sinx sinx + sinx sinx cos + sin cosx sinx sin cosx sinxcos + sin cos cosx + sinx cos 2 cosx + sinx cos + sin 2 cosx sinx cosx sinx cos + sin cos + cosx sinx 0 cosx. sin 2. A similar argument sows tat cosx sinx. Furter using te prouct an quotient rules, we observe tat tanx cotx secx sin x cos 2 x + sin 2 x cos x cos 2 x cos x sin 2 x cos 2 x sin x sin 2 x 0 + sin x cos x cos 2 x sin x cos x cos x cos 2 x sec2 x sin 2 x csc2 x secx tanx ttp://jayaigle.net/teacing/courses/208-spring-4/ 62

5 Jay Daigle Occiental College Mat 4: Calculus Experience cscx 0 cosx sin x sin 2 x cos x sin x sin x cscx cotx. Remember tat as long as you know te erivatives of sin an cos you can always compute tese four erivatives wenever you nee tem. Example If ft 3 sin t + cos t, ten f t 3 cos t sin t. 2. Fin te tangent line to y 6 cos x at π/3, 3. We see tat y 6 sin x, an tus wen x π/3 we ave y 3 3. Recalling tat te equation of our line is y mx x 0 + fx 0, we ave te equation y 3 3x π/ IF gθ θ sin θ + cos θ, ten θ g θ sin θ + θ cos θ + θ sin θ cos θ θ If x x 2 tan x, ten x 2 tan x + x sec2 x 2 tan x We can also compute secon erivatives. sin x sin x. cos x cos x. tan x sec x sec x sec x tan x sec x + sec x tan x sec x 2 sec 2 x tan x. 6.3 Te Cain Rule To start wit an example, suppose gx sin x 2. Ten g x sin xsin x cos x sin x + cos x sin x 2 sin x cos x. Remembering tat x 2 2x, we notice tat tis looks suggestive. It also leas us to ask wat appens wen we buil up functions by composition, tat is, plugging one function into anoter, as we ave ere. If we want to freely buil complex functions from simple ones, we nee to be able to combine tem in cains. Remember tat we efine te function f g by f gx fgx; we take our input x, plug it into g, an ten take te output gx an plug it into f. We can see ow tis is useful in two ifferent ways. First, as we saw earlier, it lets us buil up functions. ttp://jayaigle.net/teacing/courses/208-spring-4/ 63

6 Jay Daigle Occiental College Mat 4: Calculus Experience. x + 2 f gx were gx x + an fx x x f gx were gx x 2 + an fx x sin 2 x f gx were gx sin x an fx x 2. Secon, sometimes composition of functions really is te best way to escribe wat s going on, especially wen you ave a causal cain were one process causes a secon wic causes a tir. For instance, suppose you re riving up a mountain at 2 km/r, an te temperature rops 6.5 C per kilometer of altitue. You can tink about your temperature as a function of your eigt, wic is itself a function of te time; ten te numbers I gave you are te rates of cange, or erivatives, of eac function. It s not tat ar to convince yourself tat you ll get coler by about 3 C per our. Does tis work in general? Proposition 6.9 Cain Rule. Suppose f an g are functions, suc tat g is ifferentiable at a an f is ifferentiable at ga. Ten f g a f ga g a. Proof. f g f ga + f ga a fga + fga ga + ga fga + fga ga + ga f ga g a. ga + ga ga + ga Remark Wen we write f gx, we mean te function f evaluate at te point gx, or in oter wors, te erivative of f at te point gx. 2. It can be elpful as a way of remembering te cain rule tat f g x f g g g x. Don t take tis too seriously as actively meaning anyting, since it only sort of oes, but it s quite elpful for te memory. ttp://jayaigle.net/teacing/courses/208-spring-4/ 64

7 Jay Daigle Occiental College Mat 4: Calculus Experience Example 6... x + 2 f gx were gx x + an fx x 2. Ten f x 2x an g x, so f g x f gx g x 2gx 2x + 2x + 2. Sanity ceck: f g x x 2 + 2x + 2x x f gx were gx x 2 + an fx x 2. Ten f 2x, g 2x, an f g x f gx g x 2gx 2x 2x 2 + 2x 4x 3 + 4x. Sanity ceck: f g x x 4 + 2x 2 + 4x 3 + 4x. 3. sin 2 x f gx were gx sin x an fx x 2. Ten f x 2x, g x cos x, an we ave f g x 2gx cos x 2sin x cos x. 4. cos3x f gx were fx cosx an gx 3x. Ten f x sinx an g x 3 an f g x sin3x sinx 2 f gx were fx sinx an gx x 2. Ten f x cos x, g x 2x, an f g x cosgx 2x 2x cosx If fx is any function, ten we can write fx r as g fx were gx x r. Ten x fxr g f x rfx r f x. 7. Te erivative of sec5x is sec5x tan5x5. 8. Wat is te erivative of 3 x 4 2x+ using te cain rule, we ave x? We can view tis as x4 2x + /3, an 3 x4 2x + 3 x4 2x + 4/3 4x Wat is te erivative of sec 2 x? By te cain rule tis is 2 secx sec x 2 secx secx tanx 2 sec 2 x tanx. ttp://jayaigle.net/teacing/courses/208-spring-4/ 65

8 Jay Daigle Occiental College Mat 4: Calculus Experience 0. Wat is te erivative of tan 4 x? We get 4 tan 3 x sec x 4 tan 3 x secx tanx 4 tan 4 x secx.. Sometimes we ave to nest te cain rule. Wat is te erivative of x 3 + x 2 +? We can pull tis apart slowly. x x 3 + x x3 + x 2 + /2 2 x 3 + x 2 + 3x2 + 2x 2 x x 3 + x Barnburners x x 3 + x 2 + 3x x2 + /2 x x2 + As we saw, te cain rule can stack, or cain togeter. As functions get more complicate we will ave to use multiple applications of te prouct rule, quotient rule, an cain rule to pull our erivative apart. Poll Question Fin x secx2 + x 3 +. x secx2 + x 3 + secx 2 + x 3 + tanx 2 + x 3 + x 2 + x 3 + secx 2 + x 3 + tanx 2 + x 3 + 2x + 2 x3 + /2 3x 2 Poll Question Fin sinx 2 + sin 2 x x x 2 + sinx 2 + sin 2 x x x 2 + sinx2 + sin 2 x x 2 + 2xsinx 2 + sin 2 x x cosx2 2x + 2 sinx cosxx 2 + 2xsinx 2 + sin 2 x x We can keep going wit increasingly complicate problems, basically until we get bore. Tese are really goo practice for making sure you unerstan ow te rules fit togeter. Example 6.2. Fin x + x cos x + 2 ttp://jayaigle.net/teacing/courses/208-spring-4/ 66

9 Jay Daigle Occiental College Mat 4: Calculus Experience x + x cos x + /2 x + x cos x + 2 cos x + 2 /2 x + 2 x /2 cos x + 2 2cos x + sin x x + 2 cos x + 2 cos x + 4 Example 6.3. Calculate sin 2 x 2 + x + x 3 2 x cos x tanx /3 ttp://jayaigle.net/teacing/courses/208-spring-4/ 67

MATH 5a Spring 2018 READING ASSIGNMENTS FOR CHAPTER 2

MATH 5a Spring 2018 READING ASSIGNMENTS FOR CHAPTER 2 MATH 5a Spring 2018 READING ASSIGNMENTS FOR CHAPTER 2 Note: Tere will be a very sort online reading quiz (WebWork) on eac reading assignment due one our before class on its due date. Due dates can be found

More information

1 Finding Trigonometric Derivatives

1 Finding Trigonometric Derivatives MTH 121 Fall 2008 Essex County College Division of Matematics Hanout Version 8 1 October 2, 2008 1 Fining Trigonometric Derivatives 1.1 Te Derivative as a Function Te efinition of te erivative as a function

More information

Trigonometric Integrals

Trigonometric Integrals Most trigonometric integrals can be solved by using trigonometric identities or by following a strategy based on the form of the integrand. There are some that are not so easy! Basic Trig Identities and

More information

3.6 Directional Derivatives and the Gradient Vector

3.6 Directional Derivatives and the Gradient Vector 288 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES 3.6 Directional Derivatives and te Gradient Vector 3.6.1 Functions of two Variables Directional Derivatives Let us first quickly review, one more time, te

More information

2.8 The derivative as a function

2.8 The derivative as a function CHAPTER 2. LIMITS 56 2.8 Te derivative as a function Definition. Te derivative of f(x) istefunction f (x) defined as follows f f(x + ) f(x) (x). 0 Note: tis differs from te definition in section 2.7 in

More information

Differentiation Using Product and Quotient Rule 1

Differentiation Using Product and Quotient Rule 1 Differentiation Using Prouct an Quotient Rule 1 1.. ( + 1)( + + 1) + 1 + +. 4. (7 + 15) ( 7 + 15) 5. 6. ( + 7) (5 + 14) 7. 9. + 4 ( 1) (10 + ) 8 + 49 6 4 + 7 10. 8. 1 4 1 11. 1. 1 ( + 1) ( 1) 1. 04 + 59

More information

13.5 DIRECTIONAL DERIVATIVES and the GRADIENT VECTOR

13.5 DIRECTIONAL DERIVATIVES and the GRADIENT VECTOR 13.5 Directional Derivatives and te Gradient Vector Contemporary Calculus 1 13.5 DIRECTIONAL DERIVATIVES and te GRADIENT VECTOR Directional Derivatives In Section 13.3 te partial derivatives f x and f

More information

Proofs of Derivative Rules

Proofs of Derivative Rules Proos o Derivative Rules Ma 16010 June 2018 Altoug proos are not generally a part o tis course, it s never a ba iea to ave some sort o explanation o wy tings are te way tey are. Tis is especially relevant

More information

4.1 Tangent Lines. y 2 y 1 = y 2 y 1

4.1 Tangent Lines. y 2 y 1 = y 2 y 1 41 Tangent Lines Introduction Recall tat te slope of a line tells us ow fast te line rises or falls Given distinct points (x 1, y 1 ) and (x 2, y 2 ), te slope of te line troug tese two points is cange

More information

4.2 The Derivative. f(x + h) f(x) lim

4.2 The Derivative. f(x + h) f(x) lim 4.2 Te Derivative Introduction In te previous section, it was sown tat if a function f as a nonvertical tangent line at a point (x, f(x)), ten its slope is given by te it f(x + ) f(x). (*) Tis is potentially

More information

2 The Derivative. 2.0 Introduction to Derivatives. Slopes of Tangent Lines: Graphically

2 The Derivative. 2.0 Introduction to Derivatives. Slopes of Tangent Lines: Graphically 2 Te Derivative Te two previous capters ave laid te foundation for te study of calculus. Tey provided a review of some material you will need and started to empasize te various ways we will view and use

More information

Section 2.3: Calculating Limits using the Limit Laws

Section 2.3: Calculating Limits using the Limit Laws Section 2.3: Calculating Limits using te Limit Laws In previous sections, we used graps and numerics to approimate te value of a it if it eists. Te problem wit tis owever is tat it does not always give

More information

8/6/2010 Assignment Previewer

8/6/2010 Assignment Previewer Week 4 Friday Homework (1321979) Question 1234567891011121314151617181920 1. Question DetailsSCalcET6 2.7.003. [1287988] Consider te parabola y 7x - x 2. (a) Find te slope of te tangent line to te parabola

More information

5.4 Sum and Difference Formulas

5.4 Sum and Difference Formulas 380 Capter 5 Analtic Trigonometr 5. Sum and Difference Formulas Using Sum and Difference Formulas In tis section and te following section, ou will stud te uses of several trigonometric identities and formulas.

More information

You Try: A. Dilate the following figure using a scale factor of 2 with center of dilation at the origin.

You Try: A. Dilate the following figure using a scale factor of 2 with center of dilation at the origin. 1 G.SRT.1-Some Tings To Know Dilations affect te size of te pre-image. Te pre-image will enlarge or reduce by te ratio given by te scale factor. A dilation wit a scale factor of 1> x >1enlarges it. A dilation

More information

HW#50: Finish Evaluating Using Inverse Trig Functions (Packet p. 7) Solving Linear Equations (Packet p. 8) ALL

HW#50: Finish Evaluating Using Inverse Trig Functions (Packet p. 7) Solving Linear Equations (Packet p. 8) ALL MATH 4R TRIGONOMETRY HOMEWORK NAME DATE HW#49: Inverse Trigonometric Functions (Packet pp. 5 6) ALL HW#50: Finish Evaluating Using Inverse Trig Functions (Packet p. 7) Solving Linear Equations (Packet

More information

Materials: Whiteboard, TI-Nspire classroom set, quadratic tangents program, and a computer projector.

Materials: Whiteboard, TI-Nspire classroom set, quadratic tangents program, and a computer projector. Adam Clinc Lesson: Deriving te Derivative Grade Level: 12 t grade, Calculus I class Materials: Witeboard, TI-Nspire classroom set, quadratic tangents program, and a computer projector. Goals/Objectives:

More information

Bounding Tree Cover Number and Positive Semidefinite Zero Forcing Number

Bounding Tree Cover Number and Positive Semidefinite Zero Forcing Number Bounding Tree Cover Number and Positive Semidefinite Zero Forcing Number Sofia Burille Mentor: Micael Natanson September 15, 2014 Abstract Given a grap, G, wit a set of vertices, v, and edges, various

More information

Haar Transform CS 430 Denbigh Starkey

Haar Transform CS 430 Denbigh Starkey Haar Transform CS Denbig Starkey. Background. Computing te transform. Restoring te original image from te transform 7. Producing te transform matrix 8 5. Using Haar for lossless compression 6. Using Haar

More information

All truths are easy to understand once they are discovered; the point is to discover them. Galileo

All truths are easy to understand once they are discovered; the point is to discover them. Galileo Section 7. olume All truts are easy to understand once tey are discovered; te point is to discover tem. Galileo Te main topic of tis section is volume. You will specifically look at ow to find te volume

More information

Chapter 7: Analytic Trigonometry

Chapter 7: Analytic Trigonometry Chapter 7: Analytic Trigonometry 7. Trigonometric Identities Below are the basic trig identities discussed in previous chapters. Reciprocal csc(x) sec(x) cot(x) sin(x) cos(x) tan(x) Quotient sin(x) cos(x)

More information

NOTES: A quick overview of 2-D geometry

NOTES: A quick overview of 2-D geometry NOTES: A quick overview of 2-D geometry Wat is 2-D geometry? Also called plane geometry, it s te geometry tat deals wit two dimensional sapes flat tings tat ave lengt and widt, suc as a piece of paper.

More information

1.4 RATIONAL EXPRESSIONS

1.4 RATIONAL EXPRESSIONS 6 CHAPTER Fundamentals.4 RATIONAL EXPRESSIONS Te Domain of an Algebraic Epression Simplifying Rational Epressions Multiplying and Dividing Rational Epressions Adding and Subtracting Rational Epressions

More information

Section 1.2 The Slope of a Tangent

Section 1.2 The Slope of a Tangent Section 1.2 Te Slope of a Tangent You are familiar wit te concept of a tangent to a curve. Wat geometric interpretation can be given to a tangent to te grap of a function at a point? A tangent is te straigt

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. Preface Here are my online notes for my Calculus I course that I teach here at Lamar University. Despite the fact that these are my class notes, they shoul be accessible to anyone wanting to learn Calculus

More information

Numerical Derivatives

Numerical Derivatives Lab 15 Numerical Derivatives Lab Objective: Understand and implement finite difference approximations of te derivative in single and multiple dimensions. Evaluate te accuracy of tese approximations. Ten

More information

Announcements. Lilian s office hours rescheduled: Fri 2-4pm HW2 out tomorrow, due Thursday, 7/7. CSE373: Data Structures & Algorithms

Announcements. Lilian s office hours rescheduled: Fri 2-4pm HW2 out tomorrow, due Thursday, 7/7. CSE373: Data Structures & Algorithms Announcements Lilian s office ours resceduled: Fri 2-4pm HW2 out tomorrow, due Tursday, 7/7 CSE373: Data Structures & Algoritms Deletion in BST 2 5 5 2 9 20 7 0 7 30 Wy migt deletion be arder tan insertion?

More information

Lesson 6 MA Nick Egbert

Lesson 6 MA Nick Egbert Overview From kindergarten we all know ow to find te slope of a line: rise over run, or cange in over cange in. We want to be able to determine slopes of functions wic are not lines. To do tis we use te

More information

Notes: Dimensional Analysis / Conversions

Notes: Dimensional Analysis / Conversions Wat is a unit system? A unit system is a metod of taking a measurement. Simple as tat. We ave units for distance, time, temperature, pressure, energy, mass, and many more. Wy is it important to ave a standard?

More information

You should be able to visually approximate the slope of a graph. The slope m of the graph of f at the point x, f x is given by

You should be able to visually approximate the slope of a graph. The slope m of the graph of f at the point x, f x is given by Section. Te Tangent Line Problem 89 87. r 5 sin, e, 88. r sin sin Parabola 9 9 Hperbola e 9 9 9 89. 7,,,, 5 7 8 5 ortogonal 9. 5, 5,, 5, 5. Not multiples of eac oter; neiter parallel nor ortogonal 9.,,,

More information

AP Calculus Summer Review Packet

AP Calculus Summer Review Packet AP Calculus Summer Review Packet Name: Date began: Completed: **A Formula Sheet has been stapled to the back for your convenience!** Email anytime with questions: danna.seigle@henry.k1.ga.us Complex Fractions

More information

When you dial a phone number on your iphone, how does the

When you dial a phone number on your iphone, how does the 5 Trigonometric Identities When you dial a phone number on your iphone, how does the smart phone know which key you have pressed? Dual Tone Multi-Frequency (DTMF), also known as touch-tone dialing, was

More information

CHAPTER 7: TRANSCENDENTAL FUNCTIONS

CHAPTER 7: TRANSCENDENTAL FUNCTIONS 7.0 Introduction and One to one Functions Contemporary Calculus 1 CHAPTER 7: TRANSCENDENTAL FUNCTIONS Introduction In te previous capters we saw ow to calculate and use te derivatives and integrals of

More information

19.2 Surface Area of Prisms and Cylinders

19.2 Surface Area of Prisms and Cylinders Name Class Date 19 Surface Area of Prisms and Cylinders Essential Question: How can you find te surface area of a prism or cylinder? Resource Locker Explore Developing a Surface Area Formula Surface area

More information

, 1 1, A complex fraction is a quotient of rational expressions (including their sums) that result

, 1 1, A complex fraction is a quotient of rational expressions (including their sums) that result RT. Complex Fractions Wen working wit algebraic expressions, sometimes we come across needing to simplify expressions like tese: xx 9 xx +, xx + xx + xx, yy xx + xx + +, aa Simplifying Complex Fractions

More information

More on Functions and Their Graphs

More on Functions and Their Graphs More on Functions and Teir Graps Difference Quotient ( + ) ( ) f a f a is known as te difference quotient and is used exclusively wit functions. Te objective to keep in mind is to factor te appearing in

More information

Review of Trigonometry

Review of Trigonometry Worksheet 8 Properties of Trigonometric Functions Section Review of Trigonometry This section reviews some of the material covered in Worksheets 8, and The reader should be familiar with the trig ratios,

More information

2.9 Linear Approximations and Differentials

2.9 Linear Approximations and Differentials 2.9 Linear Approximations and Differentials 2.9.1 Linear Approximation Consider the following graph, Recall that this is the tangent line at x = a. We had the following definition, f (a) = lim x a f(x)

More information

SOME PROPERTIES OF TRIGONOMETRIC FUNCTIONS. 5! x7 7! + = 6! + = 4! x6

SOME PROPERTIES OF TRIGONOMETRIC FUNCTIONS. 5! x7 7! + = 6! + = 4! x6 SOME PROPERTIES OF TRIGONOMETRIC FUNCTIONS PO-LAM YUNG We defined earlier the sine cosine by the following series: sin x = x x3 3! + x5 5! x7 7! + = k=0 cos x = 1 x! + x4 4! x6 6! + = k=0 ( 1) k x k+1

More information

12.2 Techniques for Evaluating Limits

12.2 Techniques for Evaluating Limits 335_qd /4/5 :5 PM Page 863 Section Tecniques for Evaluating Limits 863 Tecniques for Evaluating Limits Wat ou sould learn Use te dividing out tecnique to evaluate its of functions Use te rationalizing

More information

Chapter 3: Trigonometric Identities

Chapter 3: Trigonometric Identities Chapter 3: Trigonometric Identities Chapter 3 Overview Two important algebraic aspects of trigonometric functions must be considered: how functions interact with each other and how they interact with their

More information

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier Calculus I Review Handout 1.3 Introduction to Calculus - Limits by Kevin M. Chevalier We are now going to dive into Calculus I as we take a look at the it process. While precalculus covered more static

More information

Wrap up Amortized Analysis; AVL Trees. Riley Porter Winter CSE373: Data Structures & Algorithms

Wrap up Amortized Analysis; AVL Trees. Riley Porter Winter CSE373: Data Structures & Algorithms CSE 373: Data Structures & Wrap up Amortized Analysis; AVL Trees Riley Porter Course Logistics Symposium offered by CSE department today HW2 released, Big- O, Heaps (lecture slides ave pseudocode tat will

More information

1. if both the powers m and n are even, rewrite both trig functions using the identities in (1)

1. if both the powers m and n are even, rewrite both trig functions using the identities in (1) Section 7. Avance Integration Techniques: Trigonometric Integrals We will use the following ientities quite often in this section; you woul o well to memorize them. sin x 1 cos(x cos x 1+cos(x (1 cos(x

More information

5.2 Verifying Trigonometric Identities

5.2 Verifying Trigonometric Identities 360 Chapter 5 Analytic Trigonometry 5. Verifying Trigonometric Identities Introduction In this section, you will study techniques for verifying trigonometric identities. In the next section, you will study

More information

CSE 332: Data Structures & Parallelism Lecture 8: AVL Trees. Ruth Anderson Winter 2019

CSE 332: Data Structures & Parallelism Lecture 8: AVL Trees. Ruth Anderson Winter 2019 CSE 2: Data Structures & Parallelism Lecture 8: AVL Trees Rut Anderson Winter 29 Today Dictionaries AVL Trees /25/29 2 Te AVL Balance Condition: Left and rigt subtrees of every node ave eigts differing

More information

Walt Whitman High School SUMMER REVIEW PACKET. For students entering AP CALCULUS BC

Walt Whitman High School SUMMER REVIEW PACKET. For students entering AP CALCULUS BC Walt Whitman High School SUMMER REVIEW PACKET For students entering AP CALCULUS BC Name: 1. This packet is to be handed in to your Calculus teacher on the first day of the school year.. All work must be

More information

12.2 Investigate Surface Area

12.2 Investigate Surface Area Investigating g Geometry ACTIVITY Use before Lesson 12.2 12.2 Investigate Surface Area MATERIALS grap paper scissors tape Q U E S T I O N How can you find te surface area of a polyedron? A net is a pattern

More information

Pre Calculus Worksheet: Fundamental Identities Day 1

Pre Calculus Worksheet: Fundamental Identities Day 1 Pre Calculus Worksheet: Fundamental Identities Day 1 Use the indicated strategy from your notes to simplify each expression. Each section may use the indicated strategy AND those strategies before. Strategy

More information

( )( ) ( ) MTH 95 Practice Test 1 Key = 1+ x = f x. g. ( ) ( ) The only zero of f is 7 2. The only solution to g( x ) = 4 is 2.

( )( ) ( ) MTH 95 Practice Test 1 Key = 1+ x = f x. g. ( ) ( ) The only zero of f is 7 2. The only solution to g( x ) = 4 is 2. Mr. Simonds MTH 95 Class MTH 95 Practice Test 1 Key 1. a. g ( ) ( ) + 4( ) 4 1 c. f ( x) 7 7 7 x 14 e. + 7 + + 4 f g 1+ g. f 4 + 4 7 + 1+ i. g ( 4) ( 4) + 4( 4) k. g( x) x 16 + 16 0 x 4 + 4 4 0 x 4x+ 4

More information

Hash-Based Indexes. Chapter 11. Comp 521 Files and Databases Spring

Hash-Based Indexes. Chapter 11. Comp 521 Files and Databases Spring Has-Based Indexes Capter 11 Comp 521 Files and Databases Spring 2010 1 Introduction As for any index, 3 alternatives for data entries k*: Data record wit key value k

More information

Areas of Parallelograms and Triangles. To find the area of parallelograms and triangles

Areas of Parallelograms and Triangles. To find the area of parallelograms and triangles 10-1 reas of Parallelograms and Triangles ommon ore State Standards G-MG..1 Use geometric sapes, teir measures, and teir properties to descrie ojects. G-GPE..7 Use coordinates to compute perimeters of

More information

Sec 4.1 Trigonometric Identities Basic Identities. Name: Reciprocal Identities:

Sec 4.1 Trigonometric Identities Basic Identities. Name: Reciprocal Identities: Sec 4. Trigonometric Identities Basic Identities Name: Reciprocal Identities: Quotient Identities: sin csc cos sec csc sin sec cos sin tan cos cos cot sin tan cot cot tan Using the Reciprocal and Quotient

More information

Use the indicated strategy from your notes to simplify each expression. Each section may use the indicated strategy AND those strategies before.

Use the indicated strategy from your notes to simplify each expression. Each section may use the indicated strategy AND those strategies before. Pre Calculus Worksheet: Fundamental Identities Day 1 Use the indicated strategy from your notes to simplify each expression. Each section may use the indicated strategy AND those strategies before. Strategy

More information

1. Let be a point on the terminal side of θ. Find the 6 trig functions of θ. (Answers need not be rationalized). b. P 1,3. ( ) c. P 10, 6.

1. Let be a point on the terminal side of θ. Find the 6 trig functions of θ. (Answers need not be rationalized). b. P 1,3. ( ) c. P 10, 6. Q. Right Angle Trigonometry Trigonometry is an integral part of AP calculus. Students must know the basic trig function definitions in terms of opposite, adjacent and hypotenuse as well as the definitions

More information

When the dimensions of a solid increase by a factor of k, how does the surface area change? How does the volume change?

When the dimensions of a solid increase by a factor of k, how does the surface area change? How does the volume change? 8.4 Surface Areas and Volumes of Similar Solids Wen te dimensions of a solid increase by a factor of k, ow does te surface area cange? How does te volume cange? 1 ACTIVITY: Comparing Surface Areas and

More information

12.2 TECHNIQUES FOR EVALUATING LIMITS

12.2 TECHNIQUES FOR EVALUATING LIMITS Section Tecniques for Evaluating Limits 86 TECHNIQUES FOR EVALUATING LIMITS Wat ou sould learn Use te dividing out tecnique to evaluate its of functions Use te rationalizing tecnique to evaluate its of

More information

Verifying Trigonometric Identities

Verifying Trigonometric Identities Verifying Trigonometric Identities What you should learn Verify trigonometric identities. Why you should learn it You can use trigonometric identities to rewrite trigonometric equations that model real-life

More information

Chapter 4 Using Fundamental Identities Section USING FUNDAMENTAL IDENTITIES. Fundamental Trigonometric Identities. Reciprocal Identities

Chapter 4 Using Fundamental Identities Section USING FUNDAMENTAL IDENTITIES. Fundamental Trigonometric Identities. Reciprocal Identities Chapter 4 Using Fundamental Identities Section 4.1 4.1 USING FUNDAMENTAL IDENTITIES Fundamental Trigonometric Identities Reciprocal Identities csc x sec x cot x Quotient Identities tan x cot x Pythagorean

More information

THANK YOU FOR YOUR PURCHASE!

THANK YOU FOR YOUR PURCHASE! THANK YOU FOR YOUR PURCHASE! Te resources included in tis purcase were designed and created by me. I ope tat you find tis resource elpful in your classroom. Please feel free to contact me wit any questions

More information

Figure 1: 2D arm. Figure 2: 2D arm with labelled angles

Figure 1: 2D arm. Figure 2: 2D arm with labelled angles 2D Kinematics Consier a robotic arm. We can sen it commans like, move that joint so it bens at an angle θ. Once we ve set each joint, that s all well an goo. More interesting, though, is the question of

More information

Name Trigonometric Functions 4.2H

Name Trigonometric Functions 4.2H TE-31 Name Trigonometric Functions 4.H Ready, Set, Go! Ready Topic: Even and odd functions The graphs of even and odd functions make it easy to identify the type of function. Even functions have a line

More information

Hash-Based Indexes. Chapter 11. Comp 521 Files and Databases Fall

Hash-Based Indexes. Chapter 11. Comp 521 Files and Databases Fall Has-Based Indexes Capter 11 Comp 521 Files and Databases Fall 2012 1 Introduction Hasing maps a searc key directly to te pid of te containing page/page-overflow cain Doesn t require intermediate page fetces

More information

3.4. Derivatives of Trigonometric Functions. Derivative of the Sine Function

3.4. Derivatives of Trigonometric Functions. Derivative of the Sine Function 3.4 Derivatives of Trigonometric Functions 83 3.4 Derivatives of Trigonometric Functions Many of the phenomena we want information about are approximately perioic (electromagnetic fiels, heart rhythms,

More information

LESSON 1: Trigonometry Pre-test

LESSON 1: Trigonometry Pre-test LESSON 1: Trigonometry Pre-test Instructions. Answer each question to the best of your ability. If there is more than one answer, put both/all answers down. Try to answer each question, but if there is

More information

Proving Trigonometric Identities

Proving Trigonometric Identities MHF 4UI Unit 7 Day Proving Trigonometric Identities An identity is an epression which is true for all values in the domain. Reciprocal Identities csc θ sin θ sec θ cos θ cot θ tan θ Quotient Identities

More information

8.6 Other Trigonometric Functions

8.6 Other Trigonometric Functions 8.6 Other Trigonometric Functions I have already discussed all the trigonometric functions and their relationship to the sine and cosine functions and the x and y coordinates on the unit circle, but let

More information

CLEP Pre-Calculus. Section 1: Time 30 Minutes 50 Questions. 1. According to the tables for f(x) and g(x) below, what is the value of [f + g]( 1)?

CLEP Pre-Calculus. Section 1: Time 30 Minutes 50 Questions. 1. According to the tables for f(x) and g(x) below, what is the value of [f + g]( 1)? CLEP Pre-Calculus Section : Time 0 Minutes 50 Questions For each question below, choose the best answer from the choices given. An online graphing calculator (non-cas) is allowed to be used for this section..

More information

Properties of the Derivative Lecture 9.

Properties of the Derivative Lecture 9. Properties of the Derivative Lecture 9. Recall that the average rate of change of a function y = f(x) over the interval from a to a + h, with h 0, is the slope of the line between y x f(a + h) f(a) =,

More information

2.5 Evaluating Limits Algebraically

2.5 Evaluating Limits Algebraically SECTION.5 Evaluating Limits Algebraically 3.5 Evaluating Limits Algebraically Preinary Questions. Wic of te following is indeterminate at x? x C x ; x x C ; x x C 3 ; x C x C 3 At x, x isofteform 0 xc3

More information

In a right triangle, the sum of the squares of the equals the square of the

In a right triangle, the sum of the squares of the equals the square of the Math 098 Chapter 1 Section 1.1 Basic Concepts about Triangles 1) Conventions in notation for triangles - Vertices with uppercase - Opposite sides with corresponding lower case 2) Pythagorean theorem In

More information

Education Resources. This section is designed to provide examples which develop routine skills necessary for completion of this section.

Education Resources. This section is designed to provide examples which develop routine skills necessary for completion of this section. Education Resources Trigonometry Higher Mathematics Supplementary Resources Section A This section is designed to provide examples which develop routine skills necessary for completion of this section.

More information

Math 1330 Test 3 Review Sections , 5.1a, ; Know all formulas, properties, graphs, etc!

Math 1330 Test 3 Review Sections , 5.1a, ; Know all formulas, properties, graphs, etc! Math 1330 Test 3 Review Sections 4.1 4.3, 5.1a, 5. 5.4; Know all formulas, properties, graphs, etc! 1. Similar to a Free Response! Triangle ABC has right angle C, with AB = 9 and AC = 4. a. Draw and label

More information

AP Calculus AB. Table of Contents. Slide 1 / 180. Slide 2 / 180. Slide 3 / 180. Review Unit

AP Calculus AB. Table of Contents. Slide 1 / 180. Slide 2 / 180. Slide 3 / 180. Review Unit Slide 1 / 180 Slide 2 / 180 P alculus Review Unit 2015-10-20 www.njctl.org Table of ontents lick on the topic to go to that section Slide 3 / 180 Slopes Equations of Lines Functions Graphing Functions

More information

f(x) = undefined otherwise We have Domain(f) = [ π, π ] and Range(f) = [ 1, 1].

f(x) = undefined otherwise We have Domain(f) = [ π, π ] and Range(f) = [ 1, 1]. Lecture 6 : Inverse Trigonometric Functions Inverse Sine Function (arcsin x = sin x) The trigonometric function sin x is not one-to-one functions, hence in orer to create an inverse, we must restrict its

More information

AP Calculus AB. Table of Contents. Slide 1 / 180. Slide 2 / 180. Slide 3 / 180. Review Unit

AP Calculus AB. Table of Contents. Slide 1 / 180. Slide 2 / 180. Slide 3 / 180. Review Unit Slide 1 / 180 Slide 2 / 180 P alculus Review Unit 2015-10-20 www.njctl.org Table of ontents lick on the topic to go to that section Slide 3 / 180 Slopes Equations of Lines Functions Graphing Functions

More information

VOLUMES. The volume of a cylinder is determined by multiplying the cross sectional area by the height. r h V. a) 10 mm 25 mm.

VOLUMES. The volume of a cylinder is determined by multiplying the cross sectional area by the height. r h V. a) 10 mm 25 mm. OLUME OF A CYLINDER OLUMES Te volume of a cylinder is determined by multiplying te cross sectional area by te eigt. r Were: = volume r = radius = eigt Exercise 1 Complete te table ( =.14) r a) 10 mm 5

More information

18.01 Single Variable Calculus Fall 2006

18.01 Single Variable Calculus Fall 2006 MIT OpenCourseWare http://ocw.mit.edu 18.01 Single Variable Calculus Fall 006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Lecture 6: Trigonometric

More information

Partial Derivatives (Online)

Partial Derivatives (Online) 7in x 10in Felder c04_online.tex V3 - January 21, 2015 9:44 A.M. Page 1 CHAPTER 4 Partial Derivatives (Online) 4.7 Tangent Plane Approximations and Power Series It is often helpful to use a linear approximation

More information

Angle Measure 1. Use the relationship π rad = 180 to express the following angle measures in radian measure. a) 180 b) 135 c) 270 d) 258

Angle Measure 1. Use the relationship π rad = 180 to express the following angle measures in radian measure. a) 180 b) 135 c) 270 d) 258 Chapter 4 Prerequisite Skills BLM 4-1.. Angle Measure 1. Use the relationship π rad = 180 to express the following angle measures in radian measure. a) 180 b) 135 c) 70 d) 58. Use the relationship 1 =!

More information

Practice Set 44 Simplifying Trigonometric Expressions

Practice Set 44 Simplifying Trigonometric Expressions Practice Set Simplifying Trigonometric Expressions No Calculator Objectives Simplify trigonometric expression using the fundamental trigonometric identities Use the trigonometric co-function identities

More information

(a) Find the equation of the plane that passes through the points P, Q, and R.

(a) Find the equation of the plane that passes through the points P, Q, and R. Math 040 Miterm Exam 1 Spring 014 S o l u t i o n s 1 For given points P (, 0, 1), Q(, 1, 0), R(3, 1, 0) an S(,, 0) (a) Fin the equation of the plane that passes through the points P, Q, an R P Q = 0,

More information

CE 221 Data Structures and Algorithms

CE 221 Data Structures and Algorithms CE Data Structures and Algoritms Capter 4: Trees (AVL Trees) Text: Read Weiss, 4.4 Izmir University of Economics AVL Trees An AVL (Adelson-Velskii and Landis) tree is a binary searc tree wit a balance

More information

11. Differentiating inverse functions.

11. Differentiating inverse functions. . Differentiating inverse functions. The General Case: Fin y x when y f x. Since f y x an we regar y as being a function of x, we ifferentiate both sies of the equation f y x with respect to x using the

More information

Lesson 26 - Review of Right Triangle Trigonometry

Lesson 26 - Review of Right Triangle Trigonometry Lesson 26 - Review of Right Triangle Trigonometry PreCalculus Santowski PreCalculus - Santowski 1 (A) Review of Right Triangle Trig Trigonometry is the study and solution of Triangles. Solving a triangle

More information

Limits and Continuity

Limits and Continuity CHAPTER Limits and Continuit. Rates of Cange and Limits. Limits Involving Infinit.3 Continuit.4 Rates of Cange and Tangent Lines An Economic Injur Level (EIL) is a measurement of te fewest number of insect

More information

Welcome. Please Sign-In

Welcome. Please Sign-In Welcome Please Sign-In Day 1 Session 1 Self-Evaluation Topics to be covered: Equations Systems of Equations Solving Inequalities Absolute Value Equations Equations Equations An equation says two things

More information

Classify solids. Find volumes of prisms and cylinders.

Classify solids. Find volumes of prisms and cylinders. 11.4 Volumes of Prisms and Cylinders Essential Question How can you find te volume of a prism or cylinder tat is not a rigt prism or rigt cylinder? Recall tat te volume V of a rigt prism or a rigt cylinder

More information

Section 4.8 Solving Problems with Trigonometry

Section 4.8 Solving Problems with Trigonometry 9 Cater Trigonometric Functions. (a) Te orizontal asymtote of te gra on te left is y =. (b) Te two orizontal asymtotes of te gra on te rigt are y= an y=. (c) Te gra of y = sin - a will look like te gra

More information

x,,, (All real numbers except where there are

x,,, (All real numbers except where there are Section 5.3 Graphs of other Trigonometric Functions Tangent and Cotangent Functions sin( x) Tangent function: f( x) tan( x) ; cos( x) 3 5 Vertical asymptotes: when cos( x ) 0, that is x,,, Domain: 3 5

More information

MAC-CPTM Situations Project

MAC-CPTM Situations Project raft o not use witout permission -P ituations Project ituation 20: rea of Plane Figures Prompt teacer in a geometry class introduces formulas for te areas of parallelograms, trapezoids, and romi. e removes

More information

Section 5.3 Graphs of the Cosecant and Secant Functions 1

Section 5.3 Graphs of the Cosecant and Secant Functions 1 Section 5.3 Graphs of the Cosecant, Secant, Tangent, and Cotangent Functions The Cosecant Graph RECALL: 1 csc x so where sin x 0, csc x has an asymptote. sin x To graph y Acsc( Bx C) D, first graph THE

More information

4.2 Implicit Differentiation

4.2 Implicit Differentiation 6 Chapter 4 More Derivatives 4. Implicit Differentiation What ou will learn about... Implicitl Define Functions Lenses, Tangents, an Normal Lines Derivatives of Higher Orer Rational Powers of Differentiable

More information

Warm-Up: Final Review #1. A rectangular pen is made from 80 feet of fencing. What is the maximum area the pen can be?

Warm-Up: Final Review #1. A rectangular pen is made from 80 feet of fencing. What is the maximum area the pen can be? Warm-Up: Final Review #1 A rectangular pen is made from 80 feet of fencing. What is the maximum area the pen can be? Warm-Up: Final Review #2 1) Find distance (-2, 4) (6, -3) 2) Find roots y = x 4-6x 2

More information

The Euler and trapezoidal stencils to solve d d x y x = f x, y x

The Euler and trapezoidal stencils to solve d d x y x = f x, y x restart; Te Euler and trapezoidal stencils to solve d d x y x = y x Te purpose of tis workseet is to derive te tree simplest numerical stencils to solve te first order d equation y x d x = y x, and study

More information

Limits and Derivatives (Review of Math 249 or 251)

Limits and Derivatives (Review of Math 249 or 251) Chapter 3 Limits and Derivatives (Review of Math 249 or 251) 3.1 Overview This is the first of two chapters reviewing material from calculus; its and derivatives are discussed in this chapter, and integrals

More information

Related Angles WS # 6.1. Co-Related Angles WS # 6.2. Solving Linear Trigonometric Equations Linear

Related Angles WS # 6.1. Co-Related Angles WS # 6.2. Solving Linear Trigonometric Equations Linear UNIT 6 TRIGONOMETRIC IDENTITIES AND EQUATIONS Date Lesson Text TOPIC Homework 13 6.1 (60) 7.1 Related Angles WS # 6.1 15 6. (61) 7.1 Co-Related Angles WS # 6. 16 6.3 (63) 7. Compound Angle Formulas I Sine

More information

Chapter 7. Exercise 7A. dy dx = 30x(x2 3) 2 = 15(2x(x 2 3) 2 ) ( (x 2 3) 3 ) y = 15

Chapter 7. Exercise 7A. dy dx = 30x(x2 3) 2 = 15(2x(x 2 3) 2 ) ( (x 2 3) 3 ) y = 15 Chapter 7 Exercise 7A. I will use the intelligent guess method for this question, but my preference is for the rearranging method, so I will use that for most of the questions where one of these approaches

More information

Measuring Length 11and Area

Measuring Length 11and Area Measuring Lengt 11and Area 11.1 Areas of Triangles and Parallelograms 11.2 Areas of Trapezoids, Romuses, and Kites 11.3 Perimeter and Area of Similar Figures 11.4 Circumference and Arc Lengt 11.5 Areas

More information

Higher. The Wave Equation. The Wave Equation 146

Higher. The Wave Equation. The Wave Equation 146 Higher Mathematics UNIT OUTCOME 4 The Wave Equation Contents The Wave Equation 146 1 Expressing pcosx + qsinx in the form kcos(x a 146 Expressing pcosx + qsinx in other forms 147 Multiple Angles 148 4

More information