Haar Transform CS 430 Denbigh Starkey

Size: px
Start display at page:

Download "Haar Transform CS 430 Denbigh Starkey"

Transcription

1 Haar Transform CS Denbig Starkey. Background. Computing te transform. Restoring te original image from te transform 7. Producing te transform matrix 8 5. Using Haar for lossless compression 6. Using Haar for lossy compression

2 Background Te Haar transform as a rater messy looking definition, so I ll give te definition and will ten go carefully troug an example. Te transform is important for a couple of reasons: It leads to efficient image compression scemes, bot lossless and lossy, wic I ll describe later in tese notes, and it provides a lead-in to wavelets, wic I ll be covering in te next set of notes. I ll continue to assume te image is, were is a power of, and tat J = log. In te pyramid sceme we created a number of new images, leading to an increase of pixels wit an upper bound of a % increase. Wit Haar our transformed image will ave te same dimensions as te original, and so any compression savings are immediately gained.

3 Computing te Haar Transform Given an image F, te Haar transform will be computed as: T = HFH T. ote: Gonzalez incorrectly omits te transpose. were H contains te Haar basis functions. Te matrix H will be defined wit te structure: H = Te definition of tese k z blending functions first needs a side definition of two additional variables, p and q, for eac row k. Tey are defined using four rules: k = p + q p J if p =, ten q = or if p, ten q p Tese are used to define te k z functions as follows. z = p / q q if z < p p p / q q k z = pq z = if z <. p p oterwise I ll build te H matrix slowly using te matrix as an example, were = and so J =. First I ll get te a and b values tat we need for k =,, and. For all of tese cases te second rule for p and q states tat p is eiter or, since J =.

4 If k = = p + q, ten eiter p = and so q =, or p = and so q =. Te second option violates te fourt rule and so p = and q =. If k = = p + q, ten eiter p = and so q =, or p = and so q =. Te first option violates te tird rule and so p = and q =. If k = = p + q, ten eiter p = and so q =, or p = and so q =. Te first option violates te tird rule and so p = and q =. ow we need te matrix: H =. ote tat all of tese values are multiples of, wic is in tis case, so we can pull tis value outside te matrix. Te first row is easy, since every element is defined as being. Te second row as k =. As we saw above, p = and q =. So te definition says tat: z = z = if z < if z <. oterwise So =, =, =, and =. ow consider te tird row, wit k =. As we saw above, p = and q =. Te definition says tat:

5 5 z = z = < < oterwise z if z if. So =, =, =, and =. For k = we found tat p = and q =. So, using te definition, z = z = < < oterwise z if z if. So =, =, =, and =. Putting tis all togeter, we finally get: H =. ote tat Gonzalez and Woods ave one of tese values wrong. Te Haar transform is easier to develop since J =, and so p. I.e., p can only be zero. For k = tis gives = + q, and so q =. z = for all z, wic fixes te first row. z = z = < < oterwise z if z if. Te functions are evaluated at z = and z =, giving te matrix:

6 H =. Gonzalez and Woods, in Figure 7.8, sows te result of applying te H Haar discrete wavelet transform to an image, but doesn t explain a lot of concepts tat are going on in te figure. E.g., one migt get te impression from tat figure tat Haar will produce a reduced copy of te original image in te top left corner of te transformed image, but tis doesn t appen. As I ll discuss below, tis reduced image is actually scattered troug te transformed array, but Gonzalez and Woods ave reorganized te array structure to make it more visually intuitive. Tey also don t sow ow easy it is to take te transformed image and restore te original. I ll look at te restoration problem first, and ten describe wat is going on in Figure 7.8 and all oter transformed images. Finally I ll look at ow to use Haar in lossless and lossy compression scemes. 6

7 Restoring te Original Image from te Transform Look at te rows of H and H as vectors. If we take te dot product of any pair of tese row vectors ten te result is zero, wic means tat in H te four rows form ortogonal vectors in -space and in H tey form ortogonal vectors in -space. In addition te magnitude of eac row vector remembering to include te multiplier outside te matrix is equal to. Tecnically tis means tat tese and all oter Haar matrices are ortonormal, wic also means tat te inverse of eac Haar matrix is its transform. Te discrete Haar transform formula is, as mentioned above, T = HFH T. Because H is ortonormal tis can be rewritten as: and so T = HFH -, H - TH = F. Reusing te ortonormal property means tat we can restore F from T using: F = H T TH. 7

8 Producing te Transform Matrix As discussed above, te image sown in Figure 7.8 of Gonzales and Woods is not te Haar transform image, but as been rearranged for visual convenience. Tis rearrangement is very standard, but you sould know wat is being done to get te image. I ll use H in te discussion below, since leads to simpler descriptions, but te extension to, say, H and is trivial. First, remember tat: H =. We divide te matrix up into blocks, and apply te transform to eac block to get te block in te transformed image. E.g., if te block as a and b in its first row and c and d in its second row te transform will be H a c b d H T = a c b d oting tat te transpose of H is te same as H, wic is not true for oter Haar matrices. Tis gives te transformed block: a + b + c + d a + b c d a b + c d a b c + d. Look at wat is going on ere. Te top left is a lowpass or mean filter. Te top rigt is an average orizontal gradient, and te bottom left an average vertical gradient. Te bottom rigt gives diagonal curvature. Applying tis to an image of Peppy on te left, below, gives te result on te rigt, wic doesn t ave any of te structure sown in, say, Figure 7.8 of Gonzalez and Woods. However te cat is clearly recognizable for two reasons. One is tat every fourt pixel in te new image is an average of four pixels in te original, and te oter is tat te image also includes te vertical, orizontal, and diagonal curvature filter information. Te Peppy image was 5 5 wit 56 gray levels. Te transform produced values between -55 e.g., a = b =, c = d = 55 on te lower left and +5 all four variables = 55 on te top left. So te transformed image was 8

9 normalized to be between and 55 for display by adding 55 and dividing by. Peppy Peppy wit Haar Transform Te form in Gonzalez and Woods Figure 7.8 is te result of moving te pixels around. In tis case we ll get four tiles, eac 56 56, were te top left corner is all of te top left pixels in eac block, te top rigt is all of te top rigt pixels in eac block, etc. So we get te result sown below: Peppy wit tiled Haar Transform I ve done te color balancing differently ere. Te top left as an intensity range of to 5, so I ve alved tose intensities to get to 55. Te oter 9

10 tree tiles ave a range of -55 to +55, and so for tem I ve added 55 and ten alved. I.e., te adjustment is not consistent troug te image. Te relevant code from my program for getting te original transform and te tiled transform, assuming obvious definitions and wit SIZE #defined as 5 is: for i = ; i < SIZE; i = i + { for j = ; j < SIZE; j = j + { a = inarray[i][j]; b = inarray[i][j + ]; c = inarray[i + ][j]; d = inarray[i + ][j + ]; outarray[i][j] = a + b + c + d / ; outarray[i][j + ] = a - b + c - d / ; outarray[i + ][j] = a + b - c - d / ; outarray[i + ][j + ] = a - b - c + d / ; outto55[i][j] = outarray[i][j] + 55 / ; outto55[i][j + ] = outarray[i][j + ] + 55 / ; outto55[i + ][j] = outarray[i + ][j] + 55 / ; outto55[i + ][j + ] = outarray[i + ][j + ] + 55 / ; } } iby = i / ; jby = j / ; sizeby = SIZE / ; prettyout[iby][jby] = outarray[i][j] / ; prettyout[iby][jby + sizeby] = outarray[i][j + ] + 55 / ; prettyout[iby + sizeby][jby] = outarray[i + ][j] + 55 / ; prettyout[iby + sizeby][jby + sizeby] = outarray[i + ][j + ] + 55 / ; If I take te outarray values and use tem as input to te same program I get Peppy back, as expected.

11 Using Haar for Lossless Compression I ll look at lossless compression ere and ten I ll look at lossy compression in te next part of tese notes. For lossless compression I ll use H as te example again, altoug as we ll see te compression is muc better for te iger H transforms. Wit H we get four tiles using te tiled view. Te top left tile doesn t compress any better tan te input image, but te oter tree tiles are clustered very close to zero. E.g., for Peppy over 8% of te pixels in tese tree tiles are between - and +, leaving only 8% of te pixels wit absolute values between and 55. Even better, tere are only seven pixels wit absolute values greater tan 7, out of a total of 96,68 pixels. So using some kind of variable lengt coding like Huffman coding some uge gains can be acieved for te tree filter tiles. If we were te use a iger H transform like, say, H 8, ten te reduced tile in te top left will now only contain 6 of te pixels in te image, and so te 6 compression will be over te remaining 6 of te pixels. Tis means tat significant compression can be acieved wit Huffman coding or similar systems.

12 Using Haar for Lossy Compression Tis is were one can win spectacularly using Haar. Most of te output of te Haar transform is, as I ve discussed before, centered around zero. E.g., even for te Peppy image, wic as some extreme differences in intensity, for H about 6% of te pixels in te tree modified tiles are at zero, and 8.9% are between - and +. Since tese are representing relatively low cange areas, one can take a band of tem around zero and cange tem all to zero witout affecting image quality wen te original image is restored. E.g., for te image below I applied H to Peppy and ten canged all values in te tree filter tiles tat were between - and + to zero. Ten, wen I restored it I got te image sown. I ve looked carefully at tis image and te original Peppy side by side on my screen at 5 5 eac, and aven t been able to see any differences at all. Tis means tat using H wit tis cange over 8% of te values in te 75% of te image tat represents filters ave te same value zero, and so any image compression sceme like Huffman or run-lengt encoding will be able to make uge gains. If I were to use, say, H 8, instead, I d be able to get similar compression 6 savings, but now over 6 of te file.

2.8 The derivative as a function

2.8 The derivative as a function CHAPTER 2. LIMITS 56 2.8 Te derivative as a function Definition. Te derivative of f(x) istefunction f (x) defined as follows f f(x + ) f(x) (x). 0 Note: tis differs from te definition in section 2.7 in

More information

MATH 5a Spring 2018 READING ASSIGNMENTS FOR CHAPTER 2

MATH 5a Spring 2018 READING ASSIGNMENTS FOR CHAPTER 2 MATH 5a Spring 2018 READING ASSIGNMENTS FOR CHAPTER 2 Note: Tere will be a very sort online reading quiz (WebWork) on eac reading assignment due one our before class on its due date. Due dates can be found

More information

4.2 The Derivative. f(x + h) f(x) lim

4.2 The Derivative. f(x + h) f(x) lim 4.2 Te Derivative Introduction In te previous section, it was sown tat if a function f as a nonvertical tangent line at a point (x, f(x)), ten its slope is given by te it f(x + ) f(x). (*) Tis is potentially

More information

2 The Derivative. 2.0 Introduction to Derivatives. Slopes of Tangent Lines: Graphically

2 The Derivative. 2.0 Introduction to Derivatives. Slopes of Tangent Lines: Graphically 2 Te Derivative Te two previous capters ave laid te foundation for te study of calculus. Tey provided a review of some material you will need and started to empasize te various ways we will view and use

More information

3.6 Directional Derivatives and the Gradient Vector

3.6 Directional Derivatives and the Gradient Vector 288 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES 3.6 Directional Derivatives and te Gradient Vector 3.6.1 Functions of two Variables Directional Derivatives Let us first quickly review, one more time, te

More information

4.1 Tangent Lines. y 2 y 1 = y 2 y 1

4.1 Tangent Lines. y 2 y 1 = y 2 y 1 41 Tangent Lines Introduction Recall tat te slope of a line tells us ow fast te line rises or falls Given distinct points (x 1, y 1 ) and (x 2, y 2 ), te slope of te line troug tese two points is cange

More information

Section 2.3: Calculating Limits using the Limit Laws

Section 2.3: Calculating Limits using the Limit Laws Section 2.3: Calculating Limits using te Limit Laws In previous sections, we used graps and numerics to approimate te value of a it if it eists. Te problem wit tis owever is tat it does not always give

More information

Bounding Tree Cover Number and Positive Semidefinite Zero Forcing Number

Bounding Tree Cover Number and Positive Semidefinite Zero Forcing Number Bounding Tree Cover Number and Positive Semidefinite Zero Forcing Number Sofia Burille Mentor: Micael Natanson September 15, 2014 Abstract Given a grap, G, wit a set of vertices, v, and edges, various

More information

13.5 DIRECTIONAL DERIVATIVES and the GRADIENT VECTOR

13.5 DIRECTIONAL DERIVATIVES and the GRADIENT VECTOR 13.5 Directional Derivatives and te Gradient Vector Contemporary Calculus 1 13.5 DIRECTIONAL DERIVATIVES and te GRADIENT VECTOR Directional Derivatives In Section 13.3 te partial derivatives f x and f

More information

Notes: Dimensional Analysis / Conversions

Notes: Dimensional Analysis / Conversions Wat is a unit system? A unit system is a metod of taking a measurement. Simple as tat. We ave units for distance, time, temperature, pressure, energy, mass, and many more. Wy is it important to ave a standard?

More information

Numerical Derivatives

Numerical Derivatives Lab 15 Numerical Derivatives Lab Objective: Understand and implement finite difference approximations of te derivative in single and multiple dimensions. Evaluate te accuracy of tese approximations. Ten

More information

Materials: Whiteboard, TI-Nspire classroom set, quadratic tangents program, and a computer projector.

Materials: Whiteboard, TI-Nspire classroom set, quadratic tangents program, and a computer projector. Adam Clinc Lesson: Deriving te Derivative Grade Level: 12 t grade, Calculus I class Materials: Witeboard, TI-Nspire classroom set, quadratic tangents program, and a computer projector. Goals/Objectives:

More information

CSE 332: Data Structures & Parallelism Lecture 8: AVL Trees. Ruth Anderson Winter 2019

CSE 332: Data Structures & Parallelism Lecture 8: AVL Trees. Ruth Anderson Winter 2019 CSE 2: Data Structures & Parallelism Lecture 8: AVL Trees Rut Anderson Winter 29 Today Dictionaries AVL Trees /25/29 2 Te AVL Balance Condition: Left and rigt subtrees of every node ave eigts differing

More information

CHAPTER 7: TRANSCENDENTAL FUNCTIONS

CHAPTER 7: TRANSCENDENTAL FUNCTIONS 7.0 Introduction and One to one Functions Contemporary Calculus 1 CHAPTER 7: TRANSCENDENTAL FUNCTIONS Introduction In te previous capters we saw ow to calculate and use te derivatives and integrals of

More information

Announcements. Lilian s office hours rescheduled: Fri 2-4pm HW2 out tomorrow, due Thursday, 7/7. CSE373: Data Structures & Algorithms

Announcements. Lilian s office hours rescheduled: Fri 2-4pm HW2 out tomorrow, due Thursday, 7/7. CSE373: Data Structures & Algorithms Announcements Lilian s office ours resceduled: Fri 2-4pm HW2 out tomorrow, due Tursday, 7/7 CSE373: Data Structures & Algoritms Deletion in BST 2 5 5 2 9 20 7 0 7 30 Wy migt deletion be arder tan insertion?

More information

NOTES: A quick overview of 2-D geometry

NOTES: A quick overview of 2-D geometry NOTES: A quick overview of 2-D geometry Wat is 2-D geometry? Also called plane geometry, it s te geometry tat deals wit two dimensional sapes flat tings tat ave lengt and widt, suc as a piece of paper.

More information

19.2 Surface Area of Prisms and Cylinders

19.2 Surface Area of Prisms and Cylinders Name Class Date 19 Surface Area of Prisms and Cylinders Essential Question: How can you find te surface area of a prism or cylinder? Resource Locker Explore Developing a Surface Area Formula Surface area

More information

Hash-Based Indexes. Chapter 11. Comp 521 Files and Databases Spring

Hash-Based Indexes. Chapter 11. Comp 521 Files and Databases Spring Has-Based Indexes Capter 11 Comp 521 Files and Databases Spring 2010 1 Introduction As for any index, 3 alternatives for data entries k*: Data record wit key value k

More information

More on Functions and Their Graphs

More on Functions and Their Graphs More on Functions and Teir Graps Difference Quotient ( + ) ( ) f a f a is known as te difference quotient and is used exclusively wit functions. Te objective to keep in mind is to factor te appearing in

More information

VOLUMES. The volume of a cylinder is determined by multiplying the cross sectional area by the height. r h V. a) 10 mm 25 mm.

VOLUMES. The volume of a cylinder is determined by multiplying the cross sectional area by the height. r h V. a) 10 mm 25 mm. OLUME OF A CYLINDER OLUMES Te volume of a cylinder is determined by multiplying te cross sectional area by te eigt. r Were: = volume r = radius = eigt Exercise 1 Complete te table ( =.14) r a) 10 mm 5

More information

Hash-Based Indexes. Chapter 11. Comp 521 Files and Databases Fall

Hash-Based Indexes. Chapter 11. Comp 521 Files and Databases Fall Has-Based Indexes Capter 11 Comp 521 Files and Databases Fall 2012 1 Introduction Hasing maps a searc key directly to te pid of te containing page/page-overflow cain Doesn t require intermediate page fetces

More information

Wrap up Amortized Analysis; AVL Trees. Riley Porter Winter CSE373: Data Structures & Algorithms

Wrap up Amortized Analysis; AVL Trees. Riley Porter Winter CSE373: Data Structures & Algorithms CSE 373: Data Structures & Wrap up Amortized Analysis; AVL Trees Riley Porter Course Logistics Symposium offered by CSE department today HW2 released, Big- O, Heaps (lecture slides ave pseudocode tat will

More information

The Euler and trapezoidal stencils to solve d d x y x = f x, y x

The Euler and trapezoidal stencils to solve d d x y x = f x, y x restart; Te Euler and trapezoidal stencils to solve d d x y x = y x Te purpose of tis workseet is to derive te tree simplest numerical stencils to solve te first order d equation y x d x = y x, and study

More information

ANTENNA SPHERICAL COORDINATE SYSTEMS AND THEIR APPLICATION IN COMBINING RESULTS FROM DIFFERENT ANTENNA ORIENTATIONS

ANTENNA SPHERICAL COORDINATE SYSTEMS AND THEIR APPLICATION IN COMBINING RESULTS FROM DIFFERENT ANTENNA ORIENTATIONS NTNN SPHRICL COORDINT SSTMS ND THIR PPLICTION IN COMBINING RSULTS FROM DIFFRNT NTNN ORINTTIONS llen C. Newell, Greg Hindman Nearfield Systems Incorporated 133. 223 rd St. Bldg. 524 Carson, C 9745 US BSTRCT

More information

2D transformations Homogeneous coordinates. Uses of Transformations

2D transformations Homogeneous coordinates. Uses of Transformations 2D transformations omogeneous coordinates Uses of Transformations Modeling: position and resize parts of a complex model; Viewing: define and position te virtual camera Animation: define ow objects move/cange

More information

1.4 RATIONAL EXPRESSIONS

1.4 RATIONAL EXPRESSIONS 6 CHAPTER Fundamentals.4 RATIONAL EXPRESSIONS Te Domain of an Algebraic Epression Simplifying Rational Epressions Multiplying and Dividing Rational Epressions Adding and Subtracting Rational Epressions

More information

6 Computing Derivatives the Quick and Easy Way

6 Computing Derivatives the Quick and Easy Way Jay Daigle Occiental College Mat 4: Calculus Experience 6 Computing Derivatives te Quick an Easy Way In te previous section we talke about wat te erivative is, an we compute several examples, an ten we

More information

Fault Localization Using Tarantula

Fault Localization Using Tarantula Class 20 Fault localization (cont d) Test-data generation Exam review: Nov 3, after class to :30 Responsible for all material up troug Nov 3 (troug test-data generation) Send questions beforeand so all

More information

RECONSTRUCTING OF A GIVEN PIXEL S THREE- DIMENSIONAL COORDINATES GIVEN BY A PERSPECTIVE DIGITAL AERIAL PHOTOS BY APPLYING DIGITAL TERRAIN MODEL

RECONSTRUCTING OF A GIVEN PIXEL S THREE- DIMENSIONAL COORDINATES GIVEN BY A PERSPECTIVE DIGITAL AERIAL PHOTOS BY APPLYING DIGITAL TERRAIN MODEL IV. Évfolyam 3. szám - 2009. szeptember Horvát Zoltán orvat.zoltan@zmne.u REONSTRUTING OF GIVEN PIXEL S THREE- DIMENSIONL OORDINTES GIVEN Y PERSPETIVE DIGITL ERIL PHOTOS Y PPLYING DIGITL TERRIN MODEL bsztrakt/bstract

More information

Chapter K. Geometric Optics. Blinn College - Physics Terry Honan

Chapter K. Geometric Optics. Blinn College - Physics Terry Honan Capter K Geometric Optics Blinn College - Pysics 2426 - Terry Honan K. - Properties of Ligt Te Speed of Ligt Te speed of ligt in a vacuum is approximately c > 3.0µ0 8 mês. Because of its most fundamental

More information

You should be able to visually approximate the slope of a graph. The slope m of the graph of f at the point x, f x is given by

You should be able to visually approximate the slope of a graph. The slope m of the graph of f at the point x, f x is given by Section. Te Tangent Line Problem 89 87. r 5 sin, e, 88. r sin sin Parabola 9 9 Hperbola e 9 9 9 89. 7,,,, 5 7 8 5 ortogonal 9. 5, 5,, 5, 5. Not multiples of eac oter; neiter parallel nor ortogonal 9.,,,

More information

Piecewise Polynomial Interpolation, cont d

Piecewise Polynomial Interpolation, cont d Jim Lambers MAT 460/560 Fall Semester 2009-0 Lecture 2 Notes Tese notes correspond to Section 4 in te text Piecewise Polynomial Interpolation, cont d Constructing Cubic Splines, cont d Having determined

More information

15-122: Principles of Imperative Computation, Summer 2011 Assignment 6: Trees and Secret Codes

15-122: Principles of Imperative Computation, Summer 2011 Assignment 6: Trees and Secret Codes 15-122: Principles of Imperative Computation, Summer 2011 Assignment 6: Trees and Secret Codes William Lovas (wlovas@cs) Karl Naden Out: Tuesday, Friday, June 10, 2011 Due: Monday, June 13, 2011 (Written

More information

CS 234. Module 6. October 16, CS 234 Module 6 ADT Dictionary 1 / 33

CS 234. Module 6. October 16, CS 234 Module 6 ADT Dictionary 1 / 33 CS 234 Module 6 October 16, 2018 CS 234 Module 6 ADT Dictionary 1 / 33 Idea for an ADT Te ADT Dictionary stores pairs (key, element), were keys are distinct and elements can be any data. Notes: Tis is

More information

MAC-CPTM Situations Project

MAC-CPTM Situations Project raft o not use witout permission -P ituations Project ituation 20: rea of Plane Figures Prompt teacer in a geometry class introduces formulas for te areas of parallelograms, trapezoids, and romi. e removes

More information

THANK YOU FOR YOUR PURCHASE!

THANK YOU FOR YOUR PURCHASE! THANK YOU FOR YOUR PURCHASE! Te resources included in tis purcase were designed and created by me. I ope tat you find tis resource elpful in your classroom. Please feel free to contact me wit any questions

More information

Interference and Diffraction of Light

Interference and Diffraction of Light Interference and Diffraction of Ligt References: [1] A.P. Frenc: Vibrations and Waves, Norton Publ. 1971, Capter 8, p. 280-297 [2] PASCO Interference and Diffraction EX-9918 guide (written by Ann Hanks)

More information

Overcomplete Steerable Pyramid Filters and Rotation Invariance

Overcomplete Steerable Pyramid Filters and Rotation Invariance vercomplete Steerable Pyramid Filters and Rotation Invariance H. Greenspan, S. Belongie R. Goodman and P. Perona S. Raksit and C. H. Anderson Department of Electrical Engineering Department of Anatomy

More information

12.2 Investigate Surface Area

12.2 Investigate Surface Area Investigating g Geometry ACTIVITY Use before Lesson 12.2 12.2 Investigate Surface Area MATERIALS grap paper scissors tape Q U E S T I O N How can you find te surface area of a polyedron? A net is a pattern

More information

CE 221 Data Structures and Algorithms

CE 221 Data Structures and Algorithms CE Data Structures and Algoritms Capter 4: Trees (AVL Trees) Text: Read Weiss, 4.4 Izmir University of Economics AVL Trees An AVL (Adelson-Velskii and Landis) tree is a binary searc tree wit a balance

More information

Linear Interpolating Splines

Linear Interpolating Splines Jim Lambers MAT 772 Fall Semester 2010-11 Lecture 17 Notes Tese notes correspond to Sections 112, 11, and 114 in te text Linear Interpolating Splines We ave seen tat ig-degree polynomial interpolation

More information

Redundancy Awareness in SQL Queries

Redundancy Awareness in SQL Queries Redundancy Awareness in QL Queries Bin ao and Antonio Badia omputer Engineering and omputer cience Department University of Louisville bin.cao,abadia @louisville.edu Abstract In tis paper, we study QL

More information

PLK-B SERIES Technical Manual (USA Version) CLICK HERE FOR CONTENTS

PLK-B SERIES Technical Manual (USA Version) CLICK HERE FOR CONTENTS PLK-B SERIES Technical Manual (USA Version) CLICK ERE FOR CONTENTS CONTROL BOX PANEL MOST COMMONLY USED FUNCTIONS INITIAL READING OF SYSTEM SOFTWARE/PAGES 1-2 RE-INSTALLATION OF TE SYSTEM SOFTWARE/PAGES

More information

12.2 Techniques for Evaluating Limits

12.2 Techniques for Evaluating Limits 335_qd /4/5 :5 PM Page 863 Section Tecniques for Evaluating Limits 863 Tecniques for Evaluating Limits Wat ou sould learn Use te dividing out tecnique to evaluate its of functions Use te rationalizing

More information

All truths are easy to understand once they are discovered; the point is to discover them. Galileo

All truths are easy to understand once they are discovered; the point is to discover them. Galileo Section 7. olume All truts are easy to understand once tey are discovered; te point is to discover tem. Galileo Te main topic of tis section is volume. You will specifically look at ow to find te volume

More information

Two Modifications of Weight Calculation of the Non-Local Means Denoising Method

Two Modifications of Weight Calculation of the Non-Local Means Denoising Method Engineering, 2013, 5, 522-526 ttp://dx.doi.org/10.4236/eng.2013.510b107 Publised Online October 2013 (ttp://www.scirp.org/journal/eng) Two Modifications of Weigt Calculation of te Non-Local Means Denoising

More information

Minimizing Memory Access By Improving Register Usage Through High-level Transformations

Minimizing Memory Access By Improving Register Usage Through High-level Transformations Minimizing Memory Access By Improving Register Usage Troug Hig-level Transformations San Li Scool of Computer Engineering anyang Tecnological University anyang Avenue, SIGAPORE 639798 Email: p144102711@ntu.edu.sg

More information

You Try: A. Dilate the following figure using a scale factor of 2 with center of dilation at the origin.

You Try: A. Dilate the following figure using a scale factor of 2 with center of dilation at the origin. 1 G.SRT.1-Some Tings To Know Dilations affect te size of te pre-image. Te pre-image will enlarge or reduce by te ratio given by te scale factor. A dilation wit a scale factor of 1> x >1enlarges it. A dilation

More information

, 1 1, A complex fraction is a quotient of rational expressions (including their sums) that result

, 1 1, A complex fraction is a quotient of rational expressions (including their sums) that result RT. Complex Fractions Wen working wit algebraic expressions, sometimes we come across needing to simplify expressions like tese: xx 9 xx +, xx + xx + xx, yy xx + xx + +, aa Simplifying Complex Fractions

More information

Intra- and Inter-Session Network Coding in Wireless Networks

Intra- and Inter-Session Network Coding in Wireless Networks Intra- and Inter-Session Network Coding in Wireless Networks Hulya Seferoglu, Member, IEEE, Atina Markopoulou, Member, IEEE, K K Ramakrisnan, Fellow, IEEE arxiv:857v [csni] 3 Feb Abstract In tis paper,

More information

12.2 TECHNIQUES FOR EVALUATING LIMITS

12.2 TECHNIQUES FOR EVALUATING LIMITS Section Tecniques for Evaluating Limits 86 TECHNIQUES FOR EVALUATING LIMITS Wat ou sould learn Use te dividing out tecnique to evaluate its of functions Use te rationalizing tecnique to evaluate its of

More information

Our Calibrated Model has No Predictive Value: An Example from the Petroleum Industry

Our Calibrated Model has No Predictive Value: An Example from the Petroleum Industry Our Calibrated Model as No Predictive Value: An Example from te Petroleum Industry J.N. Carter a, P.J. Ballester a, Z. Tavassoli a and P.R. King a a Department of Eart Sciences and Engineering, Imperial

More information

Optimal In-Network Packet Aggregation Policy for Maximum Information Freshness

Optimal In-Network Packet Aggregation Policy for Maximum Information Freshness 1 Optimal In-etwork Packet Aggregation Policy for Maimum Information Fresness Alper Sinan Akyurek, Tajana Simunic Rosing Electrical and Computer Engineering, University of California, San Diego aakyurek@ucsd.edu,

More information

PYRAMID FILTERS BASED ON BILINEAR INTERPOLATION

PYRAMID FILTERS BASED ON BILINEAR INTERPOLATION PYRAMID FILTERS BASED ON BILINEAR INTERPOLATION Martin Kraus Computer Grapics and Visualization Group, Tecnisce Universität Müncen, Germany krausma@in.tum.de Magnus Strengert Visualization and Interactive

More information

AVL Trees Outline and Required Reading: AVL Trees ( 11.2) CSE 2011, Winter 2017 Instructor: N. Vlajic

AVL Trees Outline and Required Reading: AVL Trees ( 11.2) CSE 2011, Winter 2017 Instructor: N. Vlajic 1 AVL Trees Outline and Required Reading: AVL Trees ( 11.2) CSE 2011, Winter 2017 Instructor: N. Vlajic AVL Trees 2 Binary Searc Trees better tan linear dictionaries; owever, te worst case performance

More information

Cubic smoothing spline

Cubic smoothing spline Cubic smooting spline Menu: QCExpert Regression Cubic spline e module Cubic Spline is used to fit any functional regression curve troug data wit one independent variable x and one dependent random variable

More information

CESILA: Communication Circle External Square Intersection-Based WSN Localization Algorithm

CESILA: Communication Circle External Square Intersection-Based WSN Localization Algorithm Sensors & Transducers 2013 by IFSA ttp://www.sensorsportal.com CESILA: Communication Circle External Square Intersection-Based WSN Localization Algoritm Sun Hongyu, Fang Ziyi, Qu Guannan College of Computer

More information

Areas of Triangles and Parallelograms. Bases of a parallelogram. Height of a parallelogram THEOREM 11.3: AREA OF A TRIANGLE. a and its corresponding.

Areas of Triangles and Parallelograms. Bases of a parallelogram. Height of a parallelogram THEOREM 11.3: AREA OF A TRIANGLE. a and its corresponding. 11.1 Areas of Triangles and Parallelograms Goal p Find areas of triangles and parallelograms. Your Notes VOCABULARY Bases of a parallelogram Heigt of a parallelogram POSTULATE 4: AREA OF A SQUARE POSTULATE

More information

Single and Multi-View Reconstruction of Structured Scenes

Single and Multi-View Reconstruction of Structured Scenes ACCV2002: Te 5t Asian Conference on Computer Vision 23 25 January 2002 Melbourne Australia 1 Single and Multi-View econstruction of Structured Scenes Etienne Grossmann Diego Ortin and José Santos-Victor

More information

Measuring Length 11and Area

Measuring Length 11and Area Measuring Lengt 11and Area 11.1 Areas of Triangles and Parallelograms 11.2 Areas of Trapezoids, Romuses, and Kites 11.3 Perimeter and Area of Similar Figures 11.4 Circumference and Arc Lengt 11.5 Areas

More information

CS 234. Module 6. October 25, CS 234 Module 6 ADT Dictionary 1 / 22

CS 234. Module 6. October 25, CS 234 Module 6 ADT Dictionary 1 / 22 CS 234 Module 6 October 25, 2016 CS 234 Module 6 ADT Dictionary 1 / 22 Case study Problem: Find a way to store student records for a course, wit unique IDs for eac student, were records can be accessed,

More information

Communicator for Mac Quick Start Guide

Communicator for Mac Quick Start Guide Communicator for Mac Quick Start Guide 503-968-8908 sterling.net training@sterling.net Pone Support 503.968.8908, option 2 pone-support@sterling.net For te most effective support, please provide your main

More information

TREES. General Binary Trees The Search Tree ADT Binary Search Trees AVL Trees Threaded trees Splay Trees B-Trees. UNIT -II

TREES. General Binary Trees The Search Tree ADT Binary Search Trees AVL Trees Threaded trees Splay Trees B-Trees. UNIT -II UNIT -II TREES General Binary Trees Te Searc Tree DT Binary Searc Trees VL Trees Treaded trees Splay Trees B-Trees. 2MRKS Q& 1. Define Tree tree is a data structure, wic represents ierarcical relationsip

More information

When the dimensions of a solid increase by a factor of k, how does the surface area change? How does the volume change?

When the dimensions of a solid increase by a factor of k, how does the surface area change? How does the volume change? 8.4 Surface Areas and Volumes of Similar Solids Wen te dimensions of a solid increase by a factor of k, ow does te surface area cange? How does te volume cange? 1 ACTIVITY: Comparing Surface Areas and

More information

Investigating an automated method for the sensitivity analysis of functions

Investigating an automated method for the sensitivity analysis of functions Investigating an automated metod for te sensitivity analysis of functions Sibel EKER s.eker@student.tudelft.nl Jill SLINGER j..slinger@tudelft.nl Delft University of Tecnology 2628 BX, Delft, te Neterlands

More information

Areas of Parallelograms and Triangles. To find the area of parallelograms and triangles

Areas of Parallelograms and Triangles. To find the area of parallelograms and triangles 10-1 reas of Parallelograms and Triangles ommon ore State Standards G-MG..1 Use geometric sapes, teir measures, and teir properties to descrie ojects. G-GPE..7 Use coordinates to compute perimeters of

More information

Classify solids. Find volumes of prisms and cylinders.

Classify solids. Find volumes of prisms and cylinders. 11.4 Volumes of Prisms and Cylinders Essential Question How can you find te volume of a prism or cylinder tat is not a rigt prism or rigt cylinder? Recall tat te volume V of a rigt prism or a rigt cylinder

More information

MAP MOSAICKING WITH DISSIMILAR PROJECTIONS, SPATIAL RESOLUTIONS, DATA TYPES AND NUMBER OF BANDS 1. INTRODUCTION

MAP MOSAICKING WITH DISSIMILAR PROJECTIONS, SPATIAL RESOLUTIONS, DATA TYPES AND NUMBER OF BANDS 1. INTRODUCTION MP MOSICKING WITH DISSIMILR PROJECTIONS, SPTIL RESOLUTIONS, DT TYPES ND NUMBER OF BNDS Tyler J. lumbaug and Peter Bajcsy National Center for Supercomputing pplications 605 East Springfield venue, Campaign,

More information

HASH ALGORITHMS: A DESIGN FOR PARALLEL CALCULATIONS

HASH ALGORITHMS: A DESIGN FOR PARALLEL CALCULATIONS HASH ALGORITHMS: A DESIGN FOR PARALLEL CALCULATIONS N.G.Bardis Researc Associate Hellenic Ministry of te Interior, Public Administration and Decentralization 8, Dragatsaniou str., Klatmonos S. 0559, Greece

More information

A Novel QC-LDPC Code with Flexible Construction and Low Error Floor

A Novel QC-LDPC Code with Flexible Construction and Low Error Floor A Novel QC-LDPC Code wit Flexile Construction and Low Error Floor Hanxin WANG,2, Saoping CHEN,2,CuitaoZHU,2 and Kaiyou SU Department of Electronics and Information Engineering, Sout-Central University

More information

Symmetric Tree Replication Protocol for Efficient Distributed Storage System*

Symmetric Tree Replication Protocol for Efficient Distributed Storage System* ymmetric Tree Replication Protocol for Efficient Distributed torage ystem* ung Cune Coi 1, Hee Yong Youn 1, and Joong up Coi 2 1 cool of Information and Communications Engineering ungkyunkwan University

More information

Feature-Based Steganalysis for JPEG Images and its Implications for Future Design of Steganographic Schemes

Feature-Based Steganalysis for JPEG Images and its Implications for Future Design of Steganographic Schemes Feature-Based Steganalysis for JPEG Images and its Implications for Future Design of Steganograpic Scemes Jessica Fridric Dept. of Electrical Engineering, SUNY Bingamton, Bingamton, NY 3902-6000, USA fridric@bingamton.edu

More information

On the Use of Radio Resource Tests in Wireless ad hoc Networks

On the Use of Radio Resource Tests in Wireless ad hoc Networks Tecnical Report RT/29/2009 On te Use of Radio Resource Tests in Wireless ad oc Networks Diogo Mónica diogo.monica@gsd.inesc-id.pt João Leitão jleitao@gsd.inesc-id.pt Luis Rodrigues ler@ist.utl.pt Carlos

More information

Multi-Stack Boundary Labeling Problems

Multi-Stack Boundary Labeling Problems Multi-Stack Boundary Labeling Problems Micael A. Bekos 1, Micael Kaufmann 2, Katerina Potika 1 Antonios Symvonis 1 1 National Tecnical University of Atens, Scool of Applied Matematical & Pysical Sciences,

More information

Section 3. Imaging With A Thin Lens

Section 3. Imaging With A Thin Lens Section 3 Imaging Wit A Tin Lens 3- at Ininity An object at ininity produces a set o collimated set o rays entering te optical system. Consider te rays rom a inite object located on te axis. Wen te object

More information

Section 1.2 The Slope of a Tangent

Section 1.2 The Slope of a Tangent Section 1.2 Te Slope of a Tangent You are familiar wit te concept of a tangent to a curve. Wat geometric interpretation can be given to a tangent to te grap of a function at a point? A tangent is te straigt

More information

HW 2 Bench Table. Hash Indexes: Chap. 11. Table Bench is in tablespace setq. Loading table bench. Then a bulk load

HW 2 Bench Table. Hash Indexes: Chap. 11. Table Bench is in tablespace setq. Loading table bench. Then a bulk load Has Indexes: Cap. CS64 Lecture 6 HW Benc Table Table of M rows, Columns of different cardinalities CREATE TABLE BENCH ( KSEQ integer primary key, K5K integer not null, K5K integer not null, KK integer

More information

11. Transceiver Link Debugging Using the System Console

11. Transceiver Link Debugging Using the System Console November 2011 QII53029-11.1.0 11. Transceiver Link Debugging Using te System Console QII53029-11.1.0 Tis capter describes ow to use te Transceiver Toolkit in te Quartus II sotware. Te Transceiver Toolkit

More information

REVERSIBLE DATA HIDING USING IMPROVED INTERPOLATION TECHNIQUE

REVERSIBLE DATA HIDING USING IMPROVED INTERPOLATION TECHNIQUE International Researc Journal of Engineering and Tecnology (IRJET) e-issn: 2395-0056 REVERSIBLE DATA HIDING USING IMPROVED INTERPOLATION TECHNIQUE Devendra Kumar 1, Dr. Krisna Raj 2 (Professor in ECE Department

More information

Lesson 6 MA Nick Egbert

Lesson 6 MA Nick Egbert Overview From kindergarten we all know ow to find te slope of a line: rise over run, or cange in over cange in. We want to be able to determine slopes of functions wic are not lines. To do tis we use te

More information

The (, D) and (, N) problems in double-step digraphs with unilateral distance

The (, D) and (, N) problems in double-step digraphs with unilateral distance Electronic Journal of Grap Teory and Applications () (), Te (, D) and (, N) problems in double-step digraps wit unilateral distance C Dalfó, MA Fiol Departament de Matemàtica Aplicada IV Universitat Politècnica

More information

An Algorithm for Loopless Deflection in Photonic Packet-Switched Networks

An Algorithm for Loopless Deflection in Photonic Packet-Switched Networks An Algoritm for Loopless Deflection in Potonic Packet-Switced Networks Jason P. Jue Center for Advanced Telecommunications Systems and Services Te University of Texas at Dallas Ricardson, TX 75083-0688

More information

Vector Processing Contours

Vector Processing Contours Vector Processing Contours Andrey Kirsanov Department of Automation and Control Processes MAMI Moscow State Tecnical University Moscow, Russia AndKirsanov@yandex.ru A.Vavilin and K-H. Jo Department of

More information

1 Finding Trigonometric Derivatives

1 Finding Trigonometric Derivatives MTH 121 Fall 2008 Essex County College Division of Matematics Hanout Version 8 1 October 2, 2008 1 Fining Trigonometric Derivatives 1.1 Te Derivative as a Function Te efinition of te erivative as a function

More information

On the use of FHT, its modification for practical applications and the structure of Hough image

On the use of FHT, its modification for practical applications and the structure of Hough image On te use of FHT, its modification for practical applications and te structure of Houg image M. Aliev 1,3, E.I. Ersov, D.P. Nikolaev,3 1 Federal Researc Center Computer Science and Control of Russian Academy

More information

When a BST becomes badly unbalanced, the search behavior can degenerate to that of a sorted linked list, O(N).

When a BST becomes badly unbalanced, the search behavior can degenerate to that of a sorted linked list, O(N). Balanced Binary Trees Binary searc trees provide O(log N) searc times provided tat te nodes are distributed in a reasonably balanced manner. Unfortunately, tat is not always te case and performing a sequence

More information

Local features and image matching May 8 th, 2018

Local features and image matching May 8 th, 2018 Local features and image matcing May 8 t, 2018 Yong Jae Lee UC Davis Last time RANSAC for robust fitting Lines, translation Image mosaics Fitting a 2D transformation Homograpy 2 Today Mosaics recap: How

More information

z = x 2 xy + y 2 clf // c6.1(2)contour Change to make a contour plot of z=xy.

z = x 2 xy + y 2 clf // c6.1(2)contour Change to make a contour plot of z=xy. 190 Lecture 6 3D equations formatting Open Lecture 6. See Capter 3, 10 of text for details. Draw a contour grap and a 3D grap of z = 1 x 2 y 2 = an upper emispere. For Classwork 1 and 2, you will grap

More information

Coarticulation: An Approach for Generating Concurrent Plans in Markov Decision Processes

Coarticulation: An Approach for Generating Concurrent Plans in Markov Decision Processes Coarticulation: An Approac for Generating Concurrent Plans in Markov Decision Processes Kasayar Roanimanes kas@cs.umass.edu Sridar Maadevan maadeva@cs.umass.edu Department of Computer Science, University

More information

Algebra Area of Triangles

Algebra Area of Triangles LESSON 0.3 Algera Area of Triangles FOCUS COHERENCE RIGOR LESSON AT A GLANCE F C R Focus: Common Core State Standards Learning Ojective 6.G.A. Find te area of rigt triangles, oter triangles, special quadrilaterals,

More information

Alternating Direction Implicit Methods for FDTD Using the Dey-Mittra Embedded Boundary Method

Alternating Direction Implicit Methods for FDTD Using the Dey-Mittra Embedded Boundary Method Te Open Plasma Pysics Journal, 2010, 3, 29-35 29 Open Access Alternating Direction Implicit Metods for FDTD Using te Dey-Mittra Embedded Boundary Metod T.M. Austin *, J.R. Cary, D.N. Smite C. Nieter Tec-X

More information

JPEG Serial Camera Module. OV528 Protocol

JPEG Serial Camera Module. OV528 Protocol JPEG Serial Camera Module OV528 Protocol LCF-23M1 32mmx32mm or 38mmx38mm LCF-23MA 32mm-38mm Default baudrate 9600bps~115200 bps Auto adaptive 9600bps~115200 bps Page 1 of 15 1.General Description OV528

More information

Network Coding to Enhance Standard Routing Protocols in Wireless Mesh Networks

Network Coding to Enhance Standard Routing Protocols in Wireless Mesh Networks Downloaded from vbn.aau.dk on: April 7, 09 Aalborg Universitet etwork Coding to Enance Standard Routing Protocols in Wireless Mes etworks Palevani, Peyman; Roetter, Daniel Enrique Lucani; Fitzek, Frank;

More information

Density Estimation Over Data Stream

Density Estimation Over Data Stream Density Estimation Over Data Stream Aoying Zou Dept. of Computer Science, Fudan University 22 Handan Rd. Sangai, 2433, P.R. Cina ayzou@fudan.edu.cn Ziyuan Cai Dept. of Computer Science, Fudan University

More information

M2TECH HIFACE DAC 384KHZ/32BIT DIGITAL-TO-ANALOG CONVERTER USER MANUAL

M2TECH HIFACE DAC 384KHZ/32BIT DIGITAL-TO-ANALOG CONVERTER USER MANUAL M2TECH HIFACE DAC 384KHZ/32BIT DIGITAL-TO-ANALOG CONVERTER USER MANUAL REV. 1.1 5/2013 Warning! Canges or modifications not autorized by te manufacturer can invalidate te compliance to CE regulations and

More information

Capacity on Demand User s Guide

Capacity on Demand User s Guide System z Capacity on Demand User s Guide SC28-6846-02 Level 02c, October 2009 System z Capacity on Demand User s Guide SC28-6846-02 Level 02c, October 2009 Note Before using tis information and te product

More information

Proceedings of the 8th WSEAS International Conference on Neural Networks, Vancouver, British Columbia, Canada, June 19-21,

Proceedings of the 8th WSEAS International Conference on Neural Networks, Vancouver, British Columbia, Canada, June 19-21, Proceedings of te 8t WSEAS International Conference on Neural Networks, Vancouver, Britis Columbia, Canada, June 9-2, 2007 3 Neural Network Structures wit Constant Weigts to Implement Dis-Jointly Removed

More information

Inference Based on SVARs Identified with Sign and Zero Restrictions: Theory and Applications

Inference Based on SVARs Identified with Sign and Zero Restrictions: Theory and Applications FEDERAL RESERVE BANK of ATLANTA WORKING PAPER SERIES Inference Based on SVARs Identified wit Sign and Zero Restrictions: Teory and Applications Jonas E. Arias, Juan F. Rubio-Ramírez, and Daniel F. Waggoner

More information

Read pages in the book, up to the investigation. Pay close attention to Example A and how to identify the height.

Read pages in the book, up to the investigation. Pay close attention to Example A and how to identify the height. C 8 Noteseet L Key In General ON LL PROBLEMS!!. State te relationsip (or te formula).. Sustitute in known values. 3. Simplify or Solve te equation. Use te order of operations in te correct order. Order

More information

Fast Calculation of Thermodynamic Properties of Water and Steam in Process Modelling using Spline Interpolation

Fast Calculation of Thermodynamic Properties of Water and Steam in Process Modelling using Spline Interpolation P R E P R N T CPWS XV Berlin, September 8, 008 Fast Calculation of Termodynamic Properties of Water and Steam in Process Modelling using Spline nterpolation Mattias Kunick a, Hans-Joacim Kretzscmar a,

More information