Unsupervised Domain Adaptation by Backpropagation. Chih-Hui Ho, Xingyu Gu, Yuan Qi

Size: px
Start display at page:

Download "Unsupervised Domain Adaptation by Backpropagation. Chih-Hui Ho, Xingyu Gu, Yuan Qi"

Transcription

1 Unsupervised Domain Adaptation by Backpropagation Chih-Hui Ho, Xingyu Gu, Yuan Qi

2 Problems Deep network: requires massive labeled training data. Labeled data: Available sometimes: Image recognition Speech recognition Recommendation Difficult to collect sometimes: Robotics Disaster Bioinformatics Medical diagnosis

3 Problems Test time failure: distribution of actual data is different from training data. Example: Model is Trained on synthetic data (abundant and fully labeled), but Tested on real data. MJSynth (synthetic) IIIT5K (real)

4 Results Source datapoint Target datapoint MNIST & MNIST-M (extracted features) Adaptation SYN NUMBERS & SVHN (label classifier s last hidden layer) Adaptation

5 Objective Given: Lots of labeled data in the source domain (e.g. synthetic images) Lots of unlabeled data in the target domain (e.g. real images) Domain Adaptation (DA): In the presence of a shift between source and target domain, Train a network on source domain that performs good on target domain.

6 Objective Example: Office dataset Source: Amazon photos of office objects (on white background) Amazon Target: Consumer photos of office objects (taken by DSLR camera / webcam) DSLR Webcam

7 Previous Approaches - MMD Maximum Mean Discrepancy (measures domain-distance) Reweighing target domain images. Distance between source and target domains. Explicit distance measurement (e.g. kernel Hilbert space).

8 Previous Approaches - DLID Deep Learning by Interpolating between Domains Feature transformation mapping source into target. Train feature extractor layer-wise. Gradually replacing source samples with target samples. Train classifier on features.

9 Proposed Solution - Deep Domain Adaptation (DDA) Standard CNN + domain classifier. An implicit way to measure similarity between source and target. If domain classifier performs good: dissimilar features. If domain classifier performs bad: similar features. Objective: feature is best for label classifier (discriminative) worst for domain classifier (invariant)

10 Improvement Previous approaches (DLID, MMD, etc.) Proposed solution (DDA) Measurement of similarity between domains Explicit (distance in Hilbert space) Implicit (performance of domain classifier) Training steps Separate feature extractor and label classifier Jointly trained by backpropagation Architecture Complicated Simple (standard CNN + domain classifier)

11 Proposed Solution

12 Proposed Solution

13 Proposed Solution Label predictor

14 Proposed Solution

15 Proposed Solution

16 Proposed Solution Consider an image from source domain

17 Proposed Solution Consider an image from target domain ---

18 Proposed Solution

19 Proposed Solution

20 Proposed Solution How to backpropagate the label classifier loss? Consider only the upper architecture This is typical backpropagation

21 Proposed Solution How to backpropagate the domain classifier loss? Consider only the lower architecture Define gradient reversal layer (GRL) +

22 Proposed Solution Forward Backward

23 Proposed Solution After training, the label predictor can be used to predict labels for samples from either source or target domain Experiment results

24 Source & Target Datasets Perform on large-scale datasets of small images, i.e.. MNIST, SVNH, GTSRB. Perform on small-scale dataset, i.e. the OFFICE datasets (Saenko et al., 2010), which are a standard for domain adaptation in computer vision.

25 Table Explanation Source Only: the lower performance bound (i.e. if no adaptation is performed) SA: The DA method proposed in FERNANDO ET AL., 2013 Train on Target: training on the target domain data with known class labels (upper bound on the DA performance) Data in the bracket: show how much of the gap between the lower and the upper bounds was covered, e.g. 7.9% = ( lower_bound)/(upper_bound - lower_bound)

26 MNIST MNIST-M

27 MNIST MNIST-M Blue points correspond to the source domain examples, while red ones correspond to the target domain. Utilize t-sne (van der Maaten, 2013) visualizations of the CNN s activations. The adaptation makes the two distributions of features much closer.

28 Synthetic numbers SVHN

29 Synthetic numbers SVHN

30 MNIST SVHN The two directions (MNIST SVHN and SVHN MNIST) are not equally difficult. SVHN is more diverse, a model trained on SVHN is expected to be more generic and to perform reasonably on the MNIST dataset. Unsupervised adaptation from MNIST to SVHN gives a failure example for this approach.

31 SVHN MNIST (Judy Hoffman et al.2017) classification accuracy for SVHN->MNIST 90.4% ± 0.4%

32 Synthetic Signs GTSRB

33 Synthetic Signs GTSRB Semi-supervised domain adaptation, i.e. when one is additionally provided with a small amount of labeled target data. (Future work) 100,000 synthetic and 430 real images respectively

34 Office dataset Amazon DSLR Webcam

35 Office dataset

36 Summary Proposed a new approach to unsupervised domain adaptation; Unlike previous approaches, this approach can be implemented to any deep learning models; Improve the state-of-art results at that time.

Deep Model Adaptation using Domain Adversarial Training

Deep Model Adaptation using Domain Adversarial Training Deep Model Adaptation using Domain Adversarial Training Victor Lempitsky, joint work with Yaroslav Ganin Skolkovo Institute of Science and Technology ( Skoltech ) Moscow region, Russia Deep supervised

More information

arxiv: v1 [cs.cv] 6 Jul 2016

arxiv: v1 [cs.cv] 6 Jul 2016 arxiv:607.079v [cs.cv] 6 Jul 206 Deep CORAL: Correlation Alignment for Deep Domain Adaptation Baochen Sun and Kate Saenko University of Massachusetts Lowell, Boston University Abstract. Deep neural networks

More information

Learning Transferable Features with Deep Adaptation Networks

Learning Transferable Features with Deep Adaptation Networks Learning Transferable Features with Deep Adaptation Networks Mingsheng Long, Yue Cao, Jianmin Wang, Michael I. Jordan Presented by Changyou Chen October 30, 2015 1 Changyou Chen Learning Transferable Features

More information

Geodesic Flow Kernel for Unsupervised Domain Adaptation

Geodesic Flow Kernel for Unsupervised Domain Adaptation Geodesic Flow Kernel for Unsupervised Domain Adaptation Boqing Gong University of Southern California Joint work with Yuan Shi, Fei Sha, and Kristen Grauman 1 Motivation TRAIN TEST Mismatch between different

More information

Adapting Deep Networks Across Domains, Modalities, and Tasks Judy Hoffman!

Adapting Deep Networks Across Domains, Modalities, and Tasks Judy Hoffman! Adapting Deep Networks Across Domains, Modalities, and Tasks Judy Hoffman! Eric Tzeng Saurabh Gupta Kate Saenko Trevor Darrell Recent Visual Recognition Progress ImageNet Performance 100 Accuracy 95 90

More information

Lecture 19: Generative Adversarial Networks

Lecture 19: Generative Adversarial Networks Lecture 19: Generative Adversarial Networks Roger Grosse 1 Introduction Generative modeling is a type of machine learning where the aim is to model the distribution that a given set of data (e.g. images,

More information

arxiv: v2 [cs.cv] 28 Mar 2018

arxiv: v2 [cs.cv] 28 Mar 2018 Importance Weighted Adversarial Nets for Partial Domain Adaptation Jing Zhang, Zewei Ding, Wanqing Li, Philip Ogunbona Advanced Multimedia Research Lab, University of Wollongong, Australia jz60@uowmail.edu.au,

More information

Lightweight Unsupervised Domain Adaptation by Convolutional Filter Reconstruction

Lightweight Unsupervised Domain Adaptation by Convolutional Filter Reconstruction Lightweight Unsupervised Domain Adaptation by Convolutional Filter Reconstruction Rahaf Aljundi, Tinne Tuytelaars KU Leuven, ESAT-PSI - iminds, Belgium Abstract. Recently proposed domain adaptation methods

More information

DEEP LEARNING REVIEW. Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature Presented by Divya Chitimalla

DEEP LEARNING REVIEW. Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature Presented by Divya Chitimalla DEEP LEARNING REVIEW Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature 2015 -Presented by Divya Chitimalla What is deep learning Deep learning allows computational models that are composed of multiple

More information

Unsupervised domain adaptation of deep object detectors

Unsupervised domain adaptation of deep object detectors Unsupervised domain adaptation of deep object detectors Debjeet Majumdar 1 and Vinay P. Namboodiri2 Indian Institute of Technology, Kanpur - Computer Science and Engineering Kalyanpur, Kanpur, Uttar Pradesh

More information

Transfer Learning. Style Transfer in Deep Learning

Transfer Learning. Style Transfer in Deep Learning Transfer Learning & Style Transfer in Deep Learning 4-DEC-2016 Gal Barzilai, Ram Machlev Deep Learning Seminar School of Electrical Engineering Tel Aviv University Part 1: Transfer Learning in Deep Learning

More information

Backpropagation + Deep Learning

Backpropagation + Deep Learning 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Backpropagation + Deep Learning Matt Gormley Lecture 13 Mar 1, 2018 1 Reminders

More information

arxiv: v2 [cs.cv] 17 Nov 2016 Abstract

arxiv: v2 [cs.cv] 17 Nov 2016 Abstract Beyond Sharing Weights for Deep Domain Adaptation Artem Rozantsev Mathieu Salzmann Pascal Fua Computer Vision Laboratory, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland {firstname.lastname}@epfl.ch

More information

Domain Adaptation from Synthesis to Reality in Single-model Detector for Video Smoke Detection

Domain Adaptation from Synthesis to Reality in Single-model Detector for Video Smoke Detection Domain Adaptation from Synthesis to Reality in Single-model Detector for Video Smoke Detection Gao Xu, Yongming Zhang, Qixing Zhang*, Gaohua Lin, Jinjun Wang State Key Laboratory of Fire Science, University

More information

arxiv: v2 [cs.cv] 18 Feb 2014

arxiv: v2 [cs.cv] 18 Feb 2014 One-Shot Adaptation of Supervised Deep Convolutional Models arxiv:1312.6204v2 [cs.cv] 18 Feb 2014 Judy Hoffman, Eric Tzeng, Jeff Donahue UC Berkeley, EECS & ICSI {jhoffman,etzeng,jdonahue}@eecs.berkeley.edu

More information

CMU Lecture 18: Deep learning and Vision: Convolutional neural networks. Teacher: Gianni A. Di Caro

CMU Lecture 18: Deep learning and Vision: Convolutional neural networks. Teacher: Gianni A. Di Caro CMU 15-781 Lecture 18: Deep learning and Vision: Convolutional neural networks Teacher: Gianni A. Di Caro DEEP, SHALLOW, CONNECTED, SPARSE? Fully connected multi-layer feed-forward perceptrons: More powerful

More information

RECOGNIZING HETEROGENEOUS CROSS-DOMAIN DATA VIA GENERALIZED JOINT DISTRIBUTION ADAPTATION

RECOGNIZING HETEROGENEOUS CROSS-DOMAIN DATA VIA GENERALIZED JOINT DISTRIBUTION ADAPTATION RECOGNIZING HETEROGENEOUS CROSS-DOMAIN DATA VIA GENERALIZED JOINT DISTRIBUTION ADAPTATION Yuan-Ting Hsieh, Shih-Yen Tao, Yao-Hung Hubert Tsai 2, Yi-Ren Yeh 3, Yu-Chiang Frank Wang 2 Department of Electrical

More information

Domain Separation Networks

Domain Separation Networks Domain Separation Networks Konstantinos Bousmalis Google Brain Mountain View, CA konstantinos@google.com George Trigeorgis Imperial College London London, UK g.trigeorgis@imperial.ac.uk arxiv:1608.06019v1

More information

arxiv: v1 [cs.cv] 1 Dec 2017

arxiv: v1 [cs.cv] 1 Dec 2017 Image to Image Translation for Domain Adaptation Zak Murez 1,2 Soheil Kolouri 2 David Kriegman 1 Ravi Ramamoorthi 1 Kyungnam Kim 2 1 University of California, San Diego; 2 HRL Laboratories, LLC; {zmurez,kriegman,ravir}@cs.ucsd.edu,

More information

ImageNet Classification with Deep Convolutional Neural Networks

ImageNet Classification with Deep Convolutional Neural Networks ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky Ilya Sutskever Geoffrey Hinton University of Toronto Canada Paper with same name to appear in NIPS 2012 Main idea Architecture

More information

Object Detection Lecture Introduction to deep learning (CNN) Idar Dyrdal

Object Detection Lecture Introduction to deep learning (CNN) Idar Dyrdal Object Detection Lecture 10.3 - Introduction to deep learning (CNN) Idar Dyrdal Deep Learning Labels Computational models composed of multiple processing layers (non-linear transformations) Used to learn

More information

An Exploration of Computer Vision Techniques for Bird Species Classification

An Exploration of Computer Vision Techniques for Bird Species Classification An Exploration of Computer Vision Techniques for Bird Species Classification Anne L. Alter, Karen M. Wang December 15, 2017 Abstract Bird classification, a fine-grained categorization task, is a complex

More information

DeCAF: a Deep Convolutional Activation Feature for Generic Visual Recognition

DeCAF: a Deep Convolutional Activation Feature for Generic Visual Recognition DeCAF: a Deep Convolutional Activation Feature for Generic Visual Recognition ECS 289G 10/06/2016 Authors: Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng and Trevor Darrell

More information

Learning. Learning agents Inductive learning. Neural Networks. Different Learning Scenarios Evaluation

Learning. Learning agents Inductive learning. Neural Networks. Different Learning Scenarios Evaluation Learning Learning agents Inductive learning Different Learning Scenarios Evaluation Slides based on Slides by Russell/Norvig, Ronald Williams, and Torsten Reil Material from Russell & Norvig, chapters

More information

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks

Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Deep Tracking: Biologically Inspired Tracking with Deep Convolutional Networks Si Chen The George Washington University sichen@gwmail.gwu.edu Meera Hahn Emory University mhahn7@emory.edu Mentor: Afshin

More information

Supervised Learning with Neural Networks. We now look at how an agent might learn to solve a general problem by seeing examples.

Supervised Learning with Neural Networks. We now look at how an agent might learn to solve a general problem by seeing examples. Supervised Learning with Neural Networks We now look at how an agent might learn to solve a general problem by seeing examples. Aims: to present an outline of supervised learning as part of AI; to introduce

More information

Deep Visual Domain Adaptation: A Survey

Deep Visual Domain Adaptation: A Survey Manuscript accepted by Neurocomputing 2018 1 Deep Visual Domain Adaptation: A Survey Mei Wang, Weihong Deng School of Information and Communication Engineering, Beijing University of Posts and Telecommunications,

More information

Semantic Segmentation

Semantic Segmentation Semantic Segmentation UCLA:https://goo.gl/images/I0VTi2 OUTLINE Semantic Segmentation Why? Paper to talk about: Fully Convolutional Networks for Semantic Segmentation. J. Long, E. Shelhamer, and T. Darrell,

More information

GAN Related Works. CVPR 2018 & Selective Works in ICML and NIPS. Zhifei Zhang

GAN Related Works. CVPR 2018 & Selective Works in ICML and NIPS. Zhifei Zhang GAN Related Works CVPR 2018 & Selective Works in ICML and NIPS Zhifei Zhang Generative Adversarial Networks (GANs) 9/12/2018 2 Generative Adversarial Networks (GANs) Feedforward Backpropagation Real? z

More information

Dynamic Routing Between Capsules

Dynamic Routing Between Capsules Report Explainable Machine Learning Dynamic Routing Between Capsules Author: Michael Dorkenwald Supervisor: Dr. Ullrich Köthe 28. Juni 2018 Inhaltsverzeichnis 1 Introduction 2 2 Motivation 2 3 CapusleNet

More information

Subspace Alignment Based Domain Adaptation for RCNN Detector

Subspace Alignment Based Domain Adaptation for RCNN Detector RAJ, NAMBOODIRI, TUYTELAARS: ADAPTING RCNN DETECTOR 1 Subspace Alignment Based Domain Adaptation for RCNN Detector Anant Raj anantraj@iitk.ac.in Vinay P. Namboodiri vinaypn@iitk.ac.in Tinne Tuytelaars

More information

Lecture 21 : A Hybrid: Deep Learning and Graphical Models

Lecture 21 : A Hybrid: Deep Learning and Graphical Models 10-708: Probabilistic Graphical Models, Spring 2018 Lecture 21 : A Hybrid: Deep Learning and Graphical Models Lecturer: Kayhan Batmanghelich Scribes: Paul Liang, Anirudha Rayasam 1 Introduction and Motivation

More information

Open Set Domain Adaptation

Open Set Domain Adaptation Open Set Domain Adaptation Pau Panareda Busto 1,2 1 Airbus Group Innovations Munich, Germany pau.panareda-busto@airbus.com Juergen Gall 2 2 Computer Vision Group University of Bonn, Germany gall@iai.uni-bonn.de

More information

Lecture: Deep Convolutional Neural Networks

Lecture: Deep Convolutional Neural Networks Lecture: Deep Convolutional Neural Networks Shubhang Desai Stanford Vision and Learning Lab 1 Today s agenda Deep convolutional networks History of CNNs CNN dev Architecture search 2 Previously argmax

More information

International Journal of Computer Engineering and Applications, Volume XII, Special Issue, September 18,

International Journal of Computer Engineering and Applications, Volume XII, Special Issue, September 18, REAL-TIME OBJECT DETECTION WITH CONVOLUTION NEURAL NETWORK USING KERAS Asmita Goswami [1], Lokesh Soni [2 ] Department of Information Technology [1] Jaipur Engineering College and Research Center Jaipur[2]

More information

Machine Learning 13. week

Machine Learning 13. week Machine Learning 13. week Deep Learning Convolutional Neural Network Recurrent Neural Network 1 Why Deep Learning is so Popular? 1. Increase in the amount of data Thanks to the Internet, huge amount of

More information

Visual features detection based on deep neural network in autonomous driving tasks

Visual features detection based on deep neural network in autonomous driving tasks 430 Fomin I., Gromoshinskii D., Stepanov D. Visual features detection based on deep neural network in autonomous driving tasks Ivan Fomin, Dmitrii Gromoshinskii, Dmitry Stepanov Computer vision lab Russian

More information

Robust Visual Knowledge Transfer via Extreme Learning Machine Based Domain Adaptation

Robust Visual Knowledge Transfer via Extreme Learning Machine Based Domain Adaptation Robust Visual Knowledge Transfer via Extreme Learning Machine Based Domain Adaptation Lei Zhang, Member, IEEE and David Zhang, Fellow, IEEE Abstract We address the problem of visual knowledge adaptation

More information

Bilevel Sparse Coding

Bilevel Sparse Coding Adobe Research 345 Park Ave, San Jose, CA Mar 15, 2013 Outline 1 2 The learning model The learning algorithm 3 4 Sparse Modeling Many types of sensory data, e.g., images and audio, are in high-dimensional

More information

Asymmetric Tri-training for Unsupervised Domain Adaptation

Asymmetric Tri-training for Unsupervised Domain Adaptation Kuniaki Saito Yoshitaka Ushiku Tatsuya Harada 2 Abstract It is important to apply models trained on a large number of labeled samples to different domains because collecting many labeled samples in various

More information

Overall Description. Goal: to improve spatial invariance to the input data. Translation, Rotation, Scale, Clutter, Elastic

Overall Description. Goal: to improve spatial invariance to the input data. Translation, Rotation, Scale, Clutter, Elastic Philippe Giguère Overall Description Goal: to improve spatial invariance to the input data Translation, Rotation, Scale, Clutter, Elastic How: add a learnable module which explicitly manipulate spatially

More information

Adaptive Dropout Training for SVMs

Adaptive Dropout Training for SVMs Department of Computer Science and Technology Adaptive Dropout Training for SVMs Jun Zhu Joint with Ning Chen, Jingwei Zhuo, Jianfei Chen, Bo Zhang Tsinghua University ShanghaiTech Symposium on Data Science,

More information

Unsupervised Domain Adaptation by Domain Invariant Projection

Unsupervised Domain Adaptation by Domain Invariant Projection 2013 IEEE International Conference on Computer Vision Unsupervised Domain Adaptation by Domain Invariant Projection Mahsa Baktashmotlagh 1,3, Mehrtash T. Harandi 2,3, Brian C. Lovell 1, and Mathieu Salzmann

More information

Kernels and Clustering

Kernels and Clustering Kernels and Clustering Robert Platt Northeastern University All slides in this file are adapted from CS188 UC Berkeley Case-Based Learning Non-Separable Data Case-Based Reasoning Classification from similarity

More information

Auto-Encoding Variational Bayes

Auto-Encoding Variational Bayes Auto-Encoding Variational Bayes Diederik P (Durk) Kingma, Max Welling University of Amsterdam Ph.D. Candidate, advised by Max Durk Kingma D.P. Kingma Max Welling Problem class Directed graphical model:

More information

Sequence Modeling: Recurrent and Recursive Nets. By Pyry Takala 14 Oct 2015

Sequence Modeling: Recurrent and Recursive Nets. By Pyry Takala 14 Oct 2015 Sequence Modeling: Recurrent and Recursive Nets By Pyry Takala 14 Oct 2015 Agenda Why Recurrent neural networks? Anatomy and basic training of an RNN (10.2, 10.2.1) Properties of RNNs (10.2.2, 8.2.6) Using

More information

Deep Adversarial Attention Alignment for Unsupervised Domain Adaptation: the Benefit of Target Expectation Maximization

Deep Adversarial Attention Alignment for Unsupervised Domain Adaptation: the Benefit of Target Expectation Maximization Deep Adversarial Attention Alignment for Unsupervised Domain Adaptation: the Benefit of Target Expectation Maximization Guoliang Kang 1, Liang Zheng 1,2, Yan Yan 1, and Yi Yang 1 1 CAI, University of Technology

More information

INTRODUCTION TO DEEP LEARNING

INTRODUCTION TO DEEP LEARNING INTRODUCTION TO DEEP LEARNING CONTENTS Introduction to deep learning Contents 1. Examples 2. Machine learning 3. Neural networks 4. Deep learning 5. Convolutional neural networks 6. Conclusion 7. Additional

More information

Lecture 13. Deep Belief Networks. Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen

Lecture 13. Deep Belief Networks. Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen Lecture 13 Deep Belief Networks Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen IBM T.J. Watson Research Center Yorktown Heights, New York, USA {picheny,bhuvana,stanchen}@us.ibm.com 12 December 2012

More information

Feature Extractors. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. The Perceptron Update Rule.

Feature Extractors. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. The Perceptron Update Rule. CS 188: Artificial Intelligence Fall 2007 Lecture 26: Kernels 11/29/2007 Dan Klein UC Berkeley Feature Extractors A feature extractor maps inputs to feature vectors Dear Sir. First, I must solicit your

More information

Recurrent Neural Networks and Transfer Learning for Action Recognition

Recurrent Neural Networks and Transfer Learning for Action Recognition Recurrent Neural Networks and Transfer Learning for Action Recognition Andrew Giel Stanford University agiel@stanford.edu Ryan Diaz Stanford University ryandiaz@stanford.edu Abstract We have taken on the

More information

Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking

Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking Martin Danelljan, Andreas Robinson, Fahad Shahbaz Khan, Michael Felsberg 2 Discriminative Correlation Filters (DCF)

More information

A Unified Feature Disentangler for Multi-Domain Image Translation and Manipulation

A Unified Feature Disentangler for Multi-Domain Image Translation and Manipulation A Unified Feature Disentangler for Multi-Domain Image Translation and Manipulation Alexander H. Liu 1 Yen-Cheng Liu 2 Yu-Ying Yeh 3 Yu-Chiang Frank Wang 1,4 1 National Taiwan University, Taiwan 2 Georgia

More information

Machine Learning. The Breadth of ML Neural Networks & Deep Learning. Marc Toussaint. Duy Nguyen-Tuong. University of Stuttgart

Machine Learning. The Breadth of ML Neural Networks & Deep Learning. Marc Toussaint. Duy Nguyen-Tuong. University of Stuttgart Machine Learning The Breadth of ML Neural Networks & Deep Learning Marc Toussaint University of Stuttgart Duy Nguyen-Tuong Bosch Center for Artificial Intelligence Summer 2017 Neural Networks Consider

More information

Pouya Kousha Fall 2018 CSE 5194 Prof. DK Panda

Pouya Kousha Fall 2018 CSE 5194 Prof. DK Panda Pouya Kousha Fall 2018 CSE 5194 Prof. DK Panda 1 Observe novel applicability of DL techniques in Big Data Analytics. Applications of DL techniques for common Big Data Analytics problems. Semantic indexing

More information

Deep Learning on Graphs

Deep Learning on Graphs Deep Learning on Graphs with Graph Convolutional Networks Hidden layer Hidden layer Input Output ReLU ReLU, 22 March 2017 joint work with Max Welling (University of Amsterdam) BDL Workshop @ NIPS 2016

More information

Deep Learning on Graphs

Deep Learning on Graphs Deep Learning on Graphs with Graph Convolutional Networks Hidden layer Hidden layer Input Output ReLU ReLU, 6 April 2017 joint work with Max Welling (University of Amsterdam) The success story of deep

More information

INTRODUCTION TO BIG DATA, DATA MINING, AND MACHINE LEARNING

INTRODUCTION TO BIG DATA, DATA MINING, AND MACHINE LEARNING CS 7265 BIG DATA ANALYTICS INTRODUCTION TO BIG DATA, DATA MINING, AND MACHINE LEARNING * Some contents are adapted from Dr. Hung Huang and Dr. Chengkai Li at UT Arlington Mingon Kang, PhD Computer Science,

More information

COMP9444 Neural Networks and Deep Learning 5. Geometry of Hidden Units

COMP9444 Neural Networks and Deep Learning 5. Geometry of Hidden Units COMP9 8s Geometry of Hidden Units COMP9 Neural Networks and Deep Learning 5. Geometry of Hidden Units Outline Geometry of Hidden Unit Activations Limitations of -layer networks Alternative transfer functions

More information

DeepFace: Closing the Gap to Human-Level Performance in Face Verification

DeepFace: Closing the Gap to Human-Level Performance in Face Verification DeepFace: Closing the Gap to Human-Level Performance in Face Verification Report on the paper Artem Komarichev February 7, 2016 Outline New alignment technique New DNN architecture New large dataset with

More information

LSTM: An Image Classification Model Based on Fashion-MNIST Dataset

LSTM: An Image Classification Model Based on Fashion-MNIST Dataset LSTM: An Image Classification Model Based on Fashion-MNIST Dataset Kexin Zhang, Research School of Computer Science, Australian National University Kexin Zhang, U6342657@anu.edu.au Abstract. The application

More information

An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation

An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Bengio Université de Montréal 13/06/2007

More information

Consensus Adversarial Domain Adaptation

Consensus Adversarial Domain Adaptation Consensus Adversarial Domain Adaptation Han Zou, Yuxun Zhou, Jianfei Yang, Huihan Liu, Hari Prasanna Das, and Costas J. Spanos Department of Electrical Engineering and Computer Sciences, University of

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Kernels and Clustering Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

Lab meeting (Paper review session) Stacked Generative Adversarial Networks

Lab meeting (Paper review session) Stacked Generative Adversarial Networks Lab meeting (Paper review session) Stacked Generative Adversarial Networks 2017. 02. 01. Saehoon Kim (Ph. D. candidate) Machine Learning Group Papers to be covered Stacked Generative Adversarial Networks

More information

Capsule Networks. Eric Mintun

Capsule Networks. Eric Mintun Capsule Networks Eric Mintun Motivation An improvement* to regular Convolutional Neural Networks. Two goals: Replace max-pooling operation with something more intuitive. Keep more info about an activated

More information

GANs for Exploiting Unlabeled Data. Presented by: Uriya Pesso Nimrod Gilboa Markevich

GANs for Exploiting Unlabeled Data. Presented by: Uriya Pesso Nimrod Gilboa Markevich GANs for Exploiting Unlabeled Data Improved Techniques for Training GANs Learning from Simulated and Unsupervised Images through Adversarial Training Presented by: Uriya Pesso Nimrod Gilboa Markevich [

More information

CS 4510/9010 Applied Machine Learning. Deep Learning. Paula Matuszek Fall copyright Paula Matuszek 2016

CS 4510/9010 Applied Machine Learning. Deep Learning. Paula Matuszek Fall copyright Paula Matuszek 2016 CS 4510/9010 Applied Machine Learning 1 Deep Learning Paula Matuszek Fall 2016 Beyond Simple Neural Nets 2 In the last few ideas we have seen some surprisingly rapid progress in some areas of AI Image

More information

Synscapes A photorealistic syntehtic dataset for street scene parsing Jonas Unger Department of Science and Technology Linköpings Universitet.

Synscapes A photorealistic syntehtic dataset for street scene parsing Jonas Unger Department of Science and Technology Linköpings Universitet. Synscapes A photorealistic syntehtic dataset for street scene parsing Jonas Unger Department of Science and Technology Linköpings Universitet 7D Labs VINNOVA https://7dlabs.com Photo-realistic image synthesis

More information

Neural Networks and Deep Learning

Neural Networks and Deep Learning Neural Networks and Deep Learning Example Learning Problem Example Learning Problem Celebrity Faces in the Wild Machine Learning Pipeline Raw data Feature extract. Feature computation Inference: prediction,

More information

arxiv: v3 [cs.lg] 1 Mar 2017

arxiv: v3 [cs.lg] 1 Mar 2017 Jordan T. Ash Robert E. Schapire Barbara E. Engelhardt arxiv:6.4889v3 [cs.lg] Mar 7 Abstract Domain adaptation addresses the problem created when training data is generated by a socalled source distribution,

More information

Deep Learning for Computer Vision with MATLAB By Jon Cherrie

Deep Learning for Computer Vision with MATLAB By Jon Cherrie Deep Learning for Computer Vision with MATLAB By Jon Cherrie 2015 The MathWorks, Inc. 1 Deep learning is getting a lot of attention "Dahl and his colleagues won $22,000 with a deeplearning system. 'We

More information

DEEP NEURAL NETWORKS FOR OBJECT DETECTION

DEEP NEURAL NETWORKS FOR OBJECT DETECTION DEEP NEURAL NETWORKS FOR OBJECT DETECTION Sergey Nikolenko Steklov Institute of Mathematics at St. Petersburg October 21, 2017, St. Petersburg, Russia Outline Bird s eye overview of deep learning Convolutional

More information

arxiv: v2 [cs.lg] 3 Nov 2018

arxiv: v2 [cs.lg] 3 Nov 2018 Joint Domain Alignment and Discriminative Feature Learning for Unsupervised Deep Domain Adaptation Chao Chen, Zhihong Chen, Boyuan Jiang, Xinyu Jin Institute of Information Science and Electronic Engineering

More information

Feature Visualization

Feature Visualization CreativeAI: Deep Learning for Graphics Feature Visualization Niloy Mitra Iasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel UCL UCL UCL TU Munich UCL Timetable Theory and Basics State of the Art

More information

Deep Learning. Practical introduction with Keras JORDI TORRES 27/05/2018. Chapter 3 JORDI TORRES

Deep Learning. Practical introduction with Keras JORDI TORRES 27/05/2018. Chapter 3 JORDI TORRES Deep Learning Practical introduction with Keras Chapter 3 27/05/2018 Neuron A neural network is formed by neurons connected to each other; in turn, each connection of one neural network is associated

More information

2. Basic Task of Pattern Classification

2. Basic Task of Pattern Classification 2. Basic Task of Pattern Classification Definition of the Task Informal Definition: Telling things apart 3 Definition: http://www.webopedia.com/term/p/pattern_recognition.html pattern recognition Last

More information

Know your data - many types of networks

Know your data - many types of networks Architectures Know your data - many types of networks Fixed length representation Variable length representation Online video sequences, or samples of different sizes Images Specific architectures for

More information

COMP9444 Neural Networks and Deep Learning 7. Image Processing. COMP9444 c Alan Blair, 2017

COMP9444 Neural Networks and Deep Learning 7. Image Processing. COMP9444 c Alan Blair, 2017 COMP9444 Neural Networks and Deep Learning 7. Image Processing COMP9444 17s2 Image Processing 1 Outline Image Datasets and Tasks Convolution in Detail AlexNet Weight Initialization Batch Normalization

More information

Deep Generative Models Variational Autoencoders

Deep Generative Models Variational Autoencoders Deep Generative Models Variational Autoencoders Sudeshna Sarkar 5 April 2017 Generative Nets Generative models that represent probability distributions over multiple variables in some way. Directed Generative

More information

arxiv: v1 [cs.cv] 6 Apr 2019

arxiv: v1 [cs.cv] 6 Apr 2019 A Novel Unsupervised Camera-aware Domain Adaptation Framework for Person Re-identification Lei Qi, Lei Wang, Jing Huo, Luping Zhou, Yinghuan Shi, and Yang Gao arxiv:90.0v [cs.cv] Apr 09 State Key Laboratory

More information

Data mining with sparse grids

Data mining with sparse grids Data mining with sparse grids Jochen Garcke and Michael Griebel Institut für Angewandte Mathematik Universität Bonn Data mining with sparse grids p.1/40 Overview What is Data mining? Regularization networks

More information

Generative Adversarial Networks (GANs) Ian Goodfellow, Research Scientist MLSLP Keynote, San Francisco

Generative Adversarial Networks (GANs) Ian Goodfellow, Research Scientist MLSLP Keynote, San Francisco Generative Adversarial Networks (GANs) Ian Goodfellow, Research Scientist MLSLP Keynote, San Francisco 2016-09-13 Generative Modeling Density estimation Sample generation Training examples Model samples

More information

Asymmetric and Category Invariant Feature Transformations for Domain Adaptation

Asymmetric and Category Invariant Feature Transformations for Domain Adaptation Int J Comput Vis (2014) 109:28 41 DOI 10.1007/s11263-014-0719-3 Asymmetric and Category Invariant Feature Transformations for Domain Adaptation Judy Hoffman Erik Rodner Jeff Donahue Brian Kulis Kate Saenko

More information

M. Sc. (Artificial Intelligence and Machine Learning)

M. Sc. (Artificial Intelligence and Machine Learning) Course Name: Advanced Python Course Code: MSCAI 122 This course will introduce students to advanced python implementations and the latest Machine Learning and Deep learning libraries, Scikit-Learn and

More information

Image to Image Translation for Domain Adaptation

Image to Image Translation for Domain Adaptation Image to Image Translation for Domain Adaptation Zak Murez 1,2 Soheil Kolouri 2 David Kriegman 1 Ravi Ramamoorthi 1 Kyungnam Kim 2 1 University of California, San Diego; 2 HRL Laboratories, LLC; {zmurez,kriegman,ravir}@cs.ucsd.edu,

More information

CSE 6242 A / CX 4242 DVA. March 6, Dimension Reduction. Guest Lecturer: Jaegul Choo

CSE 6242 A / CX 4242 DVA. March 6, Dimension Reduction. Guest Lecturer: Jaegul Choo CSE 6242 A / CX 4242 DVA March 6, 2014 Dimension Reduction Guest Lecturer: Jaegul Choo Data is Too Big To Analyze! Limited memory size! Data may not be fitted to the memory of your machine! Slow computation!

More information

arxiv: v4 [cs.cv] 3 Apr 2018

arxiv: v4 [cs.cv] 3 Apr 2018 Maximum Classifier Discrepancy for Unsupervised Domain Adaptation Kuniaki Saito 1, Kohei Watanabe 1, Yoshitaka Ushiku 1, and Tatsuya Harada 1,2 1 The University of Tokyo, 2 RIKEN {k-saito,watanabe,ushiku,harada}@mi.t.u-tokyo.ac.jp

More information

Alternatives to Direct Supervision

Alternatives to Direct Supervision CreativeAI: Deep Learning for Graphics Alternatives to Direct Supervision Niloy Mitra Iasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel UCL UCL UCL TUM UCL Timetable Theory and Basics State of

More information

Multiple-Choice Questionnaire Group C

Multiple-Choice Questionnaire Group C Family name: Vision and Machine-Learning Given name: 1/28/2011 Multiple-Choice naire Group C No documents authorized. There can be several right answers to a question. Marking-scheme: 2 points if all right

More information

arxiv:submit/ [cs.cv] 13 Jan 2018

arxiv:submit/ [cs.cv] 13 Jan 2018 Benchmark Visual Question Answer Models by using Focus Map Wenda Qiu Yueyang Xianzang Zhekai Zhang Shanghai Jiaotong University arxiv:submit/2130661 [cs.cv] 13 Jan 2018 Abstract Inferring and Executing

More information

Introduction to Deep Learning

Introduction to Deep Learning ENEE698A : Machine Learning Seminar Introduction to Deep Learning Raviteja Vemulapalli Image credit: [LeCun 1998] Resources Unsupervised feature learning and deep learning (UFLDL) tutorial (http://ufldl.stanford.edu/wiki/index.php/ufldl_tutorial)

More information

Constrained Convolutional Neural Networks for Weakly Supervised Segmentation. Deepak Pathak, Philipp Krähenbühl and Trevor Darrell

Constrained Convolutional Neural Networks for Weakly Supervised Segmentation. Deepak Pathak, Philipp Krähenbühl and Trevor Darrell Constrained Convolutional Neural Networks for Weakly Supervised Segmentation Deepak Pathak, Philipp Krähenbühl and Trevor Darrell 1 Multi-class Image Segmentation Assign a class label to each pixel in

More information

Landmarks-based Kernelized Subspace Alignment for Unsupervised Domain Adaptation

Landmarks-based Kernelized Subspace Alignment for Unsupervised Domain Adaptation Landmarks-based Kernelized Subspace Alignment for Unsupervised Domain Adaptation Rahaf Aljundi, Re mi Emonet, Damien Muselet and Marc Sebban rahaf.aljundi@gmail.com remi.emonet, damien.muselet, marc.sebban

More information

arxiv: v1 [cs.cv] 10 Jul 2014

arxiv: v1 [cs.cv] 10 Jul 2014 ARTOS Adaptive Real-Time Object Detection System Björn Barz Erik Rodner bjoern.barz@uni-jena.de erik.rodner@uni-jena.de arxiv:1407.2721v1 [cs.cv] 10 Jul 2014 Joachim Denzler Computer Vision Group Friedrich

More information

1 Case study of SVM (Rob)

1 Case study of SVM (Rob) DRAFT a final version will be posted shortly COS 424: Interacting with Data Lecturer: Rob Schapire and David Blei Lecture # 8 Scribe: Indraneel Mukherjee March 1, 2007 In the previous lecture we saw how

More information

Learning Partially Shared Dictionaries for Domain Adaptation

Learning Partially Shared Dictionaries for Domain Adaptation Learning Partially Shared Dictionaries for Domain Adaptation Viresh Ranjan 1 Gaurav Harit 2 C. V. Jawahar 1 1 CVIT, IIIT Hyderabad, India 2 IIT Jodhpur, India Abstract. Real world applicability of many

More information

Deep Learning For Video Classification. Presented by Natalie Carlebach & Gil Sharon

Deep Learning For Video Classification. Presented by Natalie Carlebach & Gil Sharon Deep Learning For Video Classification Presented by Natalie Carlebach & Gil Sharon Overview Of Presentation Motivation Challenges of video classification Common datasets 4 different methods presented in

More information

Classification: Feature Vectors

Classification: Feature Vectors Classification: Feature Vectors Hello, Do you want free printr cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just # free YOUR_NAME MISSPELLED FROM_FRIEND... : : : : 2 0 2 0 PIXEL 7,12

More information

CSE 573: Artificial Intelligence Autumn 2010

CSE 573: Artificial Intelligence Autumn 2010 CSE 573: Artificial Intelligence Autumn 2010 Lecture 16: Machine Learning Topics 12/7/2010 Luke Zettlemoyer Most slides over the course adapted from Dan Klein. 1 Announcements Syllabus revised Machine

More information