Geodesic Flow Kernel for Unsupervised Domain Adaptation

Size: px
Start display at page:

Download "Geodesic Flow Kernel for Unsupervised Domain Adaptation"

Transcription

1 Geodesic Flow Kernel for Unsupervised Domain Adaptation Boqing Gong University of Southern California Joint work with Yuan Shi, Fei Sha, and Kristen Grauman 1

2 Motivation TRAIN TEST Mismatch between different domains/datasets Object recognition Ex. [Torralba & Efros 11, Perronnin et al. 10] Video analysis Ex. [Duan et al. 09, 10] Pedestrian detection Ex. [Dollár et al. 09] Other vision tasks Performance degrades significantly! Images from [Saenko et al. 10]. 2

3 Unsupervised domain adaptation Source domain (labeled) D Target domain (unlabeled) Objective = {( x, y ), i = 1,2,!, N}~ P ( X, Y) S i i S D = {( x,?), i = 1,2,!, M}~ P ( X, Y) T i T The two distributions are not the same! Train classification model to work well on the target 3

4 Challenges How to optimally, w.r.t. target domain, define discriminative loss function select model, tune parameters How to solve this ill-posed problem? impose additional structure 4

5 Examples of existing approaches Correcting sample bias Ex. [Shimodaira 00, Huang et al. 06, Bickel et al. 07] Assumption: marginal distributions are the only difference. Learning transductively Ex. [Bergamo & Torresani 10, Bruzzone & Marconcini 10] Assumption: classifiers have high-confidence predictions across domains. Learning a shared representation Ex. [Daumé III 07, Pan et al. 09, Gopalan et al. 11] Assumption: a latent feature space exists in which classification hypotheses fit both domains. 5

6 Our approach: learning a shared representation Key insight: bridging the gap Fantasize infinite number of domains Integrate out analytically idiosyncrasies in domains Learn invariant features by constructing kernel Source F() t áz z, z i j Target T æf(0) ö ç ç! T = ç F() t x ç ç! ç T (1) è F ø ñ 6

7 Main idea: geodesic flow kernel F() t Source 2 Target 1 z T æf(0) ö ç ç! T = ç F() t x ç ç! ç T (1) è F ø 3 áz, z ñ i j 4 1. Model data with linear subspaces 2. Model domain shift with geodesic flow 3. Derive domain-invariant features with kernel 4. Classify target data with the new features 7

8 Modeling data with linear subspaces Assume low-dimensional structure Target Source Ex. PCA, Partial Least Squares (source only) 8

9 Characterizing domains geometrically Source subspace Target subspace Grassmann manifold G( dd, ) Collection of d-dimensional subspaces of a vector D space R ( d < D) Each point corresponds to a subspace 9

10 Modeling domain shift with geodesic flow F(0) Source F(1) F (),0 t t 1 Target Geodesic flow on the manifold starting at source & arriving at target in unit time flow parameterized with one parameter closed-form, easy to compute with SVD 10

11 Modeling domain shift with geodesic flow Subspaces: F(0) Source F(1) F (),0 t t 1 Target Domains: Source Target 11

12 Modeling domain shift with geodesic flow Subspaces: F(0) Source F(1) F (),0 t t 1 Target Domains: Along this flow, points (subspaces) represent intermediate domains. 12

13 Domain-invariant features z = [ F(0) T x,!, F( t) T x,!, F(1) T x] Source F(0) F(1) F (),0 t t 1 Target More similar to source. 13

14 Domain-invariant features z = [ F(0) T x,!, F( t) T x,!, F(1) T x] Source F(0) F(1) F (),0 t t 1 Target More similar to target. 14

15 Domain-invariant features z = [ F(0) T x,!, F( t) T x,!, F(1) T x] Source F(0) F(1) F (),0 t t 1 Target Blend the two. 15

16 Measuring feature similarities with inner products z z = T T T [ F(0) x,!, F( t) x,!, F(1) x i i i i = T T T [ F(0) x,!, F( t) x,!, F(1) x ] j j j j ] More similar to source. More similar to target. áz, z ñ: Invariant to either source or target. i j 16

17 Learning domain-invariant features with kernels We define the geodesic flow kernel (GFK): Advantages 1 T T T T i, z j ( () ) ( () ) 0 i j dt xi Gx j áz ñ = ò F t x F t x = Analytically computable Robust to variants towards either source or target Broadly applicable: can kernelize many classifiers 17

18 Contrast to discretely sampling GFK (ours) [Gopalan et al. ICCV 2011] F(0) F (),0 t t 1 F(1) áz, z ñ = ò 1 0 i j ( F() t x ) ( F ( t) x ) dt = x Gx T T T T i j i j No free parameters Dimensionality reduction GFK is conceptually cleaner and computationally more tractable. Number of subspaces, dimensionality of subspace, dimensionality after reduction 18

19 Recap of key steps 1 Source subspace 2 Target subspace ( " = )(+) - )(/) - x )(0) - 3! " ázi, z j ñ = $ % &$ ' 4 19

20 Experimental setup Four domains Features Bag-of-SURF Classifier: 1NN Average over 20 random trials Caltech-256 DSLR Amazon Webcam 20

21 Classification accuracy on target 40 No adaptation [Gopalan et al.'11] GFK (ours) Accuracy (%) W-->C W-->A C-->D C-->A A-->W A-->C D-->A SourceàTarget 21

22 Classification accuracy on target 40 No adaptation [Gopalan et al.'11] GFK (ours) Accuracy (%) W-->C W-->A C-->D C-->A A-->W A-->C D-->A SourceàTarget 22

23 Classification accuracy on target 40 No adaptation [Gopalan et al.'11] GFK (ours) Accuracy (%) W-->C W-->A C-->D C-->A A-->W A-->C D-->A SourceàTarget 23

24 Which domain should be used as the source? DSLR Caltech-256 Webcam Amazon 24

25 Automatically selecting the best We introduce the Rank of Domains measure: Intuition Geometrically, how subspaces disagree Statistically, how distributions disagree 25

26 Automatically selecting the best Possible sources Our ROD measure Caltech Amazon 0 DSLR 0.26 Webcam 0.05 Accuracy (%) No adaptation [Gopalan et al.'11] GFK (ours) W-->A C256-->A D-->A SourceàTarget Caltech-256 adapts the best to Amazon. 26

27 Semi-supervised domain adaptation Label three instances per category in the target 60 No adaptation [Gopalan et al.'11] [Saenko et al.'10] GFK (ours) Accuracy (%) W-->C W-->A C-->D C-->A A-->W A-->C D-->A SourceàTarget 27

28 Analyzing datasets in light of domain adaptation Cross-dataset generalization [Torralba & Efros 11] Accuracy (%) Self Cross (no adaptation) Cross (with adaptation) PASCAL ImageNet Caltech

29 Analyzing datasets in light of domain adaptation Cross-dataset generalization [Torralba & Efros 11] Accuracy (%) Self Cross (no adaptation) Cross (with adaptation) 70 Performance 60 drop! PASCAL ImageNet Caltech-101 Caltech-101 generalizes the worst. Performance drop of ImageNet is big. 29

30 Analyzing datasets in light of domain adaptation Cross-dataset generalization [Torralba & Efros 11] Accuracy (%) Self Cross (no adaptation) Cross (with adaptation) Performance drop becomes smaller! PASCAL ImageNet Caltech-101 Caltech-101 generalizes the worst (w/ or w/o adaptation). There is nearly no performance drop of ImageNet. 30

31 Summary Unsupervised domain adaptation Important in visual recognition Challenge: no labeled data from the target Geodesic flow kernel (GFK) Conceptually clean formulation: no free parameter Computationally tractable: closed-form solution Empirically successful: state-of-the-art results New insight on vision datasets Cross-dataset generalization with domain adaptation Leveraging existing datasets despite their idiosyncrasies 31

32 Future work Beyond subspaces Other techniques to model domain shift From GFK to statistical flow kernel Add more statistical properties to the flow Applications of GFK Ex., face recognition, video analysis 32

33 Summary Unsupervised domain adaptation Important in visual recognition Challenge: no labeled data from the target Geodesic flow kernel (GFK) Conceptually clean formulation Computationally tractable Empirically successful New insight on vision datasets Cross-dataset generalization with domain adaptation Leveraging existing datasets despite their idiosyncrasies 33

Unsupervised Domain Adaptation by Domain Invariant Projection

Unsupervised Domain Adaptation by Domain Invariant Projection 2013 IEEE International Conference on Computer Vision Unsupervised Domain Adaptation by Domain Invariant Projection Mahsa Baktashmotlagh 1,3, Mehrtash T. Harandi 2,3, Brian C. Lovell 1, and Mathieu Salzmann

More information

arxiv: v1 [cs.cv] 6 Jul 2016

arxiv: v1 [cs.cv] 6 Jul 2016 arxiv:607.079v [cs.cv] 6 Jul 206 Deep CORAL: Correlation Alignment for Deep Domain Adaptation Baochen Sun and Kate Saenko University of Massachusetts Lowell, Boston University Abstract. Deep neural networks

More information

RECOGNIZING HETEROGENEOUS CROSS-DOMAIN DATA VIA GENERALIZED JOINT DISTRIBUTION ADAPTATION

RECOGNIZING HETEROGENEOUS CROSS-DOMAIN DATA VIA GENERALIZED JOINT DISTRIBUTION ADAPTATION RECOGNIZING HETEROGENEOUS CROSS-DOMAIN DATA VIA GENERALIZED JOINT DISTRIBUTION ADAPTATION Yuan-Ting Hsieh, Shih-Yen Tao, Yao-Hung Hubert Tsai 2, Yi-Ren Yeh 3, Yu-Chiang Frank Wang 2 Department of Electrical

More information

Frustratingly Easy NBNN Domain Adaptation

Frustratingly Easy NBNN Domain Adaptation Frustratingly Easy Domain Adaptation Tatiana Tommasi ESAT-PSI & iminds KU Leuven, Belgium ttommasi@esat.kuleuven.be Barbara Caputo University of Rome La Sapienza, Italy caputo@dis.uniroma1.it Abstract

More information

Kernel Methods for Unsupervised Domain Adaptation. Boqing Gong

Kernel Methods for Unsupervised Domain Adaptation. Boqing Gong Kernel Methods for Unsupervised Domain Adaptation by Boqing Gong A Dissertation Presented to the FACULTY OF THE GRADUATE SCHOOL UNIVERSITY OF SOUTHERN CALIFORNIA In Partial Fulfillment of the Requirements

More information

Learning Transferable Features with Deep Adaptation Networks

Learning Transferable Features with Deep Adaptation Networks Learning Transferable Features with Deep Adaptation Networks Mingsheng Long, Yue Cao, Jianmin Wang, Michael I. Jordan Presented by Changyou Chen October 30, 2015 1 Changyou Chen Learning Transferable Features

More information

Asymmetric and Category Invariant Feature Transformations for Domain Adaptation

Asymmetric and Category Invariant Feature Transformations for Domain Adaptation Int J Comput Vis (2014) 109:28 41 DOI 10.1007/s11263-014-0719-3 Asymmetric and Category Invariant Feature Transformations for Domain Adaptation Judy Hoffman Erik Rodner Jeff Donahue Brian Kulis Kate Saenko

More information

Robust Visual Knowledge Transfer via Extreme Learning Machine Based Domain Adaptation

Robust Visual Knowledge Transfer via Extreme Learning Machine Based Domain Adaptation Robust Visual Knowledge Transfer via Extreme Learning Machine Based Domain Adaptation Lei Zhang, Member, IEEE and David Zhang, Fellow, IEEE Abstract We address the problem of visual knowledge adaptation

More information

Learning Partially Shared Dictionaries for Domain Adaptation

Learning Partially Shared Dictionaries for Domain Adaptation Learning Partially Shared Dictionaries for Domain Adaptation Viresh Ranjan 1 Gaurav Harit 2 C. V. Jawahar 1 1 CVIT, IIIT Hyderabad, India 2 IIT Jodhpur, India Abstract. Real world applicability of many

More information

Dictionaries, Manifolds and Domain Adaptation for Image and Videobased. Rama Chellappa University of Maryland

Dictionaries, Manifolds and Domain Adaptation for Image and Videobased. Rama Chellappa University of Maryland Dictionaries, Manifolds and Domain Adaptation for Image and Videobased Recognition Rama Chellappa University of Maryland Student and the teachers Major points Training and testing data come from different

More information

Unsupervised Domain Adaptation by Backpropagation. Chih-Hui Ho, Xingyu Gu, Yuan Qi

Unsupervised Domain Adaptation by Backpropagation. Chih-Hui Ho, Xingyu Gu, Yuan Qi Unsupervised Domain Adaptation by Backpropagation Chih-Hui Ho, Xingyu Gu, Yuan Qi Problems Deep network: requires massive labeled training data. Labeled data: Available sometimes: Image recognition Speech

More information

arxiv: v2 [cs.cv] 18 Feb 2014

arxiv: v2 [cs.cv] 18 Feb 2014 One-Shot Adaptation of Supervised Deep Convolutional Models arxiv:1312.6204v2 [cs.cv] 18 Feb 2014 Judy Hoffman, Eric Tzeng, Jeff Donahue UC Berkeley, EECS & ICSI {jhoffman,etzeng,jdonahue}@eecs.berkeley.edu

More information

Landmarks-based Kernelized Subspace Alignment for Unsupervised Domain Adaptation

Landmarks-based Kernelized Subspace Alignment for Unsupervised Domain Adaptation Landmarks-based Kernelized Subspace Alignment for Unsupervised Domain Adaptation Rahaf Aljundi, Re mi Emonet, Damien Muselet and Marc Sebban rahaf.aljundi@gmail.com remi.emonet, damien.muselet, marc.sebban

More information

Deep Model Adaptation using Domain Adversarial Training

Deep Model Adaptation using Domain Adversarial Training Deep Model Adaptation using Domain Adversarial Training Victor Lempitsky, joint work with Yaroslav Ganin Skolkovo Institute of Science and Technology ( Skoltech ) Moscow region, Russia Deep supervised

More information

Mind the Gap: Subspace based Hierarchical Domain Adaptation

Mind the Gap: Subspace based Hierarchical Domain Adaptation Mind the Gap: Subspace based Hierarchical Domain Adaptation Anant Raj IIT Kanpur Kanpur, India 208016 anantraj@iitk.ac.in Vinay P. Namboodiri IIT Kanpur Kanpur, India 208016 vinaypn@iitk.ac.in Tinne Tuytelaars

More information

Beyond bags of features: Adding spatial information. Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba

Beyond bags of features: Adding spatial information. Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba Beyond bags of features: Adding spatial information Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba Adding spatial information Forming vocabularies from pairs of nearby features doublets

More information

Semi-Supervised Domain Adaptation with Instance Constraints

Semi-Supervised Domain Adaptation with Instance Constraints Semi-Supervised Domain Adaptation with Instance Constraints Jeff Donahue 1,2, Judy Hoffman 1,2, Erik Rodner 2,3, Kate Saenko 4, Trevor Darrell 1,2 1 UC Berkeley EECS, 2 UC Berkeley ICSI, 3 University of

More information

Latent Domains Modeling for Visual Domain Adaptation

Latent Domains Modeling for Visual Domain Adaptation Latent Domains Modeling for Visual Domain Adaptation Caiming Xiong SUNY at Buffalo cxiong@buffalo.edu Scott McCloskey Honeywell ACS Scott.McCloskey@honeywell.com Shao-Hang Hsieh SUNY at Buffalo shaohang@buffalo.edu

More information

Undoing the Damage of Dataset Bias

Undoing the Damage of Dataset Bias Undoing the Damage of Dataset Bias Aditya Khosla, Tinghui Zhou, Tomasz Malisiewicz, Alexei A. Efros, and Antonio Torralba Massachusetts Institute of Technology Carnegie Mellon University {khosla,tomasz,torralba}@csail.mit.edu,

More information

Generalized Domain-Adaptive Dictionaries

Generalized Domain-Adaptive Dictionaries 2013 IEEE Conference on Computer Vision and Pattern Recognition Generalized Domain-Adaptive Dictionaries Sumit Shekhar Vishal M. Patel Hien V. Nguyen Rama Chellappa University of Maryland, College Park,

More information

CS 229 Midterm Review

CS 229 Midterm Review CS 229 Midterm Review Course Staff Fall 2018 11/2/2018 Outline Today: SVMs Kernels Tree Ensembles EM Algorithm / Mixture Models [ Focus on building intuition, less so on solving specific problems. Ask

More information

A Taxonomy of Semi-Supervised Learning Algorithms

A Taxonomy of Semi-Supervised Learning Algorithms A Taxonomy of Semi-Supervised Learning Algorithms Olivier Chapelle Max Planck Institute for Biological Cybernetics December 2005 Outline 1 Introduction 2 Generative models 3 Low density separation 4 Graph

More information

Domain Adaptive Object Detection

Domain Adaptive Object Detection Domain Adaptive Object Detection Fatemeh Mirrashed, Vlad I. Morariu, Behjat Siddiquie2, Rogerio S. Feris3, Larry S. Davis 2 3 University of Maryland, College Park SRI International IBM Research {fatemeh,morariu,lsd}@umiacs.umd.edu

More information

Visual Domain Adaptation: An Overview of. Recent Advances

Visual Domain Adaptation: An Overview of. Recent Advances Visual Domain Adaptation: An Overview of 1 Recent Advances Vishal M. Patel, Member, IEEE, Raghuraman Gopalan, Member, IEEE, Ruonan Li, and Rama Chellappa, Fellow, IEEE Abstract In pattern recognition and

More information

Subspace Alignment Based Domain Adaptation for RCNN Detector

Subspace Alignment Based Domain Adaptation for RCNN Detector RAJ, NAMBOODIRI, TUYTELAARS: ADAPTING RCNN DETECTOR 1 Subspace Alignment Based Domain Adaptation for RCNN Detector Anant Raj anantraj@iitk.ac.in Vinay P. Namboodiri vinaypn@iitk.ac.in Tinne Tuytelaars

More information

Dimension Reduction CS534

Dimension Reduction CS534 Dimension Reduction CS534 Why dimension reduction? High dimensionality large number of features E.g., documents represented by thousands of words, millions of bigrams Images represented by thousands of

More information

A (somewhat) Unified Approach to Semisupervised and Unsupervised Learning

A (somewhat) Unified Approach to Semisupervised and Unsupervised Learning A (somewhat) Unified Approach to Semisupervised and Unsupervised Learning Ben Recht Center for the Mathematics of Information Caltech April 11, 2007 Joint work with Ali Rahimi (Intel Research) Overview

More information

Object and Action Detection from a Single Example

Object and Action Detection from a Single Example Object and Action Detection from a Single Example Peyman Milanfar* EE Department University of California, Santa Cruz *Joint work with Hae Jong Seo AFOSR Program Review, June 4-5, 29 Take a look at this:

More information

Improving Recognition through Object Sub-categorization

Improving Recognition through Object Sub-categorization Improving Recognition through Object Sub-categorization Al Mansur and Yoshinori Kuno Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama-shi, Saitama 338-8570,

More information

Aggregating Descriptors with Local Gaussian Metrics

Aggregating Descriptors with Local Gaussian Metrics Aggregating Descriptors with Local Gaussian Metrics Hideki Nakayama Grad. School of Information Science and Technology The University of Tokyo Tokyo, JAPAN nakayama@ci.i.u-tokyo.ac.jp Abstract Recently,

More information

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Detection and Classification. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Detection and Classification Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Problem I. Strategies II. Features for training III. Using spatial information? IV. Reducing dimensionality

More information

Lightweight Unsupervised Domain Adaptation by Convolutional Filter Reconstruction

Lightweight Unsupervised Domain Adaptation by Convolutional Filter Reconstruction Lightweight Unsupervised Domain Adaptation by Convolutional Filter Reconstruction Rahaf Aljundi, Tinne Tuytelaars KU Leuven, ESAT-PSI - iminds, Belgium Abstract. Recently proposed domain adaptation methods

More information

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review

CS6375: Machine Learning Gautam Kunapuli. Mid-Term Review Gautam Kunapuli Machine Learning Data is identically and independently distributed Goal is to learn a function that maps to Data is generated using an unknown function Learn a hypothesis that minimizes

More information

CS4495/6495 Introduction to Computer Vision. 8C-L1 Classification: Discriminative models

CS4495/6495 Introduction to Computer Vision. 8C-L1 Classification: Discriminative models CS4495/6495 Introduction to Computer Vision 8C-L1 Classification: Discriminative models Remember: Supervised classification Given a collection of labeled examples, come up with a function that will predict

More information

Slides for Data Mining by I. H. Witten and E. Frank

Slides for Data Mining by I. H. Witten and E. Frank Slides for Data Mining by I. H. Witten and E. Frank 7 Engineering the input and output Attribute selection Scheme-independent, scheme-specific Attribute discretization Unsupervised, supervised, error-

More information

Adaptive Transductive Transfer Machines

Adaptive Transductive Transfer Machines FARAJIDAVAR ET AL.: ADAPTIVE TRANSDUCTIVE TRANSFER MACHINES 1 Adaptive Transductive Transfer Machines Nazli Farajidavar http://personal.ee.surrey.ac.uk/personal/n.farajidavar Teofilo decampos http://personal.ee.surrey.ac.uk/personal/t.decampos

More information

Transductive Transfer Machine

Transductive Transfer Machine Transductive Transfer Machine Nazli Farajidavar, Teofilo decampos, Josef Kittler CVSSP, Univeristy of Surrey, Guildford, Surrey, UK GU2 7XH Abstract. We propose a pipeline for transductive transfer learning

More information

Day 3 Lecture 1. Unsupervised Learning

Day 3 Lecture 1. Unsupervised Learning Day 3 Lecture 1 Unsupervised Learning Semi-supervised and transfer learning Myth: you can t do deep learning unless you have a million labelled examples for your problem. Reality You can learn useful representations

More information

Class 5: Attributes and Semantic Features

Class 5: Attributes and Semantic Features Class 5: Attributes and Semantic Features Rogerio Feris, Feb 21, 2013 EECS 6890 Topics in Information Processing Spring 2013, Columbia University http://rogerioferis.com/visualrecognitionandsearch Project

More information

Machine Learning Techniques for Data Mining

Machine Learning Techniques for Data Mining Machine Learning Techniques for Data Mining Eibe Frank University of Waikato New Zealand 10/25/2000 1 PART VII Moving on: Engineering the input and output 10/25/2000 2 Applying a learner is not all Already

More information

Kernelized Bayesian Transfer Learning

Kernelized Bayesian Transfer Learning Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence Kernelized Bayesian Transfer Learning Mehmet Gönen mehmetgonen@sagebaseorg Sage Bionetworks Seattle, WA 9809, USA Adam A Margolin

More information

Fast Indexing and Search. Lida Huang, Ph.D. Senior Member of Consulting Staff Magma Design Automation

Fast Indexing and Search. Lida Huang, Ph.D. Senior Member of Consulting Staff Magma Design Automation Fast Indexing and Search Lida Huang, Ph.D. Senior Member of Consulting Staff Magma Design Automation Motivation Object categorization? http://www.cs.utexas.edu/~grauman/slides/jain_et_al_cvpr2008.ppt Motivation

More information

Graph and Subspace Learning for Domain Adaptation

Graph and Subspace Learning for Domain Adaptation Graph and Subspace Learning for Domain Adaptation A Dissertation Submitted to the Temple University Graduate Board in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY by Le

More information

Unified Deep Supervised Domain Adaptation and Generalization

Unified Deep Supervised Domain Adaptation and Generalization Unified Deep Supervised Domain Adaptation and Generalization Saeid Motiian Marco Piccirilli Donald A. Adjeroh Gianfranco Doretto West Virginia University Morgantown, WV 26508 {samotiian, mpiccir1, daadjeroh,

More information

CAP 6412 Advanced Computer Vision

CAP 6412 Advanced Computer Vision CAP 6412 Advanced Computer Vision http://www.cs.ucf.edu/~bgong/cap6412.html Boqing Gong April 5th, 2016 Today Administrivia LSTM Attribute in computer vision, by Abdullah and Samer Project II posted, due

More information

Sketchable Histograms of Oriented Gradients for Object Detection

Sketchable Histograms of Oriented Gradients for Object Detection Sketchable Histograms of Oriented Gradients for Object Detection No Author Given No Institute Given Abstract. In this paper we investigate a new representation approach for visual object recognition. The

More information

Unsupervised learning in Vision

Unsupervised learning in Vision Chapter 7 Unsupervised learning in Vision The fields of Computer Vision and Machine Learning complement each other in a very natural way: the aim of the former is to extract useful information from visual

More information

Big Data Methods. Chapter 5: Machine learning. Big Data Methods, Chapter 5, Slide 1

Big Data Methods. Chapter 5: Machine learning. Big Data Methods, Chapter 5, Slide 1 Big Data Methods Chapter 5: Machine learning Big Data Methods, Chapter 5, Slide 1 5.1 Introduction to machine learning What is machine learning? Concerned with the study and development of algorithms that

More information

Ulas Bagci

Ulas Bagci CAP5415-Computer Vision Lecture 14-Decision Forests for Computer Vision Ulas Bagci bagci@ucf.edu 1 Readings Slide Credits: Criminisi and Shotton Z. Tu R.Cipolla 2 Common Terminologies Randomized Decision

More information

Image Analogies for Visual Domain Adaptation

Image Analogies for Visual Domain Adaptation Image Analogies for Visual Domain Adaptation Jeff Donahue UC Berkeley EECS jdonahue@eecs.berkeley.edu Abstract In usual approaches to visual domain adaptation, algorithms are used to infer a common domain

More information

Pouya Kousha Fall 2018 CSE 5194 Prof. DK Panda

Pouya Kousha Fall 2018 CSE 5194 Prof. DK Panda Pouya Kousha Fall 2018 CSE 5194 Prof. DK Panda 1 Observe novel applicability of DL techniques in Big Data Analytics. Applications of DL techniques for common Big Data Analytics problems. Semantic indexing

More information

Adapting Deep Networks Across Domains, Modalities, and Tasks Judy Hoffman!

Adapting Deep Networks Across Domains, Modalities, and Tasks Judy Hoffman! Adapting Deep Networks Across Domains, Modalities, and Tasks Judy Hoffman! Eric Tzeng Saurabh Gupta Kate Saenko Trevor Darrell Recent Visual Recognition Progress ImageNet Performance 100 Accuracy 95 90

More information

Discriminative classifiers for image recognition

Discriminative classifiers for image recognition Discriminative classifiers for image recognition May 26 th, 2015 Yong Jae Lee UC Davis Outline Last time: window-based generic object detection basic pipeline face detection with boosting as case study

More information

on learned visual embedding patrick pérez Allegro Workshop Inria Rhônes-Alpes 22 July 2015

on learned visual embedding patrick pérez Allegro Workshop Inria Rhônes-Alpes 22 July 2015 on learned visual embedding patrick pérez Allegro Workshop Inria Rhônes-Alpes 22 July 2015 Vector visual representation Fixed-size image representation High-dim (100 100,000) Generic, unsupervised: BoW,

More information

Distances and Kernels. Motivation

Distances and Kernels. Motivation Distances and Kernels Amirshahed Mehrtash Motivation How similar? 1 Problem Definition Designing a fast system to measure the similarity il it of two images. Used to categorize images based on appearance.

More information

Open Set Domain Adaptation

Open Set Domain Adaptation Open Set Domain Adaptation Pau Panareda Busto 1,2 1 Airbus Group Innovations Munich, Germany pau.panareda-busto@airbus.com Juergen Gall 2 2 Computer Vision Group University of Bonn, Germany gall@iai.uni-bonn.de

More information

Subject. Dataset. Copy paste feature of the diagram. Importing the dataset. Copy paste feature into the diagram.

Subject. Dataset. Copy paste feature of the diagram. Importing the dataset. Copy paste feature into the diagram. Subject Copy paste feature into the diagram. When we define the data analysis process into Tanagra, it is possible to copy components (or entire branches of components) towards another location into the

More information

Part based models for recognition. Kristen Grauman

Part based models for recognition. Kristen Grauman Part based models for recognition Kristen Grauman UT Austin Limitations of window-based models Not all objects are box-shaped Assuming specific 2d view of object Local components themselves do not necessarily

More information

Announcements. Recognition I. Gradient Space (p,q) What is the reflectance map?

Announcements. Recognition I. Gradient Space (p,q) What is the reflectance map? Announcements I HW 3 due 12 noon, tomorrow. HW 4 to be posted soon recognition Lecture plan recognition for next two lectures, then video and motion. Introduction to Computer Vision CSE 152 Lecture 17

More information

COMP 551 Applied Machine Learning Lecture 16: Deep Learning

COMP 551 Applied Machine Learning Lecture 16: Deep Learning COMP 551 Applied Machine Learning Lecture 16: Deep Learning Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551 Unless otherwise noted, all

More information

Static Gesture Recognition with Restricted Boltzmann Machines

Static Gesture Recognition with Restricted Boltzmann Machines Static Gesture Recognition with Restricted Boltzmann Machines Peter O Donovan Department of Computer Science, University of Toronto 6 Kings College Rd, M5S 3G4, Canada odonovan@dgp.toronto.edu Abstract

More information

Mixtures of Gaussians and Advanced Feature Encoding

Mixtures of Gaussians and Advanced Feature Encoding Mixtures of Gaussians and Advanced Feature Encoding Computer Vision Ali Borji UWM Many slides from James Hayes, Derek Hoiem, Florent Perronnin, and Hervé Why do good recognition systems go bad? E.g. Why

More information

SVM-KNN : Discriminative Nearest Neighbor Classification for Visual Category Recognition

SVM-KNN : Discriminative Nearest Neighbor Classification for Visual Category Recognition SVM-KNN : Discriminative Nearest Neighbor Classification for Visual Category Recognition Hao Zhang, Alexander Berg, Michael Maire Jitendra Malik EECS, UC Berkeley Presented by Adam Bickett Objective Visual

More information

arxiv: v2 [cs.cv] 17 Nov 2016 Abstract

arxiv: v2 [cs.cv] 17 Nov 2016 Abstract Beyond Sharing Weights for Deep Domain Adaptation Artem Rozantsev Mathieu Salzmann Pascal Fua Computer Vision Laboratory, École Polytechnique Fédérale de Lausanne Lausanne, Switzerland {firstname.lastname}@epfl.ch

More information

Action recognition in videos

Action recognition in videos Action recognition in videos Cordelia Schmid INRIA Grenoble Joint work with V. Ferrari, A. Gaidon, Z. Harchaoui, A. Klaeser, A. Prest, H. Wang Action recognition - goal Short actions, i.e. drinking, sit

More information

Overview Citation. ML Introduction. Overview Schedule. ML Intro Dataset. Introduction to Semi-Supervised Learning Review 10/4/2010

Overview Citation. ML Introduction. Overview Schedule. ML Intro Dataset. Introduction to Semi-Supervised Learning Review 10/4/2010 INFORMATICS SEMINAR SEPT. 27 & OCT. 4, 2010 Introduction to Semi-Supervised Learning Review 2 Overview Citation X. Zhu and A.B. Goldberg, Introduction to Semi- Supervised Learning, Morgan & Claypool Publishers,

More information

Learning Discrete Representations via Information Maximizing Self-Augmented Training

Learning Discrete Representations via Information Maximizing Self-Augmented Training A. Relation to Denoising and Contractive Auto-encoders Our method is related to denoising auto-encoders (Vincent et al., 2008). Auto-encoders maximize a lower bound of mutual information (Cover & Thomas,

More information

Scene Segmentation in Adverse Vision Conditions

Scene Segmentation in Adverse Vision Conditions Scene Segmentation in Adverse Vision Conditions Evgeny Levinkov Max Planck Institute for Informatics, Saarbrücken, Germany levinkov@mpi-inf.mpg.de Abstract. Semantic road labeling is a key component of

More information

A GENERALIZED KERNEL-BASED RANDOM K-SAMPLESETS METHOD FOR TRANSFER LEARNING * J. TAHMORESNEZHAD AND S. HASHEMI **

A GENERALIZED KERNEL-BASED RANDOM K-SAMPLESETS METHOD FOR TRANSFER LEARNING * J. TAHMORESNEZHAD AND S. HASHEMI ** IJST, Transactions of Electrical Engineering, Vol. 39, No. E2, pp 193-207 Printed in The Islamic Republic of Iran, 2015 Shiraz University A GENERALIZED KERNEL-BASED RANDOM K-SAMPLESETS METHOD FOR TRANSFER

More information

Random projection for non-gaussian mixture models

Random projection for non-gaussian mixture models Random projection for non-gaussian mixture models Győző Gidófalvi Department of Computer Science and Engineering University of California, San Diego La Jolla, CA 92037 gyozo@cs.ucsd.edu Abstract Recently,

More information

K Nearest Neighbor Wrap Up K- Means Clustering. Slides adapted from Prof. Carpuat

K Nearest Neighbor Wrap Up K- Means Clustering. Slides adapted from Prof. Carpuat K Nearest Neighbor Wrap Up K- Means Clustering Slides adapted from Prof. Carpuat K Nearest Neighbor classification Classification is based on Test instance with Training Data K: number of neighbors that

More information

Machine Learning / Jan 27, 2010

Machine Learning / Jan 27, 2010 Revisiting Logistic Regression & Naïve Bayes Aarti Singh Machine Learning 10-701/15-781 Jan 27, 2010 Generative and Discriminative Classifiers Training classifiers involves learning a mapping f: X -> Y,

More information

Convolutional-Recursive Deep Learning for 3D Object Classification

Convolutional-Recursive Deep Learning for 3D Object Classification Convolutional-Recursive Deep Learning for 3D Object Classification Richard Socher, Brody Huval, Bharath Bhat, Christopher D. Manning, Andrew Y. Ng NIPS 2012 Iro Armeni, Manik Dhar Motivation Hand-designed

More information

Transfer Learning. Style Transfer in Deep Learning

Transfer Learning. Style Transfer in Deep Learning Transfer Learning & Style Transfer in Deep Learning 4-DEC-2016 Gal Barzilai, Ram Machlev Deep Learning Seminar School of Electrical Engineering Tel Aviv University Part 1: Transfer Learning in Deep Learning

More information

Topic 4: Support Vector Machines

Topic 4: Support Vector Machines CS 4850/6850: Introduction to achine Learning Fall 2018 Topic 4: Support Vector achines Instructor: Daniel L Pimentel-Alarcón c Copyright 2018 41 Introduction Support vector machines (SVs) are considered

More information

Chapter 7. Conclusions and Future Work

Chapter 7. Conclusions and Future Work Chapter 7 Conclusions and Future Work In this dissertation, we have presented a new way of analyzing a basic building block in computer graphics rendering algorithms the computational interaction between

More information

Large scale object/scene recognition

Large scale object/scene recognition Large scale object/scene recognition Image dataset: > 1 million images query Image search system ranked image list Each image described by approximately 2000 descriptors 2 10 9 descriptors to index! Database

More information

Interpretable Domain Adaptation via Optimization over the Stiefel Manifold

Interpretable Domain Adaptation via Optimization over the Stiefel Manifold Noname manuscript No. (will be inserted by the editor) Interpretable Domain Adaptation via Optimization over the Stiefel Manifold Christian Pölitz 1 Wouter Duivesteijn 2 Katharina Morik 1 Abstract In domain

More information

Learning Compact Visual Attributes for Large-scale Image Classification

Learning Compact Visual Attributes for Large-scale Image Classification Learning Compact Visual Attributes for Large-scale Image Classification Yu Su and Frédéric Jurie GREYC CNRS UMR 6072, University of Caen Basse-Normandie, Caen, France {yu.su,frederic.jurie}@unicaen.fr

More information

Locality Preserving Projections (LPP) Abstract

Locality Preserving Projections (LPP) Abstract Locality Preserving Projections (LPP) Xiaofei He Partha Niyogi Computer Science Department Computer Science Department The University of Chicago The University of Chicago Chicago, IL 60615 Chicago, IL

More information

Beyond Bags of Features

Beyond Bags of Features : for Recognizing Natural Scene Categories Matching and Modeling Seminar Instructed by Prof. Haim J. Wolfson School of Computer Science Tel Aviv University December 9 th, 2015

More information

Multi-Level Active Prediction of Useful Image Annotations

Multi-Level Active Prediction of Useful Image Annotations Multi-Level Active Prediction of Useful Image Annotations Sudheendra Vijayanarasimhan and Kristen Grauman Department of Computer Sciences University of Texas at Austin Austin, Texas 78712 (svnaras,grauman)@cs.utexas.edu

More information

Subspace Clustering. Weiwei Feng. December 11, 2015

Subspace Clustering. Weiwei Feng. December 11, 2015 Subspace Clustering Weiwei Feng December 11, 2015 Abstract Data structure analysis is an important basis of machine learning and data science, which is now widely used in computational visualization problems,

More information

An Adaptive Framework for Multistream Classification

An Adaptive Framework for Multistream Classification An Adaptive Framework for Multistream Classification Swarup Chandra, Ahsanul Haque, Latifur Khan and Charu Aggarwal* University of Texas at Dallas *IBM Research This material is based upon work supported

More information

Semi-Supervised Hierarchical Models for 3D Human Pose Reconstruction

Semi-Supervised Hierarchical Models for 3D Human Pose Reconstruction Semi-Supervised Hierarchical Models for 3D Human Pose Reconstruction Atul Kanaujia, CBIM, Rutgers Cristian Sminchisescu, TTI-C Dimitris Metaxas,CBIM, Rutgers 3D Human Pose Inference Difficulties Towards

More information

CSE 573: Artificial Intelligence Autumn 2010

CSE 573: Artificial Intelligence Autumn 2010 CSE 573: Artificial Intelligence Autumn 2010 Lecture 16: Machine Learning Topics 12/7/2010 Luke Zettlemoyer Most slides over the course adapted from Dan Klein. 1 Announcements Syllabus revised Machine

More information

Multiple-Choice Questionnaire Group C

Multiple-Choice Questionnaire Group C Family name: Vision and Machine-Learning Given name: 1/28/2011 Multiple-Choice naire Group C No documents authorized. There can be several right answers to a question. Marking-scheme: 2 points if all right

More information

Domain Adaptation for Structured Regression

Domain Adaptation for Structured Regression Domain Adaptation for Structured Regression Makoto Yamada, Yi Chang, Leonid Sigal 2 Yahoo Labs, 7 st Ave., Sunnyvale, 9489, USA 2 Disney Research, 472 Forbes Ave., Pittsburgh, PA 523, USA makotoy@yahoo-inc.com,

More information

CSE 6242 A / CS 4803 DVA. Feb 12, Dimension Reduction. Guest Lecturer: Jaegul Choo

CSE 6242 A / CS 4803 DVA. Feb 12, Dimension Reduction. Guest Lecturer: Jaegul Choo CSE 6242 A / CS 4803 DVA Feb 12, 2013 Dimension Reduction Guest Lecturer: Jaegul Choo CSE 6242 A / CS 4803 DVA Feb 12, 2013 Dimension Reduction Guest Lecturer: Jaegul Choo Data is Too Big To Do Something..

More information

Data Mining: Concepts and Techniques. Chapter 9 Classification: Support Vector Machines. Support Vector Machines (SVMs)

Data Mining: Concepts and Techniques. Chapter 9 Classification: Support Vector Machines. Support Vector Machines (SVMs) Data Mining: Concepts and Techniques Chapter 9 Classification: Support Vector Machines 1 Support Vector Machines (SVMs) SVMs are a set of related supervised learning methods used for classification Based

More information

Preparation Meeting. Recent Advances in the Analysis of 3D Shapes. Emanuele Rodolà Matthias Vestner Thomas Windheuser Daniel Cremers

Preparation Meeting. Recent Advances in the Analysis of 3D Shapes. Emanuele Rodolà Matthias Vestner Thomas Windheuser Daniel Cremers Preparation Meeting Recent Advances in the Analysis of 3D Shapes Emanuele Rodolà Matthias Vestner Thomas Windheuser Daniel Cremers What You Will Learn in the Seminar Get an overview on state of the art

More information

Learning Better Data Representation using Inference-Driven Metric Learning

Learning Better Data Representation using Inference-Driven Metric Learning Learning Better Data Representation using Inference-Driven Metric Learning Paramveer S. Dhillon CIS Deptt., Univ. of Penn. Philadelphia, PA, U.S.A dhillon@cis.upenn.edu Partha Pratim Talukdar Search Labs,

More information

Semi-supervised Learning

Semi-supervised Learning Semi-supervised Learning Piyush Rai CS5350/6350: Machine Learning November 8, 2011 Semi-supervised Learning Supervised Learning models require labeled data Learning a reliable model usually requires plenty

More information

Linear Discriminant Analysis for 3D Face Recognition System

Linear Discriminant Analysis for 3D Face Recognition System Linear Discriminant Analysis for 3D Face Recognition System 3.1 Introduction Face recognition and verification have been at the top of the research agenda of the computer vision community in recent times.

More information

Bi-shifting Auto-Encoder for Unsupervised Domain Adaptation

Bi-shifting Auto-Encoder for Unsupervised Domain Adaptation Bi-shifting Auto-Encoder for Unsupervised Domain Adaptation Meina Kan 1, Shiguang Shan 1,2, Xilin Chen 1 1 Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute

More information

Object Recognition. Lecture 11, April 21 st, Lexing Xie. EE4830 Digital Image Processing

Object Recognition. Lecture 11, April 21 st, Lexing Xie. EE4830 Digital Image Processing Object Recognition Lecture 11, April 21 st, 2008 Lexing Xie EE4830 Digital Image Processing http://www.ee.columbia.edu/~xlx/ee4830/ 1 Announcements 2 HW#5 due today HW#6 last HW of the semester Due May

More information

Efficient Kernels for Identifying Unbounded-Order Spatial Features

Efficient Kernels for Identifying Unbounded-Order Spatial Features Efficient Kernels for Identifying Unbounded-Order Spatial Features Yimeng Zhang Carnegie Mellon University yimengz@andrew.cmu.edu Tsuhan Chen Cornell University tsuhan@ece.cornell.edu Abstract Higher order

More information

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun Presented by Tushar Bansal Objective 1. Get bounding box for all objects

More information

Describable Visual Attributes for Face Verification and Image Search

Describable Visual Attributes for Face Verification and Image Search Advanced Topics in Multimedia Analysis and Indexing, Spring 2011, NTU. 1 Describable Visual Attributes for Face Verification and Image Search Kumar, Berg, Belhumeur, Nayar. PAMI, 2011. Ryan Lei 2011/05/05

More information

Local Features based Object Categories and Object Instances Recognition

Local Features based Object Categories and Object Instances Recognition Local Features based Object Categories and Object Instances Recognition Eric Nowak Ph.D. thesis defense 17th of March, 2008 1 Thesis in Computer Vision Computer vision is the science and technology of

More information