Generalized Additive Models

Size: px
Start display at page:

Download "Generalized Additive Models"

Transcription

1 :p Texts in Statistical Science Generalized Additive Models An Introduction with R Simon N. Wood

2 Contents Preface XV 1 Linear Models A simple linear model 2 Simple least squares estimation Sampling properties of~ So how old is the universe? Adding a distributional assumption 7 Testing hypotheses about (3 7 Confidence intervals Linear models in general The theory of linear models Least squares estimation of ( The distribution of i!j (~i - f3i) / Cr {1i ""' tn- p F-ratio results The influence matrix The residuals,, and fitted values, P, Results in terms of X The Gauss Markov Theorem: What's special about least squares? The geometry of linear modelling Least squares Fitting by orthogonal decompositions 20

3 viii Comparison of nested models Practical linear modelling Model fitting and model checking Model summary Model selection Another model selection example 31 A follow-up Confidence intervals Prediction Practical modelling with factors Identifiability Multiple factors 'Interactions' of factors Using factor variables in R General linear model specification in R Further linear modelling theory Constraints I: General linear constraints Constraints II: 'Contrasts' and factor variables Likelihood Non-independent data with variable variance AIC and Mallow's statistic Non-linear least squares Further reading Exercises 55 2 Generalized Linear Models The theory of GLMs The exponential family of distributions Fitting generalized linear models The IRLS objective is a quadratic approximation to the log-likelihood 66

4 p ix AIC forglms Large sample distribution of / Comparing models by hypothesis testing 69 Deviance 70 Model comparison with unknown and Pearson's statistic Canonical link functions Residuals 73 Pearson residuals 73 Deviance residuals Quasi-likelihood Geometry of GLMs The geometry of IRLS Geometry and IRLS convergence GLMs with R Binomial models and heart disease A Poisson regression epidemic model Log-linear models for categorical data Sole eggs in the Bristol channel Likelihood In variance Properties of the expected log-likelihood Consistency Large sample distribution of {J The generalized likelihood ratio test (GLRT) Derivation of 2.\ rv x; under Ho AIC in general Quasi-likelihood results Exercises 115

5 X 3 Introducing GAMs Introduction Univariate smooth functions Representing a smooth function: Regression splines 122 A very simple example: A polynomial basis 122 Another example: A cubic spline basis 124 Using the cubic spline basis Controlling the degree of smoothing with penalized regression splines Choosing the smoothing parameter,>.: Cross validation Additive models Penalized regression spline representation of an additive model Fitting additive models by penalized least squares Generalized additive models Summary Exercises Some GAM Theory Smoothing bases Why splines? 146 Natural cubic splines are smoothest interpolators 146 Cubic smoothing splines Cubic regression splines A cyclic cubic regression spline P-splines Thin plate regression splines 154 Thin plate splines 154 Thin plate regression splines 157 Properties of thin plate regression splines 158 Knot-based approximation Shrinkage smoothers 160

6 > Choosing the basis dimension Tensor product smooths Tensor product bases Tensor product penalties 4.2 Setting up GAMs as penalized GLMs Variable coefficient models 4.3 Justifying P-IRLS 4.4 Degrees of freedom and residual variance estimation Residual variance or scale parameter estimation 4.5 Smoothing parameter selection criteria Known scale parameter: UBRE Unknown scale parameter: Cross validation Problems with ordinary cross validation Generalized cross validation GCV/UBRE/AIC in the generalized case Approaches to GAM GCV /UBRE minimization 4.6 Numerical GCV/UBRE: Performance iteration Minimizing the GCV or UBRE score xi Stable and efficient evaluation of the scores and derivatives 183 The weighted constrained case Numerical GCV/UBRE optimization by outer iteration Differentiating the GCV/UBRE function 4.8 Distributional results Bayesian model, and posterior distribution of the parameters, for an additive model Structure of the prior Posterior distribution for a GAM Bayesian confidence intervals for non-linear functions of parameters P-values 4.9 Confidence interval erformance

7 xii Single smooths GAMs and their components Unconditional Bayesian confidence intervals Further GAM theory Comparing GAMs by hypothesis testing ANOVA decompositions and nesting The geometry of penalized regression The "natural" parameterization of a penalized smoother Other approaches to GAMs Backfitting GAMs Generalized smoothing splines Exercises GAMs in Practice: mgcv Cherry trees again Finer control of gam Smooths of several variables Parametric model terms Brain imaging example Preliminary modelling Would an additive structure be better? Isotropic or tensor product smooths? Detecting symmetry (with by variables) Comparing two surfaces Prediction with predict. gam 243 Prediction with lpmatrix Variances of non-linear functions of the fitted model Air pollution in Chicago example Mackerel egg survey example Model development Model predictions 260

8 xiii 5.5 Portuguese larks example Other packages Package gam Package gss Exercises Mixed Models and GAMMs Mixed models for balanced data A motivating example 277 The wrong approach: A fixed effects linear model 278 The right approach: A mixed effects model General principles A single random factor A model with two factors Discussion Linear mixed models in general Estimation of linear mixed models Directly maximizing a mixed model likelihood in R Inference with linear mixed models 295 Fixed effects 295 Inference about the random effects Predicting the random effects REML 298 The explicit form of the REML criterion A link with penalized regression The EM algorithm Linear mixed models in R Tree growth: An example using lme Several levels of nesting Generalized linear mixed models GLMMs with R 312

9 XIV 6.6 Generalized additive mixed models Smooths as mixed model components Inference with GAMMs GAMMswith R A GAMM for sole eggs The temperature in Cairo Exercises 325 A Some Matrix Algebra 331 A.1 Basic computat~onal efficiency 331 A.2 Covariance matrices 332 A.3 Differentiating a matrix inverse 332 A.4 Kronecker product 333 A.5 Orthogonal matrices and Householder matrices 333 A.6 QR decomposition 334 A.7 Choleski decomposition 334 A.8 Eigen-decomposition 335 A.9 Singular value decomposition 336 A.1 0 Pivoting 337 A.l1 Lanczos iteration 337 B Solutions to Exercises B.1 Chapter 1 B.2 Chapter 2 B.3 Chapter 3 B.4 Chapter 4 B.5 Chapter 5 B.6 Chapter 6 Bibliography Index

GAMs semi-parametric GLMs. Simon Wood Mathematical Sciences, University of Bath, U.K.

GAMs semi-parametric GLMs. Simon Wood Mathematical Sciences, University of Bath, U.K. GAMs semi-parametric GLMs Simon Wood Mathematical Sciences, University of Bath, U.K. Generalized linear models, GLM 1. A GLM models a univariate response, y i as g{e(y i )} = X i β where y i Exponential

More information

Ludwig Fahrmeir Gerhard Tute. Statistical odelling Based on Generalized Linear Model. íecond Edition. . Springer

Ludwig Fahrmeir Gerhard Tute. Statistical odelling Based on Generalized Linear Model. íecond Edition. . Springer Ludwig Fahrmeir Gerhard Tute Statistical odelling Based on Generalized Linear Model íecond Edition. Springer Preface to the Second Edition Preface to the First Edition List of Examples List of Figures

More information

Generalized Additive Model

Generalized Additive Model Generalized Additive Model by Huimin Liu Department of Mathematics and Statistics University of Minnesota Duluth, Duluth, MN 55812 December 2008 Table of Contents Abstract... 2 Chapter 1 Introduction 1.1

More information

Generalized additive models I

Generalized additive models I I Patrick Breheny October 6 Patrick Breheny BST 764: Applied Statistical Modeling 1/18 Introduction Thus far, we have discussed nonparametric regression involving a single covariate In practice, we often

More information

Generalized Additive Models

Generalized Additive Models Generalized Additive Models Statistics 135 Autumn 2005 Copyright c 2005 by Mark E. Irwin Generalized Additive Models GAMs are one approach to non-parametric regression in the multiple predictor setting.

More information

Splines and penalized regression

Splines and penalized regression Splines and penalized regression November 23 Introduction We are discussing ways to estimate the regression function f, where E(y x) = f(x) One approach is of course to assume that f has a certain shape,

More information

Splines. Patrick Breheny. November 20. Introduction Regression splines (parametric) Smoothing splines (nonparametric)

Splines. Patrick Breheny. November 20. Introduction Regression splines (parametric) Smoothing splines (nonparametric) Splines Patrick Breheny November 20 Patrick Breheny STA 621: Nonparametric Statistics 1/46 Introduction Introduction Problems with polynomial bases We are discussing ways to estimate the regression function

More information

GAMs, GAMMs and other penalized GLMs using mgcv in R. Simon Wood Mathematical Sciences, University of Bath, U.K.

GAMs, GAMMs and other penalized GLMs using mgcv in R. Simon Wood Mathematical Sciences, University of Bath, U.K. GAMs, GAMMs and other penalied GLMs using mgcv in R Simon Wood Mathematical Sciences, University of Bath, U.K. Simple eample Consider a very simple dataset relating the timber volume of cherry trees to

More information

Stat 8053, Fall 2013: Additive Models

Stat 8053, Fall 2013: Additive Models Stat 853, Fall 213: Additive Models We will only use the package mgcv for fitting additive and later generalized additive models. The best reference is S. N. Wood (26), Generalized Additive Models, An

More information

Statistical Modeling with Spline Functions Methodology and Theory

Statistical Modeling with Spline Functions Methodology and Theory This is page 1 Printer: Opaque this Statistical Modeling with Spline Functions Methodology and Theory Mark H. Hansen University of California at Los Angeles Jianhua Z. Huang University of Pennsylvania

More information

Moving Beyond Linearity

Moving Beyond Linearity Moving Beyond Linearity The truth is never linear! 1/23 Moving Beyond Linearity The truth is never linear! r almost never! 1/23 Moving Beyond Linearity The truth is never linear! r almost never! But often

More information

The mgcv Package. July 21, 2006

The mgcv Package. July 21, 2006 The mgcv Package July 21, 2006 Version 1.3-18 Author Simon Wood Maintainer Simon Wood Title GAMs with GCV smoothness estimation and GAMMs by REML/PQL

More information

Contents. I The Basic Framework for Stationary Problems 1

Contents. I The Basic Framework for Stationary Problems 1 page v Preface xiii I The Basic Framework for Stationary Problems 1 1 Some model PDEs 3 1.1 Laplace s equation; elliptic BVPs... 3 1.1.1 Physical experiments modeled by Laplace s equation... 5 1.2 Other

More information

Moving Beyond Linearity

Moving Beyond Linearity Moving Beyond Linearity Basic non-linear models one input feature: polynomial regression step functions splines smoothing splines local regression. more features: generalized additive models. Polynomial

More information

Curve and Surface Fitting with Splines. PAUL DIERCKX Professor, Computer Science Department, Katholieke Universiteit Leuven, Belgium

Curve and Surface Fitting with Splines. PAUL DIERCKX Professor, Computer Science Department, Katholieke Universiteit Leuven, Belgium Curve and Surface Fitting with Splines PAUL DIERCKX Professor, Computer Science Department, Katholieke Universiteit Leuven, Belgium CLARENDON PRESS OXFORD 1995 - Preface List of Figures List of Tables

More information

Linear Methods for Regression and Shrinkage Methods

Linear Methods for Regression and Shrinkage Methods Linear Methods for Regression and Shrinkage Methods Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer 1 Linear Regression Models Least Squares Input vectors

More information

A toolbox of smooths. Simon Wood Mathematical Sciences, University of Bath, U.K.

A toolbox of smooths. Simon Wood Mathematical Sciences, University of Bath, U.K. A toolbo of smooths Simon Wood Mathematical Sciences, University of Bath, U.K. Smooths for semi-parametric GLMs To build adequate semi-parametric GLMs requires that we use functions with appropriate properties.

More information

Statistical Methods for the Analysis of Repeated Measurements

Statistical Methods for the Analysis of Repeated Measurements Charles S. Davis Statistical Methods for the Analysis of Repeated Measurements With 20 Illustrations #j Springer Contents Preface List of Tables List of Figures v xv xxiii 1 Introduction 1 1.1 Repeated

More information

Goals of the Lecture. SOC6078 Advanced Statistics: 9. Generalized Additive Models. Limitations of the Multiple Nonparametric Models (2)

Goals of the Lecture. SOC6078 Advanced Statistics: 9. Generalized Additive Models. Limitations of the Multiple Nonparametric Models (2) SOC6078 Advanced Statistics: 9. Generalized Additive Models Robert Andersen Department of Sociology University of Toronto Goals of the Lecture Introduce Additive Models Explain how they extend from simple

More information

Package gamm4. July 25, Index 10

Package gamm4. July 25, Index 10 Version 0.2-5 Author Simon Wood, Fabian Scheipl Package gamm4 July 25, 2017 Maintainer Simon Wood Title Generalized Additive Mixed Models using 'mgcv' and 'lme4' Description

More information

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1 Preface to the Second Edition Preface to the First Edition vii xi 1 Introduction 1 2 Overview of Supervised Learning 9 2.1 Introduction... 9 2.2 Variable Types and Terminology... 9 2.3 Two Simple Approaches

More information

I How does the formulation (5) serve the purpose of the composite parameterization

I How does the formulation (5) serve the purpose of the composite parameterization Supplemental Material to Identifying Alzheimer s Disease-Related Brain Regions from Multi-Modality Neuroimaging Data using Sparse Composite Linear Discrimination Analysis I How does the formulation (5)

More information

Time Series Analysis by State Space Methods

Time Series Analysis by State Space Methods Time Series Analysis by State Space Methods Second Edition J. Durbin London School of Economics and Political Science and University College London S. J. Koopman Vrije Universiteit Amsterdam OXFORD UNIVERSITY

More information

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited.

Contents. I Basics 1. Copyright by SIAM. Unauthorized reproduction of this article is prohibited. page v Preface xiii I Basics 1 1 Optimization Models 3 1.1 Introduction... 3 1.2 Optimization: An Informal Introduction... 4 1.3 Linear Equations... 7 1.4 Linear Optimization... 10 Exercises... 12 1.5

More information

MODERN FACTOR ANALYSIS

MODERN FACTOR ANALYSIS MODERN FACTOR ANALYSIS Harry H. Harman «ö THE pigj UNIVERSITY OF CHICAGO PRESS Contents LIST OF ILLUSTRATIONS GUIDE TO NOTATION xv xvi Parti Foundations of Factor Analysis 1. INTRODUCTION 3 1.1. Brief

More information

Lecture 24: Generalized Additive Models Stat 704: Data Analysis I, Fall 2010

Lecture 24: Generalized Additive Models Stat 704: Data Analysis I, Fall 2010 Lecture 24: Generalized Additive Models Stat 704: Data Analysis I, Fall 2010 Tim Hanson, Ph.D. University of South Carolina T. Hanson (USC) Stat 704: Data Analysis I, Fall 2010 1 / 26 Additive predictors

More information

Doubly Cyclic Smoothing Splines and Analysis of Seasonal Daily Pattern of CO2 Concentration in Antarctica

Doubly Cyclic Smoothing Splines and Analysis of Seasonal Daily Pattern of CO2 Concentration in Antarctica Boston-Keio Workshop 2016. Doubly Cyclic Smoothing Splines and Analysis of Seasonal Daily Pattern of CO2 Concentration in Antarctica... Mihoko Minami Keio University, Japan August 15, 2016 Joint work with

More information

This is called a linear basis expansion, and h m is the mth basis function For example if X is one-dimensional: f (X) = β 0 + β 1 X + β 2 X 2, or

This is called a linear basis expansion, and h m is the mth basis function For example if X is one-dimensional: f (X) = β 0 + β 1 X + β 2 X 2, or STA 450/4000 S: February 2 2005 Flexible modelling using basis expansions (Chapter 5) Linear regression: y = Xβ + ɛ, ɛ (0, σ 2 ) Smooth regression: y = f (X) + ɛ: f (X) = E(Y X) to be specified Flexible

More information

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu FMA901F: Machine Learning Lecture 3: Linear Models for Regression Cristian Sminchisescu Machine Learning: Frequentist vs. Bayesian In the frequentist setting, we seek a fixed parameter (vector), with value(s)

More information

Modelling and Quantitative Methods in Fisheries

Modelling and Quantitative Methods in Fisheries SUB Hamburg A/553843 Modelling and Quantitative Methods in Fisheries Second Edition Malcolm Haddon ( r oc) CRC Press \ y* J Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint of

More information

Semiparametric Tools: Generalized Additive Models

Semiparametric Tools: Generalized Additive Models Semiparametric Tools: Generalized Additive Models Jamie Monogan Washington University November 8, 2010 Jamie Monogan (WUStL) Generalized Additive Models November 8, 2010 1 / 33 Regression Splines Choose

More information

lme4: Mixed-effects modeling with R

lme4: Mixed-effects modeling with R Douglas M. Bates lme4: Mixed-effects modeling with R February 17, 2010 Springer Page: 1 job: lmmwr macro: svmono.cls date/time: 17-Feb-2010/14:23 Page: 2 job: lmmwr macro: svmono.cls date/time: 17-Feb-2010/14:23

More information

EE613 Machine Learning for Engineers LINEAR REGRESSION. Sylvain Calinon Robot Learning & Interaction Group Idiap Research Institute Nov.

EE613 Machine Learning for Engineers LINEAR REGRESSION. Sylvain Calinon Robot Learning & Interaction Group Idiap Research Institute Nov. EE613 Machine Learning for Engineers LINEAR REGRESSION Sylvain Calinon Robot Learning & Interaction Group Idiap Research Institute Nov. 4, 2015 1 Outline Multivariate ordinary least squares Singular value

More information

EE613 Machine Learning for Engineers LINEAR REGRESSION. Sylvain Calinon Robot Learning & Interaction Group Idiap Research Institute Nov.

EE613 Machine Learning for Engineers LINEAR REGRESSION. Sylvain Calinon Robot Learning & Interaction Group Idiap Research Institute Nov. EE613 Machine Learning for Engineers LINEAR REGRESSION Sylvain Calinon Robot Learning & Interaction Group Idiap Research Institute Nov. 9, 2017 1 Outline Multivariate ordinary least squares Matlab code:

More information

STATISTICS (STAT) Statistics (STAT) 1

STATISTICS (STAT) Statistics (STAT) 1 Statistics (STAT) 1 STATISTICS (STAT) STAT 2013 Elementary Statistics (A) Prerequisites: MATH 1483 or MATH 1513, each with a grade of "C" or better; or an acceptable placement score (see placement.okstate.edu).

More information

davidr Cornell University

davidr Cornell University 1 NONPARAMETRIC RANDOM EFFECTS MODELS AND LIKELIHOOD RATIO TESTS Oct 11, 2002 David Ruppert Cornell University www.orie.cornell.edu/ davidr (These transparencies and preprints available link to Recent

More information

DATA ANALYSIS USING HIERARCHICAL GENERALIZED LINEAR MODELS WITH R

DATA ANALYSIS USING HIERARCHICAL GENERALIZED LINEAR MODELS WITH R DATA ANALYSIS USING HIERARCHICAL GENERALIZED LINEAR MODELS WITH R Lee, Rönnegård & Noh LRN@du.se Lee, Rönnegård & Noh HGLM book 1 / 25 Overview 1 Background to the book 2 A motivating example from my own

More information

Package robustgam. January 7, 2013

Package robustgam. January 7, 2013 Package robustgam January 7, 2013 Type Package Title Robust Estimation for Generalized Additive Models Version 0.1.5 Date 2013-1-6 Author Raymond K. W. Wong Maintainer Raymond K. W. Wong

More information

More advanced use of mgcv. Simon Wood Mathematical Sciences, University of Bath, U.K.

More advanced use of mgcv. Simon Wood Mathematical Sciences, University of Bath, U.K. More advanced use of mgcv Simon Wood Mathematical Sciences, University of Bath, U.K. Fine control of smoothness: gamma Suppose that we fit a model but a component is too wiggly. For GCV/AIC we can increase

More information

Statistics & Analysis. Fitting Generalized Additive Models with the GAM Procedure in SAS 9.2

Statistics & Analysis. Fitting Generalized Additive Models with the GAM Procedure in SAS 9.2 Fitting Generalized Additive Models with the GAM Procedure in SAS 9.2 Weijie Cai, SAS Institute Inc., Cary NC July 1, 2008 ABSTRACT Generalized additive models are useful in finding predictor-response

More information

Nonparametric Mixed-Effects Models for Longitudinal Data

Nonparametric Mixed-Effects Models for Longitudinal Data Nonparametric Mixed-Effects Models for Longitudinal Data Zhang Jin-Ting Dept of Stat & Appl Prob National University of Sinagpore University of Seoul, South Korea, 7 p.1/26 OUTLINE The Motivating Data

More information

DATA ANALYSIS USING HIERARCHICAL GENERALIZED LINEAR MODELS WITH R

DATA ANALYSIS USING HIERARCHICAL GENERALIZED LINEAR MODELS WITH R DATA ANALYSIS USING HIERARCHICAL GENERALIZED LINEAR MODELS WITH R Lee, Rönnegård & Noh LRN@du.se Lee, Rönnegård & Noh HGLM book 1 / 24 Overview 1 Background to the book 2 Crack growth example 3 Contents

More information

Random Number Generation and Monte Carlo Methods

Random Number Generation and Monte Carlo Methods James E. Gentle Random Number Generation and Monte Carlo Methods With 30 Illustrations Springer Contents Preface vii 1 Simulating Random Numbers from a Uniform Distribution 1 1.1 Linear Congruential Generators

More information

Acknowledgments. Acronyms

Acknowledgments. Acronyms Acknowledgments Preface Acronyms xi xiii xv 1 Basic Tools 1 1.1 Goals of inference 1 1.1.1 Population or process? 1 1.1.2 Probability samples 2 1.1.3 Sampling weights 3 1.1.4 Design effects. 5 1.2 An introduction

More information

Package robustgam. February 20, 2015

Package robustgam. February 20, 2015 Type Package Package robustgam February 20, 2015 Title Robust Estimation for Generalized Additive Models Version 0.1.7 Date 2013-5-7 Author Raymond K. W. Wong, Fang Yao and Thomas C. M. Lee Maintainer

More information

A Beginner's Guide to. Randall E. Schumacker. The University of Alabama. Richard G. Lomax. The Ohio State University. Routledge

A Beginner's Guide to. Randall E. Schumacker. The University of Alabama. Richard G. Lomax. The Ohio State University. Routledge A Beginner's Guide to Randall E. Schumacker The University of Alabama Richard G. Lomax The Ohio State University Routledge Taylor & Francis Group New York London About the Authors Preface xv xvii 1 Introduction

More information

Generalized additive models II

Generalized additive models II Generalized additive models II Patrick Breheny October 13 Patrick Breheny BST 764: Applied Statistical Modeling 1/23 Coronary heart disease study Today s lecture will feature several case studies involving

More information

Stochastic Simulation: Algorithms and Analysis

Stochastic Simulation: Algorithms and Analysis Soren Asmussen Peter W. Glynn Stochastic Simulation: Algorithms and Analysis et Springer Contents Preface Notation v xii I What This Book Is About 1 1 An Illustrative Example: The Single-Server Queue 1

More information

COPYRIGHTED MATERIAL CONTENTS

COPYRIGHTED MATERIAL CONTENTS PREFACE ACKNOWLEDGMENTS LIST OF TABLES xi xv xvii 1 INTRODUCTION 1 1.1 Historical Background 1 1.2 Definition and Relationship to the Delta Method and Other Resampling Methods 3 1.2.1 Jackknife 6 1.2.2

More information

Nonparametric and Semiparametric Econometrics Lecture Notes for Econ 221. Yixiao Sun Department of Economics, University of California, San Diego

Nonparametric and Semiparametric Econometrics Lecture Notes for Econ 221. Yixiao Sun Department of Economics, University of California, San Diego Nonparametric and Semiparametric Econometrics Lecture Notes for Econ 221 Yixiao Sun Department of Economics, University of California, San Diego Winter 2007 Contents Preface ix 1 Kernel Smoothing: Density

More information

An Introduction to the Bootstrap

An Introduction to the Bootstrap An Introduction to the Bootstrap Bradley Efron Department of Statistics Stanford University and Robert J. Tibshirani Department of Preventative Medicine and Biostatistics and Department of Statistics,

More information

P-spline ANOVA-type interaction models for spatio-temporal smoothing

P-spline ANOVA-type interaction models for spatio-temporal smoothing P-spline ANOVA-type interaction models for spatio-temporal smoothing Dae-Jin Lee and María Durbán Universidad Carlos III de Madrid Department of Statistics IWSM Utrecht 2008 D.-J. Lee and M. Durban (UC3M)

More information

book 2014/5/6 15:21 page v #3 List of figures List of tables Preface to the second edition Preface to the first edition

book 2014/5/6 15:21 page v #3 List of figures List of tables Preface to the second edition Preface to the first edition book 2014/5/6 15:21 page v #3 Contents List of figures List of tables Preface to the second edition Preface to the first edition xvii xix xxi xxiii 1 Data input and output 1 1.1 Input........................................

More information

A comparison of spline methods in R for building explanatory models

A comparison of spline methods in R for building explanatory models A comparison of spline methods in R for building explanatory models Aris Perperoglou on behalf of TG2 STRATOS Initiative, University of Essex ISCB2017 Aris Perperoglou Spline Methods in R ISCB2017 1 /

More information

Assessing the Quality of the Natural Cubic Spline Approximation

Assessing the Quality of the Natural Cubic Spline Approximation Assessing the Quality of the Natural Cubic Spline Approximation AHMET SEZER ANADOLU UNIVERSITY Department of Statisticss Yunus Emre Kampusu Eskisehir TURKEY ahsst12@yahoo.com Abstract: In large samples,

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION Introduction CHAPTER 1 INTRODUCTION Mplus is a statistical modeling program that provides researchers with a flexible tool to analyze their data. Mplus offers researchers a wide choice of models, estimators,

More information

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016 CPSC 340: Machine Learning and Data Mining Principal Component Analysis Fall 2016 A2/Midterm: Admin Grades/solutions will be posted after class. Assignment 4: Posted, due November 14. Extra office hours:

More information

Spline Models. Introduction to CS and NCS. Regression splines. Smoothing splines

Spline Models. Introduction to CS and NCS. Regression splines. Smoothing splines Spline Models Introduction to CS and NCS Regression splines Smoothing splines 3 Cubic Splines a knots: a< 1 < 2 < < m

More information

PATTERN CLASSIFICATION AND SCENE ANALYSIS

PATTERN CLASSIFICATION AND SCENE ANALYSIS PATTERN CLASSIFICATION AND SCENE ANALYSIS RICHARD O. DUDA PETER E. HART Stanford Research Institute, Menlo Park, California A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS New York Chichester Brisbane

More information

Straightforward intermediate rank tensor product smoothing in mixed models

Straightforward intermediate rank tensor product smoothing in mixed models Straightforward intermediate rank tensor product smoothing in mixed models Simon N. Wood, Fabian Scheipl, Julian J. Faraway January 6, 2012 Abstract Tensor product smooths provide the natural way of representing

More information

Handbook of Statistical Modeling for the Social and Behavioral Sciences

Handbook of Statistical Modeling for the Social and Behavioral Sciences Handbook of Statistical Modeling for the Social and Behavioral Sciences Edited by Gerhard Arminger Bergische Universität Wuppertal Wuppertal, Germany Clifford С. Clogg Late of Pennsylvania State University

More information

Smoothing non-stationary noise of the Nigerian Stock Exchange All-Share Index data using variable coefficient functions

Smoothing non-stationary noise of the Nigerian Stock Exchange All-Share Index data using variable coefficient functions Smoothing non-stationary noise of the Nigerian Stock Exchange All-Share Index data using variable coefficient functions 1 Alabi Nurudeen Olawale, 2 Are Stephen Olusegun 1 Department of Mathematics and

More information

Inference for Generalized Linear Mixed Models

Inference for Generalized Linear Mixed Models Inference for Generalized Linear Mixed Models Christina Knudson, Ph.D. University of St. Thomas October 18, 2018 Reviewing the Linear Model The usual linear model assumptions: responses normally distributed

More information

Computer Graphics Curves and Surfaces. Matthias Teschner

Computer Graphics Curves and Surfaces. Matthias Teschner Computer Graphics Curves and Surfaces Matthias Teschner Outline Introduction Polynomial curves Bézier curves Matrix notation Curve subdivision Differential curve properties Piecewise polynomial curves

More information

Package bgeva. May 19, 2017

Package bgeva. May 19, 2017 Version 0.3-1 Package bgeva May 19, 2017 Author Giampiero Marra, Raffaella Calabrese and Silvia Angela Osmetti Maintainer Giampiero Marra Title Binary Generalized Extreme Value

More information

GAMs with integrated model selection using penalized regression splines and applications to environmental modelling.

GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Simon N. Wood a, Nicole H. Augustin b a Mathematical Institute, North Haugh, St Andrews,

More information

Last time... Bias-Variance decomposition. This week

Last time... Bias-Variance decomposition. This week Machine learning, pattern recognition and statistical data modelling Lecture 4. Going nonlinear: basis expansions and splines Last time... Coryn Bailer-Jones linear regression methods for high dimensional

More information

1D Regression. i.i.d. with mean 0. Univariate Linear Regression: fit by least squares. Minimize: to get. The set of all possible functions is...

1D Regression. i.i.d. with mean 0. Univariate Linear Regression: fit by least squares. Minimize: to get. The set of all possible functions is... 1D Regression i.i.d. with mean 0. Univariate Linear Regression: fit by least squares. Minimize: to get. The set of all possible functions is... 1 Non-linear problems What if the underlying function is

More information

Nonparametric Risk Attribution for Factor Models of Portfolios. October 3, 2017 Kellie Ottoboni

Nonparametric Risk Attribution for Factor Models of Portfolios. October 3, 2017 Kellie Ottoboni Nonparametric Risk Attribution for Factor Models of Portfolios October 3, 2017 Kellie Ottoboni Outline The problem Page 3 Additive model of returns Page 7 Euler s formula for risk decomposition Page 11

More information

1 Introduction Motivation and Aims Functional Imaging Computational Neuroanatomy... 12

1 Introduction Motivation and Aims Functional Imaging Computational Neuroanatomy... 12 Contents 1 Introduction 10 1.1 Motivation and Aims....... 10 1.1.1 Functional Imaging.... 10 1.1.2 Computational Neuroanatomy... 12 1.2 Overview of Chapters... 14 2 Rigid Body Registration 18 2.1 Introduction.....

More information

David G. Luenberger Yinyu Ye. Linear and Nonlinear. Programming. Fourth Edition. ö Springer

David G. Luenberger Yinyu Ye. Linear and Nonlinear. Programming. Fourth Edition. ö Springer David G. Luenberger Yinyu Ye Linear and Nonlinear Programming Fourth Edition ö Springer Contents 1 Introduction 1 1.1 Optimization 1 1.2 Types of Problems 2 1.3 Size of Problems 5 1.4 Iterative Algorithms

More information

Hierarchical generalized additive models: an introduction with mgcv

Hierarchical generalized additive models: an introduction with mgcv Hierarchical generalized additive models: an introduction with mgcv Eric J Pedersen Corresp., 1, 2, David L. Miller 3, 4, Gavin L. Simpson 5, Noam Ross 6 1 Northwest Atlantic Fisheries Center, Fisheries

More information

Linear Model Selection and Regularization. especially usefull in high dimensions p>>100.

Linear Model Selection and Regularization. especially usefull in high dimensions p>>100. Linear Model Selection and Regularization especially usefull in high dimensions p>>100. 1 Why Linear Model Regularization? Linear models are simple, BUT consider p>>n, we have more features than data records

More information

What is machine learning?

What is machine learning? Machine learning, pattern recognition and statistical data modelling Lecture 12. The last lecture Coryn Bailer-Jones 1 What is machine learning? Data description and interpretation finding simpler relationship

More information

arxiv: v2 [stat.ap] 14 Nov 2016

arxiv: v2 [stat.ap] 14 Nov 2016 The Cave of Shadows Addressing the human factor with generalized additive mixed models Harald Baayen a Shravan Vasishth b Reinhold Kliegl b Douglas Bates c arxiv:1511.03120v2 [stat.ap] 14 Nov 2016 a University

More information

STAT 705 Introduction to generalized additive models

STAT 705 Introduction to generalized additive models STAT 705 Introduction to generalized additive models Timothy Hanson Department of Statistics, University of South Carolina Stat 705: Data Analysis II 1 / 22 Generalized additive models Consider a linear

More information

9.2 User s Guide SAS/STAT. The GAM Procedure. (Book Excerpt) SAS Documentation

9.2 User s Guide SAS/STAT. The GAM Procedure. (Book Excerpt) SAS Documentation SAS/STAT 9.2 User s Guide The GAM Procedure (Book Excerpt) SAS Documentation This document is an individual chapter from SAS/STAT 9.2 User s Guide. The correct bibliographic citation for the complete manual

More information

Statistical Shape Analysis

Statistical Shape Analysis Statistical Shape Analysis I. L. Dryden and K. V. Mardia University ofleeds, UK JOHN WILEY& SONS Chichester New York Weinheim Brisbane Singapore Toronto Contents Preface Acknowledgements xv xix 1 Introduction

More information

Analysis of Incomplete Multivariate Data

Analysis of Incomplete Multivariate Data Analysis of Incomplete Multivariate Data J. L. Schafer Department of Statistics The Pennsylvania State University USA CHAPMAN & HALL/CRC A CR.C Press Company Boca Raton London New York Washington, D.C.

More information

Unified Methods for Censored Longitudinal Data and Causality

Unified Methods for Censored Longitudinal Data and Causality Mark J. van der Laan James M. Robins Unified Methods for Censored Longitudinal Data and Causality Springer Preface v Notation 1 1 Introduction 8 1.1 Motivation, Bibliographic History, and an Overview of

More information

Discussion Notes 3 Stepwise Regression and Model Selection

Discussion Notes 3 Stepwise Regression and Model Selection Discussion Notes 3 Stepwise Regression and Model Selection Stepwise Regression There are many different commands for doing stepwise regression. Here we introduce the command step. There are many arguments

More information

Repeated Measures Part 4: Blood Flow data

Repeated Measures Part 4: Blood Flow data Repeated Measures Part 4: Blood Flow data /* bloodflow.sas */ options linesize=79 pagesize=100 noovp formdlim='_'; title 'Two within-subjecs factors: Blood flow data (NWK p. 1181)'; proc format; value

More information

Pythagorean - Hodograph Curves: Algebra and Geometry Inseparable

Pythagorean - Hodograph Curves: Algebra and Geometry Inseparable Rida T. Farouki Pythagorean - Hodograph Curves: Algebra and Geometry Inseparable With 204 Figures and 15 Tables 4y Springer Contents 1 Introduction 1 1.1 The Lure of Analytic Geometry 1 1.2 Symbiosis of

More information

Nonlinearity and Generalized Additive Models Lecture 2

Nonlinearity and Generalized Additive Models Lecture 2 University of Texas at Dallas, March 2007 Nonlinearity and Generalized Additive Models Lecture 2 Robert Andersen McMaster University http://socserv.mcmaster.ca/andersen Definition of a Smoother A smoother

More information

Fathom Dynamic Data TM Version 2 Specifications

Fathom Dynamic Data TM Version 2 Specifications Data Sources Fathom Dynamic Data TM Version 2 Specifications Use data from one of the many sample documents that come with Fathom. Enter your own data by typing into a case table. Paste data from other

More information

A review of spline function selection procedures in R

A review of spline function selection procedures in R Matthias Schmid Department of Medical Biometry, Informatics and Epidemiology University of Bonn joint work with Aris Perperoglou on behalf of TG2 of the STRATOS Initiative September 1, 2016 Introduction

More information

Modern Multidimensional Scaling

Modern Multidimensional Scaling Ingwer Borg Patrick Groenen Modern Multidimensional Scaling Theory and Applications With 116 Figures Springer Contents Preface vii I Fundamentals of MDS 1 1 The Four Purposes of Multidimensional Scaling

More information

LARGE SCALE LINEAR AND INTEGER OPTIMIZATION: A UNIFIED APPROACH

LARGE SCALE LINEAR AND INTEGER OPTIMIZATION: A UNIFIED APPROACH LARGE SCALE LINEAR AND INTEGER OPTIMIZATION: A UNIFIED APPROACH Richard Kipp Martin Graduate School of Business University of Chicago % Kluwer Academic Publishers Boston/Dordrecht/London CONTENTS Preface

More information

Analysis of Panel Data. Third Edition. Cheng Hsiao University of Southern California CAMBRIDGE UNIVERSITY PRESS

Analysis of Panel Data. Third Edition. Cheng Hsiao University of Southern California CAMBRIDGE UNIVERSITY PRESS Analysis of Panel Data Third Edition Cheng Hsiao University of Southern California CAMBRIDGE UNIVERSITY PRESS Contents Preface to the ThirdEdition Preface to the Second Edition Preface to the First Edition

More information

Integrated Algebra 2 and Trigonometry. Quarter 1

Integrated Algebra 2 and Trigonometry. Quarter 1 Quarter 1 I: Functions: Composition I.1 (A.42) Composition of linear functions f(g(x)). f(x) + g(x). I.2 (A.42) Composition of linear and quadratic functions II: Functions: Quadratic II.1 Parabola The

More information

SAS High-Performance Analytics Products

SAS High-Performance Analytics Products Fact Sheet What do SAS High-Performance Analytics products do? With high-performance analytics products from SAS, you can develop and process models that use huge amounts of diverse data. These products

More information

Chapter 15 Mixed Models. Chapter Table of Contents. Introduction Split Plot Experiment Clustered Data References...

Chapter 15 Mixed Models. Chapter Table of Contents. Introduction Split Plot Experiment Clustered Data References... Chapter 15 Mixed Models Chapter Table of Contents Introduction...309 Split Plot Experiment...311 Clustered Data...320 References...326 308 Chapter 15. Mixed Models Chapter 15 Mixed Models Introduction

More information

Part A Statistical rationale for application of a Generalized Additive Mixed Model (GAMM)

Part A Statistical rationale for application of a Generalized Additive Mixed Model (GAMM) APPENDIX Part A Statistical rationale for application of a Generalized Additive Mixed Model (GAMM) Part B Layman introduction to GAMM Part C - References Part A. Statistical rationale for application of

More information

Statistical Modeling with Spline Functions Methodology and Theory

Statistical Modeling with Spline Functions Methodology and Theory This is page 1 Printer: Opaque this Statistical Modeling with Spline Functions Methodology and Theory Mark H Hansen University of California at Los Angeles Jianhua Z Huang University of Pennsylvania Charles

More information

Independent Components Analysis through Product Density Estimation

Independent Components Analysis through Product Density Estimation Independent Components Analysis through Product Density Estimation 'frevor Hastie and Rob Tibshirani Department of Statistics Stanford University Stanford, CA, 94305 { hastie, tibs } @stat.stanford. edu

More information

Optimum Array Processing

Optimum Array Processing Optimum Array Processing Part IV of Detection, Estimation, and Modulation Theory Harry L. Van Trees WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Preface xix 1 Introduction 1 1.1 Array Processing

More information

Homework. Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression Pod-cast lecture on-line. Next lectures:

Homework. Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression Pod-cast lecture on-line. Next lectures: Homework Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression 3.0-3.2 Pod-cast lecture on-line Next lectures: I posted a rough plan. It is flexible though so please come with suggestions Bayes

More information

The glmmml Package. August 20, 2006

The glmmml Package. August 20, 2006 The glmmml Package August 20, 2006 Version 0.65-1 Date 2006/08/20 Title Generalized linear models with clustering A Maximum Likelihood and bootstrap approach to mixed models. License GPL version 2 or newer.

More information

Latent Curve Models. A Structural Equation Perspective WILEY- INTERSCIENΠKENNETH A. BOLLEN

Latent Curve Models. A Structural Equation Perspective WILEY- INTERSCIENΠKENNETH A. BOLLEN Latent Curve Models A Structural Equation Perspective KENNETH A. BOLLEN University of North Carolina Department of Sociology Chapel Hill, North Carolina PATRICK J. CURRAN University of North Carolina Department

More information

CHAPTER 7 EXAMPLES: MIXTURE MODELING WITH CROSS- SECTIONAL DATA

CHAPTER 7 EXAMPLES: MIXTURE MODELING WITH CROSS- SECTIONAL DATA Examples: Mixture Modeling With Cross-Sectional Data CHAPTER 7 EXAMPLES: MIXTURE MODELING WITH CROSS- SECTIONAL DATA Mixture modeling refers to modeling with categorical latent variables that represent

More information