Direct numerical simulation. in an annular pipe. of turbulent flow. Paolo Luchini & Maurizio Quadrio

Size: px
Start display at page:

Download "Direct numerical simulation. in an annular pipe. of turbulent flow. Paolo Luchini & Maurizio Quadrio"

Transcription

1 P.Luchini & M.Quadrio SIMAI Ischia Direct numerical simulation of turbulent flow in an annular pipe Paolo Luchini & Maurizio Quadrio Dipartimento di Ingegneria Aerospaziale del Politecnico di Milano via La Masa Milano maurizio.quadrio@polimi.it

2 P.Luchini & M.Quadrio SIMAI Ischia Why the annular pipe? Incomplete experimental information (additional measuring difficulties in near-wall region) regarding turbulence statistics Effect of transverse curvature on turbulence not fully documented Numerical solution of incompressible NS equation (DNS) Objectives Extend to the cylindrical geometry a numerical method for the DNS of turbulent plane channel flow (adapt a computer code without structural changes) Perform DNS of the turbulent flow in an annular pipe (never reported)

3 Very demanding in terms of computational resources, even at low/moderate modeling) Research tool, suited for basic turbulence research (flow physics, turbulence DNS of practical flows at high is unaffordable Requirements of spatio-temporal resolution rise with for Full range of spatial & temporal scales in turbulent flows needs to be accounted Numerical solution of the full Navier Stokes equations (vs. LES or RANS) What is DNS of turbulence? P.Luchini & M.Quadrio SIMAI Ischia

4 P.Luchini & M.Quadrio SIMAI Ischia DNS of turbulence in cylindrical coordinates Numerical difficulties of cylindrical coordinate system few DNS of turbulent flow in cylindrical geometries (pipe flow only) Many of the numerical schemes solve NS eqs in primitive variables, with the pressure-correction approach Only one DNS study (Neves, Moin & Moser, JFM v.272, 994) considers transverse curvature, but is concerned with the boundary layer over small cylinders (with insufficient resolution in the outer part of the layer) The comparison between the effects of convex / concave transversal curvature on the turbulence statistics is still missing

5 P.Luchini & M.Quadrio SIMAI Ischia The (standard) cartesian case For plane channel flow, there is an almost standard procedure developed by Kim, Moin & Moser (JFM v.77, 97), by which: Pressure is eliminated from the equations NS system is reduced to a second-order scalar equation for the normal vorticity and a fourth-order scalar equation for the normal velocity When using Fourier transforms in homogeneous directions, the other velocity components are easily recovered High (nearly optimal) computational efficiency can be achieved

6 P.Luchini & M.Quadrio SIMAI Ischia

7 *!!! " " $ % %'& ( )! $ % %'& ( ) *! $ % % & ( ) Initial conditions. Periodicity in and. No-slip boundary conditions at the walls: # By manipulating momentum equation, and using continuity, one obtains for : component, one obtains for : By applying to the momentum equation,. Considering the Cartesian case (cont.) P.Luchini & M.Quadrio SIMAI Ischia

8 /! ! 2 - -, 0 smaller than those needing accurate representation) convective part, but implicit schemes for the viscous terms (with time-scales Partially implicit approach is very popular: explicit schemes for the wide range of spatial scales Implicit time schemes are usually not used, due to the need of accuracy over a 2 2 recovered with the solution of a 2x2 algebraic system: By Fourier transforming in the homogeneous directions, and are easily Cartesian case (cont.) P.Luchini & M.Quadrio SIMAI Ischia

9 where $ ) Cylindrical case P.Luchini & M.Quadrio SIMAI Ischia

10 P.Luchini & M.Quadrio SIMAI Ischia Cylindrical case (cont.) flow L θ R e r, v L x R 2δ i x, u θ, w

11 9 * ; " : 9 7 : Notation: 7 6 depends on! equation are coupled impossible implicit treatment of viscous terms: components of the momentum ) and4(wave number 6) these difficulties are left: By Fourier transforming the equations in homogeneous directions (wave number Cylindrical case (cont.) P.Luchini & M.Quadrio SIMAI Ischia

12 ? > 0 > > > < = presumably small since difference with cartesian, hence no stability problems Both and terms can enter the explicit part: low-order derivatives, Contains a curvature term Not independent of anymore (no problem if equation for does not contain!) > 6 considering the component, one obtains for radial vorticity : In analogy with the cartesian case, by taking of the momentum equation and The method: equation for P.Luchini & M.Quadrio SIMAI Ischia

13 A B A B : B " 7 7 : 7 DC DC 7 : : 6 A 7 : Solve for, then put incomponent of momentum eq. Further simplifications by using continuity Expressions for and are taken from momentum eq. Continuity equation is Fourier transformed and time differenced The method: equation for P.Luchini & M.Quadrio SIMAI Ischia

14 / > 60 > - -, 0 60? > equation are to be solved directly. As in cartesian case, for 7 the and4components of the momentum 7 : 7 : algebraic system: In analogy with the cartesian case, e are recovered with the solution of a 2x2 Curvature terms can enter the explicit part, without stability problems Contains curvature terms Independent of The method: equation P.Luchini & M.Quadrio SIMAI Ischia

15 P.Luchini & M.Quadrio SIMAI Ischia The numerical solution FFT algorithms allow exact computation of the nonlinear terms in physical space; De-aliasing with the /2 rule. Radial derivatives discretized with finite differences over a -point stencil; low-order derivatives are IV order, higher order derivatives are IInd order formally IInd order method, but advantageous compared to a IInd order scheme Time integration: as in KMM, third-order Runge-Kutta for the explicit part, and second-order Crank-Nicholson for the implicit part.

16 V V Q R ( Q, where R 6 I 6 I which gives I L M E F E G H E G E F K Q R " R " (, storing flow fields every K Q ( Constant flow rate; after reaching steady state, computations are carried out for value for channel flow) for the inner wall, and XWfor the outer wall ( U reference "TS U is bulk velocity; corresponds to V? U H spanwise dimensions wider than plane case No need to consider full circumferential extension of the annulus: gives N ( O L P O H N ((inner / outer walls) J Kwhich gives H N ( Inner radius (and outer radius (; gap ( Periodicity assumption in and4directions The physical problem P.Luchini & M.Quadrio SIMAI Ischia

17 6 I P.Luchini & M.Quadrio SIMAI Ischia Transversal resolution & cylindrical coordinates For a given, transversal size of the computational domain increases with Physical considerations dictate minimal required resolution, needed at outer wall Resolution increases (linearly) above necessary approaching inner wall ;potential stability problems, and waste of computational resources With Fourier schemes, Fourier series must be truncated at wavenumber corresponding to maximum resolution Solution An -dependent truncation of the series can remove the unneeded azimuthal modes, saving memory and CPU time, and avoiding stability problems.

18 Q? [? [ [ E F E G O " XY R " Time step J ((comparable to planar case); computing time? weeks parallel speedup of 00% 20 seconds / time step for a SMP personal computer (2 CPU Intel 0MHz); 2 millions d.o.f.; RAM memory: 0MB; single flow field on disk: 0MB Spatial resolution is very high: Z J Z W; KJ Z U; J Y JH K they linearly reduce to 6 at 2 Fourier modes in4direction at : X O 6 " 6 I O X ; 9 Fourier modes in axial direction: I O XY Radial range divided in 2 (uneven) intervals Computational parameters P.Luchini & M.Quadrio SIMAI Ischia

19 \0 k x \0 k z 0 7 u v w 0 7 u v w 0 0 S ii (k] x ) S ii (k z ) d energy spectra P.Luchini & M.Quadrio SIMAI Ischia

20 r/delta uv ^ uv -uv /Re du/dr channel Turbulent stresses P.Luchini & M.Quadrio SIMAI Ischia

21 r/delta o_i/u_tau^ o_x o_r o_t 0.4 RMS vorticity fluctuations P.Luchini & M.Quadrio SIMAI Ischia

22 P.Luchini & M.Quadrio SIMAI Ischia Conclusions An efficient method for DNS of turbulent flows in cylindrical geometries has been presented, as an extension of the cartesian case The number of Fourier modes in4direction has been varied with azimuthal resolution is constant: significant benefits, so that the Turbulent flow in the annular pipe has been studied for the first time via DNS Preliminary observations on the effect of the transverse (concave and convex) curvature on the turbulence statistics have been reported

The numerical solution of the incompressible Navier Stokes equations on a low-cost, dedicated parallel computer

The numerical solution of the incompressible Navier Stokes equations on a low-cost, dedicated parallel computer The numerical solution of the incompressible Navier Stokes equations on a low-cost, dedicated parallel computer Maurizio Quadrio Dipartimento di Ingegneria Aerospaziale Politecnico di Milano Via La Masa

More information

WALL TURBULENCE AND ROUGHNESS

WALL TURBULENCE AND ROUGHNESS WALL TURBULENCE AND ROUGHNESS Maurizio Quadrio Politecnico di Milano, Dip. Ing. Aerospaziale maurizio.quadrio@polimi.it Forlì, 29 settembre 2005 M.Quadrio (Politecnico Milano) Wall turbulence and roughness

More information

Investigation of cross flow over a circular cylinder at low Re using the Immersed Boundary Method (IBM)

Investigation of cross flow over a circular cylinder at low Re using the Immersed Boundary Method (IBM) Computational Methods and Experimental Measurements XVII 235 Investigation of cross flow over a circular cylinder at low Re using the Immersed Boundary Method (IBM) K. Rehman Department of Mechanical Engineering,

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

Driven Cavity Example

Driven Cavity Example BMAppendixI.qxd 11/14/12 6:55 PM Page I-1 I CFD Driven Cavity Example I.1 Problem One of the classic benchmarks in CFD is the driven cavity problem. Consider steady, incompressible, viscous flow in a square

More information

Inviscid Flows. Introduction. T. J. Craft George Begg Building, C41. The Euler Equations. 3rd Year Fluid Mechanics

Inviscid Flows. Introduction. T. J. Craft George Begg Building, C41. The Euler Equations. 3rd Year Fluid Mechanics Contents: Navier-Stokes equations Inviscid flows Boundary layers Transition, Reynolds averaging Mixing-length models of turbulence Turbulent kinetic energy equation One- and Two-equation models Flow management

More information

cuibm A GPU Accelerated Immersed Boundary Method

cuibm A GPU Accelerated Immersed Boundary Method cuibm A GPU Accelerated Immersed Boundary Method S. K. Layton, A. Krishnan and L. A. Barba Corresponding author: labarba@bu.edu Department of Mechanical Engineering, Boston University, Boston, MA, 225,

More information

DES Turbulence Modeling for ICE Flow Simulation in OpenFOAM

DES Turbulence Modeling for ICE Flow Simulation in OpenFOAM 2 nd Two-day Meeting on ICE Simulations Using OpenFOAM DES Turbulence Modeling for ICE Flow Simulation in OpenFOAM V. K. Krastev 1, G. Bella 2 and G. Campitelli 1 University of Tuscia, DEIM School of Engineering

More information

CFD VALIDATION FOR SURFACE COMBATANT 5415 STRAIGHT AHEAD AND STATIC DRIFT 20 DEGREE CONDITIONS USING STAR CCM+

CFD VALIDATION FOR SURFACE COMBATANT 5415 STRAIGHT AHEAD AND STATIC DRIFT 20 DEGREE CONDITIONS USING STAR CCM+ CFD VALIDATION FOR SURFACE COMBATANT 5415 STRAIGHT AHEAD AND STATIC DRIFT 20 DEGREE CONDITIONS USING STAR CCM+ by G. J. Grigoropoulos and I..S. Kefallinou 1. Introduction and setup 1. 1 Introduction The

More information

Axisymmetric Viscous Flow Modeling for Meridional Flow Calculation in Aerodynamic Design of Half-Ducted Blade Rows

Axisymmetric Viscous Flow Modeling for Meridional Flow Calculation in Aerodynamic Design of Half-Ducted Blade Rows Memoirs of the Faculty of Engineering, Kyushu University, Vol.67, No.4, December 2007 Axisymmetric Viscous Flow Modeling for Meridional Flow alculation in Aerodynamic Design of Half-Ducted Blade Rows by

More information

High-order solutions of transitional flow over the SD7003 airfoil using compact finite-differencing and filtering

High-order solutions of transitional flow over the SD7003 airfoil using compact finite-differencing and filtering High-order solutions of transitional flow over the SD7003 airfoil using compact finite-differencing and filtering Daniel J. Garmann and Miguel R. Visbal Air Force Research Laboratory, Wright-Patterson

More information

Microwell Mixing with Surface Tension

Microwell Mixing with Surface Tension Microwell Mixing with Surface Tension Nick Cox Supervised by Professor Bruce Finlayson University of Washington Department of Chemical Engineering June 6, 2007 Abstract For many applications in the pharmaceutical

More information

Direct Numerical Simulation of Turbulent Boundary Layers at High Reynolds Numbers.

Direct Numerical Simulation of Turbulent Boundary Layers at High Reynolds Numbers. Direct Numerical Simulation of Turbulent Boundary Layers at High Reynolds Numbers. G. Borrell, J.A. Sillero and J. Jiménez, Corresponding author: guillem@torroja.dmt.upm.es School of Aeronautics, Universidad

More information

Computational Fluid Dynamics (CFD) for Built Environment

Computational Fluid Dynamics (CFD) for Built Environment Computational Fluid Dynamics (CFD) for Built Environment Seminar 4 (For ASHRAE Members) Date: Sunday 20th March 2016 Time: 18:30-21:00 Venue: Millennium Hotel Sponsored by: ASHRAE Oryx Chapter Dr. Ahmad

More information

VI Workshop Brasileiro de Micrometeorologia

VI Workshop Brasileiro de Micrometeorologia Validation of a statistic algorithm applied to LES model Eduardo Bárbaro, Amauri Oliveira, Jacyra Soares November 2009 Index Objective 1 Objective 2 3 Vertical Profiles Flow properties 4 Objective 1 The

More information

FAST ALGORITHMS FOR CALCULATIONS OF VISCOUS INCOMPRESSIBLE FLOWS USING THE ARTIFICIAL COMPRESSIBILITY METHOD

FAST ALGORITHMS FOR CALCULATIONS OF VISCOUS INCOMPRESSIBLE FLOWS USING THE ARTIFICIAL COMPRESSIBILITY METHOD TASK QUARTERLY 12 No 3, 273 287 FAST ALGORITHMS FOR CALCULATIONS OF VISCOUS INCOMPRESSIBLE FLOWS USING THE ARTIFICIAL COMPRESSIBILITY METHOD ZBIGNIEW KOSMA Institute of Applied Mechanics, Technical University

More information

Computation of Velocity, Pressure and Temperature Distributions near a Stagnation Point in Planar Laminar Viscous Incompressible Flow

Computation of Velocity, Pressure and Temperature Distributions near a Stagnation Point in Planar Laminar Viscous Incompressible Flow Excerpt from the Proceedings of the COMSOL Conference 8 Boston Computation of Velocity, Pressure and Temperature Distributions near a Stagnation Point in Planar Laminar Viscous Incompressible Flow E. Kaufman

More information

HIGH PERFORMANCE LARGE EDDY SIMULATION OF TURBULENT FLOWS AROUND PWR MIXING GRIDS

HIGH PERFORMANCE LARGE EDDY SIMULATION OF TURBULENT FLOWS AROUND PWR MIXING GRIDS HIGH PERFORMANCE LARGE EDDY SIMULATION OF TURBULENT FLOWS AROUND PWR MIXING GRIDS U. Bieder, C. Calvin, G. Fauchet CEA Saclay, CEA/DEN/DANS/DM2S P. Ledac CS-SI HPCC 2014 - First International Workshop

More information

Assessment of the numerical solver

Assessment of the numerical solver Chapter 5 Assessment of the numerical solver In this chapter the numerical methods described in the previous chapter are validated and benchmarked by applying them to some relatively simple test cases

More information

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 13: The Lecture deals with:

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 13: The Lecture deals with: The Lecture deals with: Some more Suggestions for Improvement of Discretization Schemes Some Non-Trivial Problems with Discretized Equations file:///d /chitra/nptel_phase2/mechanical/cfd/lecture13/13_1.htm[6/20/2012

More information

Development of immersed boundary methods for complex geometries

Development of immersed boundary methods for complex geometries Center for Turbulence Research Annual Research Briefs 1998 325 Development of immersed boundary methods for complex geometries By J. Mohd-Yusof 1. Motivation and objectives For fluid dynamics simulations,

More information

Potsdam Propeller Test Case (PPTC)

Potsdam Propeller Test Case (PPTC) Second International Symposium on Marine Propulsors smp 11, Hamburg, Germany, June 2011 Workshop: Propeller performance Potsdam Propeller Test Case (PPTC) Olof Klerebrant Klasson 1, Tobias Huuva 2 1 Core

More information

Development of a Maxwell Equation Solver for Application to Two Fluid Plasma Models. C. Aberle, A. Hakim, and U. Shumlak

Development of a Maxwell Equation Solver for Application to Two Fluid Plasma Models. C. Aberle, A. Hakim, and U. Shumlak Development of a Maxwell Equation Solver for Application to Two Fluid Plasma Models C. Aberle, A. Hakim, and U. Shumlak Aerospace and Astronautics University of Washington, Seattle American Physical Society

More information

A 3D VOF model in cylindrical coordinates

A 3D VOF model in cylindrical coordinates A 3D VOF model in cylindrical coordinates Marmar Mehrabadi and Markus Bussmann Department of Mechanical and Industrial Engineering, University of Toronto Recently, volume of fluid (VOF) methods have improved

More information

FOURTH ORDER COMPACT FORMULATION OF STEADY NAVIER-STOKES EQUATIONS ON NON-UNIFORM GRIDS

FOURTH ORDER COMPACT FORMULATION OF STEADY NAVIER-STOKES EQUATIONS ON NON-UNIFORM GRIDS International Journal of Mechanical Engineering and Technology (IJMET Volume 9 Issue 10 October 2018 pp. 179 189 Article ID: IJMET_09_10_11 Available online at http://www.iaeme.com/ijmet/issues.asp?jtypeijmet&vtype9&itype10

More information

Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics

Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics I. Pantle Fachgebiet Strömungsmaschinen Karlsruher Institut für Technologie KIT Motivation

More information

Numerical Investigation of Transonic Shock Oscillations on Stationary Aerofoils

Numerical Investigation of Transonic Shock Oscillations on Stationary Aerofoils Numerical Investigation of Transonic Shock Oscillations on Stationary Aerofoils A. Soda, T. Knopp, K. Weinman German Aerospace Center DLR, Göttingen/Germany Symposium on Hybrid RANS-LES Methods Stockholm/Sweden,

More information

Hybrid OpenMP-MPI Turbulent boundary Layer code over 32k cores

Hybrid OpenMP-MPI Turbulent boundary Layer code over 32k cores Hybrid OpenMP-MPI Turbulent boundary Layer code over 32k cores T/NT INTERFACE y/ x/ z/ 99 99 Juan A. Sillero, Guillem Borrell, Javier Jiménez (Universidad Politécnica de Madrid) and Robert D. Moser (U.

More information

Strömningslära Fluid Dynamics. Computer laboratories using COMSOL v4.4

Strömningslära Fluid Dynamics. Computer laboratories using COMSOL v4.4 UMEÅ UNIVERSITY Department of Physics Claude Dion Olexii Iukhymenko May 15, 2015 Strömningslära Fluid Dynamics (5FY144) Computer laboratories using COMSOL v4.4!! Report requirements Computer labs must

More information

CHAPTER 1. Introduction

CHAPTER 1. Introduction ME 475: Computer-Aided Design of Structures 1-1 CHAPTER 1 Introduction 1.1 Analysis versus Design 1.2 Basic Steps in Analysis 1.3 What is the Finite Element Method? 1.4 Geometrical Representation, Discretization

More information

Studies of the Continuous and Discrete Adjoint Approaches to Viscous Automatic Aerodynamic Shape Optimization

Studies of the Continuous and Discrete Adjoint Approaches to Viscous Automatic Aerodynamic Shape Optimization Studies of the Continuous and Discrete Adjoint Approaches to Viscous Automatic Aerodynamic Shape Optimization Siva Nadarajah Antony Jameson Stanford University 15th AIAA Computational Fluid Dynamics Conference

More information

Influence of geometric imperfections on tapered roller bearings life and performance

Influence of geometric imperfections on tapered roller bearings life and performance Influence of geometric imperfections on tapered roller bearings life and performance Rodríguez R a, Calvo S a, Nadal I b and Santo Domingo S c a Computational Simulation Centre, Instituto Tecnológico de

More information

The Immersed Interface Method

The Immersed Interface Method The Immersed Interface Method Numerical Solutions of PDEs Involving Interfaces and Irregular Domains Zhiiin Li Kazufumi Ito North Carolina State University Raleigh, North Carolina Society for Industrial

More information

MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP

MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP Vol. 12, Issue 1/2016, 63-68 DOI: 10.1515/cee-2016-0009 MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP Juraj MUŽÍK 1,* 1 Department of Geotechnics, Faculty of Civil Engineering, University

More information

41. Application of the Domain Decomposition Method to the Flow around the Savonius Rotor

41. Application of the Domain Decomposition Method to the Flow around the Savonius Rotor 12th International Conference on Domain Decomposition Methods Editors: Tony Chan, Takashi Kako, Hideo Kawarada, Olivier Pironneau, c 2001 DDM.org 41. Application of the Domain Decomposition Method to the

More information

Numerical Methods in Aerodynamics. Fluid Structure Interaction. Lecture 4: Fluid Structure Interaction

Numerical Methods in Aerodynamics. Fluid Structure Interaction. Lecture 4: Fluid Structure Interaction Fluid Structure Interaction Niels N. Sørensen Professor MSO, Ph.D. Department of Civil Engineering, Alborg University & Wind Energy Department, Risø National Laboratory Technical University of Denmark

More information

Stream Function-Vorticity CFD Solver MAE 6263

Stream Function-Vorticity CFD Solver MAE 6263 Stream Function-Vorticity CFD Solver MAE 66 Charles O Neill April, 00 Abstract A finite difference CFD solver was developed for transient, two-dimensional Cartesian viscous flows. Flow parameters are solved

More information

CFD WORKSHOP TOKYO 2005

CFD WORKSHOP TOKYO 2005 CFD WORKSHOP TOKYO 2005 Questionnaire Code identifier: (insert the same identifier as in the computed results) Except when stated otherwise, please reply to each question by filling the appropriate alternative(s)

More information

Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders

Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders Objective: The objective of this laboratory is to introduce how to use FLUENT to solve both transient and natural convection problems.

More information

Continued Investigation of Small-Scale Air-Sea Coupled Dynamics Using CBLAST Data

Continued Investigation of Small-Scale Air-Sea Coupled Dynamics Using CBLAST Data Continued Investigation of Small-Scale Air-Sea Coupled Dynamics Using CBLAST Data Dick K.P. Yue Center for Ocean Engineering Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge,

More information

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil Verification and Validation of Turbulent Flow around a Clark-Y Airfoil 1. Purpose 58:160 Intermediate Mechanics of Fluids CFD LAB 2 By Tao Xing and Fred Stern IIHR-Hydroscience & Engineering The University

More information

Simulation of Turbulent Axisymmetric Waterjet Using Computational Fluid Dynamics (CFD)

Simulation of Turbulent Axisymmetric Waterjet Using Computational Fluid Dynamics (CFD) Simulation of Turbulent Axisymmetric Waterjet Using Computational Fluid Dynamics (CFD) PhD. Eng. Nicolae MEDAN 1 1 Technical University Cluj-Napoca, North University Center Baia Mare, Nicolae.Medan@cunbm.utcluj.ro

More information

LARGE-EDDY EDDY SIMULATION CODE FOR CITY SCALE ENVIRONMENTS

LARGE-EDDY EDDY SIMULATION CODE FOR CITY SCALE ENVIRONMENTS ARCHER ECSE 05-14 LARGE-EDDY EDDY SIMULATION CODE FOR CITY SCALE ENVIRONMENTS TECHNICAL REPORT Vladimír Fuka, Zheng-Tong Xie Abstract The atmospheric large eddy simulation code ELMM (Extended Large-eddy

More information

Computing Nearly Singular Solutions Using Pseudo-Spectral Methods

Computing Nearly Singular Solutions Using Pseudo-Spectral Methods Computing Nearly Singular Solutions Using Pseudo-Spectral Methods Thomas Y. Hou Ruo Li January 9, 2007 Abstract In this paper, we investigate the performance of pseudo-spectral methods in computing nearly

More information

Possibility of Implicit LES for Two-Dimensional Incompressible Lid-Driven Cavity Flow Based on COMSOL Multiphysics

Possibility of Implicit LES for Two-Dimensional Incompressible Lid-Driven Cavity Flow Based on COMSOL Multiphysics Possibility of Implicit LES for Two-Dimensional Incompressible Lid-Driven Cavity Flow Based on COMSOL Multiphysics Masanori Hashiguchi 1 1 Keisoku Engineering System Co., Ltd. 1-9-5 Uchikanda, Chiyoda-ku,

More information

Non-Newtonian Transitional Flow in an Eccentric Annulus

Non-Newtonian Transitional Flow in an Eccentric Annulus Tutorial 8. Non-Newtonian Transitional Flow in an Eccentric Annulus Introduction The purpose of this tutorial is to illustrate the setup and solution of a 3D, turbulent flow of a non-newtonian fluid. Turbulent

More information

A Study of the Development of an Analytical Wall Function for Large Eddy Simulation of Turbulent Channel and Rectangular Duct Flow

A Study of the Development of an Analytical Wall Function for Large Eddy Simulation of Turbulent Channel and Rectangular Duct Flow University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations August 2014 A Study of the Development of an Analytical Wall Function for Large Eddy Simulation of Turbulent Channel and Rectangular

More information

INTERACTION BETWEEN TURBULENT DYNAMICAL PROCESSES AND STATISTICS IN DEFORMED AIR-LIQUID INTERFACES, VIA DNS

INTERACTION BETWEEN TURBULENT DYNAMICAL PROCESSES AND STATISTICS IN DEFORMED AIR-LIQUID INTERFACES, VIA DNS INTERACTION BETWEEN TURBULENT DYNAMICAL PROCESSES AND STATISTICS IN DEFORMED AIR-LIQUID INTERFACES, VIA DNS Yoshinobu Yamamoto Department of Nuclear Engineering, Kyoto University Yoshida Sakyo Kyoto, 66-85,

More information

Reproducibility of Complex Turbulent Flow Using Commercially-Available CFD Software

Reproducibility of Complex Turbulent Flow Using Commercially-Available CFD Software Reports of Research Institute for Applied Mechanics, Kyushu University No.150 (71 83) March 2016 Reproducibility of Complex Turbulent Flow Using Commercially-Available CFD Software Report 3: For the Case

More information

Direct Numerical Simulation of a Low Pressure Turbine Cascade. Christoph Müller

Direct Numerical Simulation of a Low Pressure Turbine Cascade. Christoph Müller Low Pressure NOFUN 2015, Braunschweig, Overview PostProcessing Experimental test facility Grid generation Inflow turbulence Conclusion and slide 2 / 16 Project Scale resolving Simulations give insight

More information

Vehicle Cabin Noise from Turbulence Induced by Side-View Mirrors. Hua-Dong Yao, 2018/8/29 Chalmers University of Technology, Sweden

Vehicle Cabin Noise from Turbulence Induced by Side-View Mirrors. Hua-Dong Yao, 2018/8/29 Chalmers University of Technology, Sweden Vehicle Cabin Noise from Turbulence Induced by Side-View Mirrors Hua-Dong Yao, 2018/8/29 Chalmers University of Technology, Sweden An Important Cabin Noise Source Turbulence As the development of quiet

More information

A higher-order finite volume method with collocated grid arrangement for incompressible flows

A higher-order finite volume method with collocated grid arrangement for incompressible flows Computational Methods and Experimental Measurements XVII 109 A higher-order finite volume method with collocated grid arrangement for incompressible flows L. Ramirez 1, X. Nogueira 1, S. Khelladi 2, J.

More information

Transition Flow and Aeroacoustic Analysis of NACA0018 Satish Kumar B, Fred Mendonç a, Ghuiyeon Kim, Hogeon Kim

Transition Flow and Aeroacoustic Analysis of NACA0018 Satish Kumar B, Fred Mendonç a, Ghuiyeon Kim, Hogeon Kim Transition Flow and Aeroacoustic Analysis of NACA0018 Satish Kumar B, Fred Mendonç a, Ghuiyeon Kim, Hogeon Kim Transition Flow and Aeroacoustic Analysis of NACA0018 Satish Kumar B, Fred Mendonç a, Ghuiyeon

More information

02_CRADLE 03_CSSRC 04_HSVA

02_CRADLE 03_CSSRC 04_HSVA A Computational Domain Domain Topology A1 1 steady domain 1 rotating domain Multiple domains Grid coupling technique A2 Sliding Overset Multiple ref. Frames B Propeller Representation Resolution B1 Geometrically

More information

Design Optimization of a Weather Radar Antenna using Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD)

Design Optimization of a Weather Radar Antenna using Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) Design Optimization of a Weather Radar Antenna using Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD) Fernando Prevedello Regis Ataídes Nícolas Spogis Wagner Ortega Guedes Fabiano Armellini

More information

1. Mathematical Modelling

1. Mathematical Modelling 1. describe a given problem with some mathematical formalism in order to get a formal and precise description see fundamental properties due to the abstraction allow a systematic treatment and, thus, solution

More information

Turbulence et Génération de Bruit Equipe de recherche du Centre Acoustique LMFA, UMR CNRS 5509, Ecole Centrale de Lyon Simulation Numérique en Aéroacoustique Institut Henri Poincaré - 16 novembre 2006

More information

Hydrodynamic modeling of flow around bridge piers

Hydrodynamic modeling of flow around bridge piers Hydrodynamic modeling of flow around bridge piers E. D. Farsirotou*, J. V. Soulis^, V. D. Dermissis* *Aristotle University of Thessaloniki, Civil Engineering Department, Division of Hydraulics and Environmental

More information

Dipartimento di Ingegneria Aerospaziale Politecnico di Milano

Dipartimento di Ingegneria Aerospaziale Politecnico di Milano Trajectory optimization and real-time simulation for robotics applications Michele Attolico Pierangelo Masarati Paolo Mantegazza Dipartimento di Ingegneria Aerospaziale Politecnico di Milano Multibody

More information

Self-Cultivation System

Self-Cultivation System Development of a Microorganism Incubator using CFD Simulations Self-Cultivation System A comfortable mixing incubator to grow microorganism for agricultural, animal husbandry and ocean agriculture industries

More information

CFD Best Practice Guidelines: A process to understand CFD results and establish Simulation versus Reality

CFD Best Practice Guidelines: A process to understand CFD results and establish Simulation versus Reality CFD Best Practice Guidelines: A process to understand CFD results and establish Simulation versus Reality Judd Kaiser ANSYS Inc. judd.kaiser@ansys.com 2005 ANSYS, Inc. 1 ANSYS, Inc. Proprietary Overview

More information

CFD Analysis of 2-D Unsteady Flow Past a Square Cylinder at an Angle of Incidence

CFD Analysis of 2-D Unsteady Flow Past a Square Cylinder at an Angle of Incidence CFD Analysis of 2-D Unsteady Flow Past a Square Cylinder at an Angle of Incidence Kavya H.P, Banjara Kotresha 2, Kishan Naik 3 Dept. of Studies in Mechanical Engineering, University BDT College of Engineering,

More information

(LSS Erlangen, Simon Bogner, Ulrich Rüde, Thomas Pohl, Nils Thürey in collaboration with many more

(LSS Erlangen, Simon Bogner, Ulrich Rüde, Thomas Pohl, Nils Thürey in collaboration with many more Parallel Free-Surface Extension of the Lattice-Boltzmann Method A Lattice-Boltzmann Approach for Simulation of Two-Phase Flows Stefan Donath (LSS Erlangen, stefan.donath@informatik.uni-erlangen.de) Simon

More information

Chapter 5: Introduction to Differential Analysis of Fluid Motion

Chapter 5: Introduction to Differential Analysis of Fluid Motion Chapter 5: Introduction to Differential 5-1 Conservation of Mass 5-2 Stream Function for Two-Dimensional 5-3 Incompressible Flow 5-4 Motion of a Fluid Particle (Kinematics) 5-5 Momentum Equation 5-6 Computational

More information

Using the Eulerian Multiphase Model for Granular Flow

Using the Eulerian Multiphase Model for Granular Flow Tutorial 21. Using the Eulerian Multiphase Model for Granular Flow Introduction Mixing tanks are used to maintain solid particles or droplets of heavy fluids in suspension. Mixing may be required to enhance

More information

A Framework for Coupling Reynolds-Averaged With Large-Eddy Simulations for Gas Turbine Applications

A Framework for Coupling Reynolds-Averaged With Large-Eddy Simulations for Gas Turbine Applications J. U. Schlüter X. Wu S. Kim S. Shankaran J. J. Alonso H. Pitsch Center for Turbulence Research and Aerospace Computing Lab, Stanford University, Stanford, CA 94305-3030 A Framework for Coupling Reynolds-Averaged

More information

An Embedded Boundary Method with Adaptive Mesh Refinements

An Embedded Boundary Method with Adaptive Mesh Refinements An Embedded Boundary Method with Adaptive Mesh Refinements Marcos Vanella and Elias Balaras 8 th World Congress on Computational Mechanics, WCCM8 5 th European Congress on Computational Methods in Applied

More information

Exploring unstructured Poisson solvers for FDS

Exploring unstructured Poisson solvers for FDS Exploring unstructured Poisson solvers for FDS Dr. Susanne Kilian hhpberlin - Ingenieure für Brandschutz 10245 Berlin - Germany Agenda 1 Discretization of Poisson- Löser 2 Solvers for 3 Numerical Tests

More information

Coupled Analysis of FSI

Coupled Analysis of FSI Coupled Analysis of FSI Qin Yin Fan Oct. 11, 2008 Important Key Words Fluid Structure Interface = FSI Computational Fluid Dynamics = CFD Pressure Displacement Analysis = PDA Thermal Stress Analysis = TSA

More information

Immersed Boundary Method and Chimera Method applied to Fluid-

Immersed Boundary Method and Chimera Method applied to Fluid- The numericsacademy Fixed Colloquium IBM on Moving Immersed IBM Boundary Applications Methods : Conclusion Current Status and Future Research Directions 15-17 June 2009, Academy Building, Amsterdam, the

More information

The Development of a Navier-Stokes Flow Solver with Preconditioning Method on Unstructured Grids

The Development of a Navier-Stokes Flow Solver with Preconditioning Method on Unstructured Grids Proceedings of the International MultiConference of Engineers and Computer Scientists 213 Vol II, IMECS 213, March 13-15, 213, Hong Kong The Development of a Navier-Stokes Flow Solver with Preconditioning

More information

RANS COMPUTATION OF RIBBED DUCT FLOW USING FLUENT AND COMPARING TO LES

RANS COMPUTATION OF RIBBED DUCT FLOW USING FLUENT AND COMPARING TO LES RANS COMPUTATION OF RIBBED DUCT FLOW USING FLUENT AND COMPARING TO LES Máté M., Lohász +*& / Ákos Csécs + + Department of Fluid Mechanics, Budapest University of Technology and Economics, Budapest * Von

More information

Mid-Year Report. Discontinuous Galerkin Euler Equation Solver. Friday, December 14, Andrey Andreyev. Advisor: Dr.

Mid-Year Report. Discontinuous Galerkin Euler Equation Solver. Friday, December 14, Andrey Andreyev. Advisor: Dr. Mid-Year Report Discontinuous Galerkin Euler Equation Solver Friday, December 14, 2012 Andrey Andreyev Advisor: Dr. James Baeder Abstract: The focus of this effort is to produce a two dimensional inviscid,

More information

CGT 581 G Fluids. Overview. Some terms. Some terms

CGT 581 G Fluids. Overview. Some terms. Some terms CGT 581 G Fluids Bedřich Beneš, Ph.D. Purdue University Department of Computer Graphics Technology Overview Some terms Incompressible Navier-Stokes Boundary conditions Lagrange vs. Euler Eulerian approaches

More information

PARALLEL DNS USING A COMPRESSIBLE TURBULENT CHANNEL FLOW BENCHMARK

PARALLEL DNS USING A COMPRESSIBLE TURBULENT CHANNEL FLOW BENCHMARK European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS Computational Fluid Dynamics Conference 2001 Swansea, Wales, UK, 4-7 September 2001 ECCOMAS PARALLEL DNS USING A COMPRESSIBLE

More information

Finite Volume Discretization on Irregular Voronoi Grids

Finite Volume Discretization on Irregular Voronoi Grids Finite Volume Discretization on Irregular Voronoi Grids C.Huettig 1, W. Moore 1 1 Hampton University / National Institute of Aerospace Folie 1 The earth and its terrestrial neighbors NASA Colin Rose, Dorling

More information

Fluid Motion Between Rotating Concentric Cylinders Using COMSOL Multiphysics

Fluid Motion Between Rotating Concentric Cylinders Using COMSOL Multiphysics Fluid Motion Between Rotating Concentric Cylinders Using COMSOL Multiphysics Kabita Barman 1, Sravanthi Mothupally 1, Archana Sonejee 1, and Patrick L. Mills *1 1 Department of Chemical and Natural Gas

More information

Fourth order Multi-Time-Stepping Adams- Bashforth (MTSAB) scheme for NASA Glenn Research Center's Broadband Aeroacoustic Stator Simulation (BASS) Code

Fourth order Multi-Time-Stepping Adams- Bashforth (MTSAB) scheme for NASA Glenn Research Center's Broadband Aeroacoustic Stator Simulation (BASS) Code The University of Toledo The University of Toledo Digital Repository Theses and Dissertations 2010 Fourth order Multi-Time-Stepping Adams- Bashforth (MTSAB) scheme for NASA Glenn Research Center's Broadband

More information

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering Debojyoti Ghosh Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering To study the Dynamic Stalling of rotor blade cross-sections Unsteady Aerodynamics: Time varying

More information

LARGE EDDY SIMULATION OF VORTEX SHEDDING WITH TRIANGULAR CYLINDER AHEAD OF A SQUARE CYLINDER

LARGE EDDY SIMULATION OF VORTEX SHEDDING WITH TRIANGULAR CYLINDER AHEAD OF A SQUARE CYLINDER The Eighth Asia-Pacific Conference on Wind Engineering, December 10 14, 2013, Chennai, India LARGE EDDY SIMULATION OF VORTEX SHEDDING WITH TRIANGULAR CYLINDER AHEAD OF A SQUARE CYLINDER Akshoy Ranjan Paul

More information

Particleworks: Particle-based CAE Software fully ported to GPU

Particleworks: Particle-based CAE Software fully ported to GPU Particleworks: Particle-based CAE Software fully ported to GPU Introduction PrometechVideo_v3.2.3.wmv 3.5 min. Particleworks Why the particle method? Existing methods FEM, FVM, FLIP, Fluid calculation

More information

CONFORMAL MAPPING POTENTIAL FLOW AROUND A WINGSECTION USED AS A TEST CASE FOR THE INVISCID PART OF RANS SOLVERS

CONFORMAL MAPPING POTENTIAL FLOW AROUND A WINGSECTION USED AS A TEST CASE FOR THE INVISCID PART OF RANS SOLVERS European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006 P. Wesseling, E. Oñate and J. Périaux (Eds) c TU Delft, The Netherlands, 2006 CONFORMAL MAPPING POTENTIAL FLOW AROUND A WINGSECTION

More information

Overview of Traditional Surface Tracking Methods

Overview of Traditional Surface Tracking Methods Liquid Simulation With Mesh-Based Surface Tracking Overview of Traditional Surface Tracking Methods Matthias Müller Introduction Research lead of NVIDIA PhysX team PhysX GPU acc. Game physics engine www.nvidia.com\physx

More information

A High-Order Accurate Unstructured GMRES Solver for Poisson s Equation

A High-Order Accurate Unstructured GMRES Solver for Poisson s Equation A High-Order Accurate Unstructured GMRES Solver for Poisson s Equation Amir Nejat * and Carl Ollivier-Gooch Department of Mechanical Engineering, The University of British Columbia, BC V6T 1Z4, Canada

More information

Reproducibility of Complex Turbulent Flow Using Commercially-Available CFD Software

Reproducibility of Complex Turbulent Flow Using Commercially-Available CFD Software Reports of Research Institute for Applied Mechanics, Kyushu University, No.150 (60-70) March 2016 Reproducibility of Complex Turbulent Flow Using Commercially-Available CFD Software Report 2: For the Case

More information

New Very High-Order Upwind Multilayer Compact Schemes with Spectral-Like Resolution for Flow Simulations

New Very High-Order Upwind Multilayer Compact Schemes with Spectral-Like Resolution for Flow Simulations New Very High-Order Upwind Multilayer Compact Schemes with Spectral-Lie Resolution for Flow Simulations Zeyu Bai and Xiaolin Zhong University of California, Los Angeles, CA, 995, USA Hypersonic boundary

More information

LES Analysis on Shock-Vortex Ring Interaction

LES Analysis on Shock-Vortex Ring Interaction LES Analysis on Shock-Vortex Ring Interaction Yong Yang Jie Tang Chaoqun Liu Technical Report 2015-08 http://www.uta.edu/math/preprint/ LES Analysis on Shock-Vortex Ring Interaction Yong Yang 1, Jie Tang

More information

Analysis of Flow Dynamics of an Incompressible Viscous Fluid in a Channel

Analysis of Flow Dynamics of an Incompressible Viscous Fluid in a Channel Analysis of Flow Dynamics of an Incompressible Viscous Fluid in a Channel Deepak Kumar Assistant Professor, Department of Mechanical Engineering, Amity University Gurgaon, India E-mail: deepak209476@gmail.com

More information

THE INFLUENCE OF ROTATING DOMAIN SIZE IN A ROTATING FRAME OF REFERENCE APPROACH FOR SIMULATION OF ROTATING IMPELLER IN A MIXING VESSEL

THE INFLUENCE OF ROTATING DOMAIN SIZE IN A ROTATING FRAME OF REFERENCE APPROACH FOR SIMULATION OF ROTATING IMPELLER IN A MIXING VESSEL Journal of Engineering Science and Technology Vol. 2, No. 2 (2007) 126-138 School of Engineering, Taylor s University College THE INFLUENCE OF ROTATING DOMAIN SIZE IN A ROTATING FRAME OF REFERENCE APPROACH

More information

NUMERICAL SIMULATION OF THE SHALLOW WATER EQUATIONS USING A TIME-CENTERED SPLIT-IMPLICIT METHOD

NUMERICAL SIMULATION OF THE SHALLOW WATER EQUATIONS USING A TIME-CENTERED SPLIT-IMPLICIT METHOD 18th Engineering Mechanics Division Conference (EMD007) NUMERICAL SIMULATION OF THE SHALLOW WATER EQUATIONS USING A TIME-CENTERED SPLIT-IMPLICIT METHOD Abstract S. Fu University of Texas at Austin, Austin,

More information

Aeroacoustic computations with a new CFD solver based on the Lattice Boltzmann Method

Aeroacoustic computations with a new CFD solver based on the Lattice Boltzmann Method Aeroacoustic computations with a new CFD solver based on the Lattice Boltzmann Method D. Ricot 1, E. Foquet 2, H. Touil 3, E. Lévêque 3, H. Machrouki 4, F. Chevillotte 5, M. Meldi 6 1: Renault 2: CS 3:

More information

MOMENTUM AND HEAT TRANSPORT INSIDE AND AROUND

MOMENTUM AND HEAT TRANSPORT INSIDE AND AROUND MOMENTUM AND HEAT TRANSPORT INSIDE AND AROUND A CYLINDRICAL CAVITY IN CROSS FLOW G. LYDON 1 & H. STAPOUNTZIS 2 1 Informatics Research Unit for Sustainable Engrg., Dept. of Civil Engrg., Univ. College Cork,

More information

Spatially distributed control for optimal drag reduction of the flow past a circular cylinder

Spatially distributed control for optimal drag reduction of the flow past a circular cylinder Spatially distributed control for optimal drag reduction of the flow past a circular cylinder By P H I L I P P E P O N C E T,, R O L A N D H I L D E B R A N D, G E O R G E S - H E N R I C O T T E T AND

More information

Math 690N - Final Report

Math 690N - Final Report Math 690N - Final Report Yuanhong Li May 05, 008 Accurate tracking of a discontinuous, thin and evolving turbulent flame front has been a challenging subject in modelling a premixed turbulent combustion.

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines Page 1 of 9 Table of Contents 1. OVERVIEW... 2 2. CHOICE OF MODEL OR FULL SCALE... 2 3. NOMINAL WAKE IN MODEL SCALE... 3 3.1 Pre-processing... 3 3.1.1 Geometry... 3 3.1.2 Computational Domain and Boundary

More information

EFFICIENT SOLUTION ALGORITHMS FOR HIGH-ACCURACY CENTRAL DIFFERENCE CFD SCHEMES

EFFICIENT SOLUTION ALGORITHMS FOR HIGH-ACCURACY CENTRAL DIFFERENCE CFD SCHEMES EFFICIENT SOLUTION ALGORITHMS FOR HIGH-ACCURACY CENTRAL DIFFERENCE CFD SCHEMES B. Treidler, J.A. Ekaterineris and R.E. Childs Nielsen Engineering & Research, Inc. Mountain View, CA, 94043 Abstract Preliminary

More information

Two-Phase flows on massively parallel multi-gpu clusters

Two-Phase flows on massively parallel multi-gpu clusters Two-Phase flows on massively parallel multi-gpu clusters Peter Zaspel Michael Griebel Institute for Numerical Simulation Rheinische Friedrich-Wilhelms-Universität Bonn Workshop Programming of Heterogeneous

More information

Fluidlrigid body interaction in complex industrial flows

Fluidlrigid body interaction in complex industrial flows Fluidlrigid body interaction in complex industrial flows D. ~bouri', A. parry1 & A. ~arndouni~ 1 Schlumberger - Riboud Product Center, Clamart, France 2 University of La Rochelle, LEPTAB, La Rochelle,

More information

HPC Usage for Aerodynamic Flow Computation with Different Levels of Detail

HPC Usage for Aerodynamic Flow Computation with Different Levels of Detail DLR.de Folie 1 HPCN-Workshop 14./15. Mai 2018 HPC Usage for Aerodynamic Flow Computation with Different Levels of Detail Cornelia Grabe, Marco Burnazzi, Axel Probst, Silvia Probst DLR, Institute of Aerodynamics

More information

CFD MODELING FOR PNEUMATIC CONVEYING

CFD MODELING FOR PNEUMATIC CONVEYING CFD MODELING FOR PNEUMATIC CONVEYING Arvind Kumar 1, D.R. Kaushal 2, Navneet Kumar 3 1 Associate Professor YMCAUST, Faridabad 2 Associate Professor, IIT, Delhi 3 Research Scholar IIT, Delhi e-mail: arvindeem@yahoo.co.in

More information