An approach to calculate and visualize intraoperative scattered radiation exposure

Size: px
Start display at page:

Download "An approach to calculate and visualize intraoperative scattered radiation exposure"

Transcription

1 Peter L. Reicertz Institut für Medizinische Informatik An approach to calculate and visualize intraoperative scattered radiation exposure Markus Wagner University of Braunschweig Institute of Technology and Hannover Medical School

2 structure purpose scattered radiation intraoperative radiograph generation the CBT system virtx methods GEANT4 simulation setup visualization of the simulation results in virtx results and discussion - 2 -

3 scattered radiation scattered or stray radiation arises every time when radiation penetrates matter a radiograph is generated is emitted in all directions by the irradiated area of the patient intensity and propagation depends on composition of the irradiated material direction of the primary beam intensity of the primary beam scatter radiation source detector absorption body transmission - 3 -

4 intraoperative radiograph generation mobile image intensifier systems (C-arms) are essential tools in treatment of trauma and emergency patients in Germany almost every orthopedic or trauma surgical operation theater (OR) is equipped with a C-arm Siemens Medical Systems - 4 -

5 intraoperative radiograph generation through their mobility C-arms are able to produce X-rays from every direction around the patient for controlling, documentation and monitoring purposes freedom in movement makes radiation shielding arrangements very difficult or sometimes impossible - 5 -

6 scattered radiation + C-arms biggest amount of exposure for ORP and surgeon through scattered radiation: lack of shielding arrangements surgeon and ORP can't leave the OR during radiograph generation knowledge about behavior of scattered radiation and hazard areas essential to minimize exposure source: An Investigation of Operator Exposure in Interventional Radiology - 6 -

7 Courses on radiation protection knowledge about behavior of scattered radiation should be presented to ORP during courses of radiation protection in Germany and other countries ORP have to visit these courses by law currently just theoretically possible with fixed images and pre-calculated videos possible improvement of the teaching procedure by using an interactive simulation and visualization of scattered radiation in a computer based training system - 7 -

8 the CBT-system virtx a computer based training system to train the correct C-arm adjustment developed at the Peter L. Reichertz Institute for Medical Informatics in cooperation with: Georg-August-University, Göttingen University of Applied Sciences and Arts, Hannover - 8 -

9 virtx offers interactive 3D OR scene movable C-arm movable patient movable OR-table visual feedback through a digitally reconstructed radiograph (DRR) simulation of bone movement in special joints - 9 -

10 virtx offers exercise based training task description traffic light indicating the correct adjustment feedback of task execution (time, virtual radiation exposure) tracking the movement of a real C-arm and patient dummy

11 virtx: first simulation of scattered radiation prototypically visualization of scattered radiation through a pulsating three colored sphere radius should indicate radiation intensity no physically correct propagation and intensity of the scattered radiation

12 simulating physically correct scattered radiation: GEANT4 GEANT4 (GEometry ANd Tracking) toolkit ( developed at CERN written in C++ uses Class Library for High Energy Physics (CLHEP) simulates the passage of particles through matter using Monte Carlo methods

13 GEANT4 features (abstract) construct detector geometries with physical characteristics shape materials electromagnetic fields define areas on geometries as sensitive detectors sensitive for impacting photon or particle protocol physical data of detected events define primary generators

14 GEANT4 and virtx integrated the GEANT4 framework into the Visual Studio 2005 project of virtx Monte Carlo simulation very computationally intensive time-consuming simulation setup has to be simple to save computation time

15 simulation setup very simple representation of C-arm and patient iron cylinder and cube water cube world volume (air) sensitive detector spheres (air) primary generator

16 simulation setup water volume: positioned corresponding to patient C-arm correlation in virtx primary generator: user defined number of photons photon energy adjustable through tube voltage in virtx randomly distributed in the area of the central beam

17 simulation setup detector spheres (DS) defined number of interleaving spheres around the center of setup material air avoid interferences each sphere sensitive detector every photon hitting surface of DS is detected with its position and energy

18 visualization in virtx visualization for different table positions (5000 photons, 9 detector spheres) each photon hit on DS surface depicted as a semitransparent color coded voxel

19 tested simulation setups measured on: Intel Core2 Quad Q6700 CPU at 2.66 GHz, 3.5 GB RAM, Nvidia GeForce 8800 GT (DS) and/or (photons) (exact image of scattered radiation) but (calculation time) to use visualization for C-arm training calculations has to be in real time at best

20 results compared to isodose curves measured during operation of a real C-arm: to photons with > 7 DS presents sufficient information to demonstrate propagation of scattered radiation for C-arm training purposes: 9DS and photons were chosen as most adequate (based on calculation times)

21 conclusion and discussion with this calculation and visualization concept integrated in virtx it's possible to demonstrate interactively: behavior of scattered radiation for discrete points in a virtual OR-scene in acceptable calculation time despite of high abstraction level (e.g. patient, small number of photons) images seem to be appropriate for intended education purpose positive questionnaire based evaluation of virtx by surgeons comparison to real isodosis curves

22 conclusion and discussion further goals and improvements: more intuitive visualization (like isodosis curves) consider different densities of the irradiated materials (different types of tissue, bones, etc.) measure photons on every point in the virtual OR and not only on the DS (voxelization of the simulation area) speed-up calculations using GPGPU methods (CUDA) prototype prototype

23 prototype voxelization

24 Thank you for your attention Questions?

An Approach to Calculate and Visualize Intraoperative Scattered Radiation Exposure

An Approach to Calculate and Visualize Intraoperative Scattered Radiation Exposure Medical Informatics in a United and Healthy Europe K.-P. Adlassnig et al. (Eds.) IOS Press, 2009 2009 European Federation for Medical Informatics. All rights reserved. doi:10.3233/978-1-60750-044-5-831

More information

Combining Analytical and Monte Carlo Modelling for Industrial Radiology

Combining Analytical and Monte Carlo Modelling for Industrial Radiology 19 th World Conference on Non-Destructive Testing 2016 Combining Analytical and Monte Carlo Modelling for Industrial Radiology Carsten BELLON, Gerd-Rüdiger JAENISCH, Andreas DERESCH BAM Bundesanstalt für

More information

Radiology. Marta Anguiano Millán. Departamento de Física Atómica, Molecular y Nuclear Facultad de Ciencias. Universidad de Granada

Radiology. Marta Anguiano Millán. Departamento de Física Atómica, Molecular y Nuclear Facultad de Ciencias. Universidad de Granada Departamento de Física Atómica, Molecular y Nuclear Facultad de Ciencias. Universidad de Granada Overview Introduction Overview Introduction Tecniques of imaging in Overview Introduction Tecniques of imaging

More information

COMPUTER SIMULATION OF X-RA Y NDE PROCESS COUPLED

COMPUTER SIMULATION OF X-RA Y NDE PROCESS COUPLED COMPUTER SIMULATION OF X-RA Y NDE PROCESS COUPLED WITH CAD INTERFACE Carsten Bellon, Gerd-Rüdiger Tillack, Christina Nockemann, and Lutz Stenze! Laboratory VIII.33 "Reliability ofnon-destructive Evaluation"

More information

HIGH-SPEED THEE-DIMENSIONAL TOMOGRAPHIC IMAGING OF FRAGMENTS AND PRECISE STATISTICS FROM AN AUTOMATED ANALYSIS

HIGH-SPEED THEE-DIMENSIONAL TOMOGRAPHIC IMAGING OF FRAGMENTS AND PRECISE STATISTICS FROM AN AUTOMATED ANALYSIS 23 RD INTERNATIONAL SYMPOSIUM ON BALLISTICS TARRAGONA, SPAIN 16-20 APRIL 2007 HIGH-SPEED THEE-DIMENSIONAL TOMOGRAPHIC IMAGING OF FRAGMENTS AND PRECISE STATISTICS FROM AN AUTOMATED ANALYSIS P. Helberg 1,

More information

Monte Carlo modelling and applications to imaging

Monte Carlo modelling and applications to imaging Monte Carlo modelling and applications to imaging The Monte Carlo method is a method to obtain a result through repeated random sampling of the outcome of a system. One of the earliest applications, in

More information

Breaking Through the Barriers to GPU Accelerated Monte Carlo Particle Transport

Breaking Through the Barriers to GPU Accelerated Monte Carlo Particle Transport Breaking Through the Barriers to GPU Accelerated Monte Carlo Particle Transport GTC 2018 Jeremy Sweezy Scientist Monte Carlo Methods, Codes and Applications Group 3/28/2018 Operated by Los Alamos National

More information

Modeling the ORTEC EX-100 Detector using MCNP

Modeling the ORTEC EX-100 Detector using MCNP Modeling the ORTEC EX-100 Detector using MCNP MCNP is a general-purpose Monte Carlo radiation transport code for modeling the interaction of radiation with materials based on composition and density. MCNP

More information

Measurement of depth-dose of linear accelerator and simulation by use of Geant4 computer code

Measurement of depth-dose of linear accelerator and simulation by use of Geant4 computer code reports of practical oncology and radiotherapy 1 5 (2 0 1 0) 64 68 available at www.sciencedirect.com journal homepage: http://www.rpor.eu/ Original article Measurement of depth-dose of linear accelerator

More information

Effects of the difference in tube voltage of the CT scanner on. dose calculation

Effects of the difference in tube voltage of the CT scanner on. dose calculation Effects of the difference in tube voltage of the CT scanner on dose calculation Dong Joo Rhee, Sung-woo Kim, Dong Hyeok Jeong Medical and Radiological Physics Laboratory, Dongnam Institute of Radiological

More information

Introduction to Biomedical Imaging

Introduction to Biomedical Imaging Alejandro Frangi, PhD Computational Imaging Lab Department of Information & Communication Technology Pompeu Fabra University www.cilab.upf.edu X-ray Projection Imaging Computed Tomography Digital X-ray

More information

Design and performance characteristics of a Cone Beam CT system for Leksell Gamma Knife Icon

Design and performance characteristics of a Cone Beam CT system for Leksell Gamma Knife Icon Design and performance characteristics of a Cone Beam CT system for Leksell Gamma Knife Icon WHITE PAPER Introduction Introducing an image guidance system based on Cone Beam CT (CBCT) and a mask immobilization

More information

Electron Dose Kernels (EDK) for Secondary Particle Transport in Deterministic Simulations

Electron Dose Kernels (EDK) for Secondary Particle Transport in Deterministic Simulations Electron Dose Kernels (EDK) for Secondary Particle Transport in Deterministic Simulations A. Al-Basheer, G. Sjoden, M. Ghita Computational Medical Physics Team Nuclear & Radiological Engineering University

More information

GPU applications in Cancer Radiation Therapy at UCSD. Steve Jiang, UCSD Radiation Oncology Amit Majumdar, SDSC Dongju (DJ) Choi, SDSC

GPU applications in Cancer Radiation Therapy at UCSD. Steve Jiang, UCSD Radiation Oncology Amit Majumdar, SDSC Dongju (DJ) Choi, SDSC GPU applications in Cancer Radiation Therapy at UCSD Steve Jiang, UCSD Radiation Oncology Amit Majumdar, SDSC Dongju (DJ) Choi, SDSC Conventional Radiotherapy SIMULATION: Construciton, Dij Days PLANNING:

More information

LAB DEMONSTRATION COMPUTED TOMOGRAPHY USING DESKCAT Lab Manual: 0

LAB DEMONSTRATION COMPUTED TOMOGRAPHY USING DESKCAT Lab Manual: 0 LAB DEMONSTRATION COMPUTED TOMOGRAPHY USING DESKCAT Lab Manual: 0 Introduction This lab demonstration explores the physics and technology of Computed Tomography (CT) and guides the student and instructor

More information

Validation of GEANT4 for Accurate Modeling of 111 In SPECT Acquisition

Validation of GEANT4 for Accurate Modeling of 111 In SPECT Acquisition Validation of GEANT4 for Accurate Modeling of 111 In SPECT Acquisition Bernd Schweizer, Andreas Goedicke Philips Technology Research Laboratories, Aachen, Germany bernd.schweizer@philips.com Abstract.

More information

Hidenobu Tachibana The Cancer Institute Hospital of JFCR, Radiology Dept. The Cancer Institute of JFCR, Physics Dept.

Hidenobu Tachibana The Cancer Institute Hospital of JFCR, Radiology Dept. The Cancer Institute of JFCR, Physics Dept. 2-D D Dose-CT Mapping in Geant4 Hidenobu Tachibana The Cancer Institute Hospital of JFCR, Radiology Dept. The Cancer Institute of JFCR, Physics Dept. Table of Contents Background & Purpose Materials Methods

More information

Michael Speiser, Ph.D.

Michael Speiser, Ph.D. IMPROVED CT-BASED VOXEL PHANTOM GENERATION FOR MCNP MONTE CARLO Michael Speiser, Ph.D. Department of Radiation Oncology UT Southwestern Medical Center Dallas, TX September 1 st, 2012 CMPWG Workshop Medical

More information

Supercomputing the Cascade Processes of Radiation Transport

Supercomputing the Cascade Processes of Radiation Transport 19 th World Conference on Non-Destructive Testing 2016 Supercomputing the Cascade Processes of Radiation Transport Mikhail ZHUKOVSKIY 1, Mikhail MARKOV 1, Sergey PODOLYAKO 1, Roman USKOV 1, Carsten BELLON

More information

Outline. Monte Carlo Radiation Transport Modeling Overview (MCNP5/6) Monte Carlo technique: Example. Monte Carlo technique: Introduction

Outline. Monte Carlo Radiation Transport Modeling Overview (MCNP5/6) Monte Carlo technique: Example. Monte Carlo technique: Introduction Monte Carlo Radiation Transport Modeling Overview () Lecture 7 Special Topics: Device Modeling Outline Principles of Monte Carlo modeling Radiation transport modeling with Utilizing Visual Editor (VisEd)

More information

Radiographic Simulator artist: Version 2

Radiographic Simulator artist: Version 2 18th World Conference on Nondestructive Testing, 16-20 April 2012, Durban, South Africa Radiographic Simulator artist: Version 2 Carsten Bellon 1, Andreas Deresch 1, Christian Gollwitzer 1, Gerd-Rüdiger

More information

Ch. 4 Physical Principles of CT

Ch. 4 Physical Principles of CT Ch. 4 Physical Principles of CT CLRS 408: Intro to CT Department of Radiation Sciences Review: Why CT? Solution for radiography/tomography limitations Superimposition of structures Distinguishing between

More information

gpmc: GPU-Based Monte Carlo Dose Calculation for Proton Radiotherapy Xun Jia 8/7/2013

gpmc: GPU-Based Monte Carlo Dose Calculation for Proton Radiotherapy Xun Jia 8/7/2013 gpmc: GPU-Based Monte Carlo Dose Calculation for Proton Radiotherapy Xun Jia xunjia@ucsd.edu 8/7/2013 gpmc project Proton therapy dose calculation Pencil beam method Monte Carlo method gpmc project Started

More information

A new Concept for High-Speed atline and inlinect for up to 100% Mass Production Process Control

A new Concept for High-Speed atline and inlinect for up to 100% Mass Production Process Control 18th World Conference on Nondestructive Testing, 16-20 April 2012, Durban, South Africa A new Concept for High-Speed atline and inlinect for up to 100% Mass Production Process Control Oliver BRUNKE 1,

More information

Basics of treatment planning II

Basics of treatment planning II Basics of treatment planning II Sastry Vedam PhD DABR Introduction to Medical Physics III: Therapy Spring 2015 Dose calculation algorithms! Correction based! Model based 1 Dose calculation algorithms!

More information

Washability Monitor for Coal Utilizing Optical and X-Ray Analysis Techniques

Washability Monitor for Coal Utilizing Optical and X-Ray Analysis Techniques Washability Monitor for Coal Utilizing Optical and X-Ray Analysis Techniques Jan F. Bachmann, Claus C. Bachmann, Michael P. Cipold, Helge B. Wurst J&C Bachmann GmbH, Bad Wildbad, Germany Mel J. Laurila

More information

Optics and Images. Lenses and Mirrors. Matthew W. Milligan

Optics and Images. Lenses and Mirrors. Matthew W. Milligan Optics and Images Lenses and Mirrors Light: Interference and Optics I. Light as a Wave - wave basics review - electromagnetic radiation II. Diffraction and Interference - diffraction, Huygen s principle

More information

Monte Carlo methods in proton beam radiation therapy. Harald Paganetti

Monte Carlo methods in proton beam radiation therapy. Harald Paganetti Monte Carlo methods in proton beam radiation therapy Harald Paganetti Introduction: Proton Physics Electromagnetic energy loss of protons Distal distribution Dose [%] 120 100 80 60 40 p e p Ionization

More information

A new Concept for High-Speed atline and inlinect for up to 100% Mass Production Process Control

A new Concept for High-Speed atline and inlinect for up to 100% Mass Production Process Control 6 th International Congress of Metrology, 06003 (203) DOI: 0.05/ metrology/20306003 C Owned by the authors, published by EDP Sciences, 203 A new Concept for High-Speed atline and inlinect for up to 00%

More information

A dedicated tool for PET scanner simulations using FLUKA

A dedicated tool for PET scanner simulations using FLUKA A dedicated tool for PET scanner simulations using FLUKA P. G. Ortega FLUKA meeting June 2013 1 Need for in-vivo treatment monitoring Particles: The good thing is that they stop... Tumour Normal tissue/organ

More information

MUSICA makes the difference

MUSICA makes the difference MUSICA makes the difference At busy Logan Hospital, MUSICA and the DR 600 are keeping the imaging workflow smooth and efficient, while meeting the quality and dose reduction needs for patients and staff

More information

Representing Range Compensators in the TOPAS Monte Carlo System

Representing Range Compensators in the TOPAS Monte Carlo System Representing Range Compensators in the TOPAS Monte Carlo System, Jan Schuemann, Jungwook Shin, Bruce Faddegon, Harald Paganetti, and Joseph Perl SLAC National Accelerator Laboratory University of Illinois

More information

Ray Optics I. Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex

Ray Optics I. Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex Phys 531 Lecture 8 20 September 2005 Ray Optics I Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex Today shift gears, start applying

More information

Monte Carlo Simulation for Neptun 10 PC Medical Linear Accelerator and Calculations of Electron Beam Parameters

Monte Carlo Simulation for Neptun 10 PC Medical Linear Accelerator and Calculations of Electron Beam Parameters Monte Carlo Simulation for Neptun 1 PC Medical Linear Accelerator and Calculations of Electron Beam Parameters M.T. Bahreyni Toossi a, M. Momen Nezhad b, S.M. Hashemi a a Medical Physics Research Center,

More information

Image Acquisition Systems

Image Acquisition Systems Image Acquisition Systems Goals and Terminology Conventional Radiography Axial Tomography Computer Axial Tomography (CAT) Magnetic Resonance Imaging (MRI) PET, SPECT Ultrasound Microscopy Imaging ITCS

More information

CIVA Computed Tomography Modeling

CIVA Computed Tomography Modeling CIVA Computed Tomography Modeling R. FERNANDEZ, EXTENDE, France S. LEGOUPIL, M. COSTIN, D. TISSEUR, A. LEVEQUE, CEA-LIST, France page 1 Summary Context From CIVA RT to CIVA CT Reconstruction Methods Applications

More information

Arion: a realistic projection simulator for optimizing laboratory and industrial micro-ct

Arion: a realistic projection simulator for optimizing laboratory and industrial micro-ct Arion: a realistic projection simulator for optimizing laboratory and industrial micro-ct J. DHAENE* 1, E. PAUWELS 1, T. DE SCHRYVER 1, A. DE MUYNCK 1, M. DIERICK 1, L. VAN HOOREBEKE 1 1 UGCT Dept. Physics

More information

A study of densitometry comparison among three radiographic processing solutions

A study of densitometry comparison among three radiographic processing solutions Iran. J. Radiat. Res., 2006; 4 (2): 81-86 A study of densitometry comparison among three radiographic processing solutions V. Changizi 1*, E. Jazayeri 1,A.Talaeepour 2 1 Department of Radiology Technology,

More information

Enhanced material contrast by dual-energy microct imaging

Enhanced material contrast by dual-energy microct imaging Enhanced material contrast by dual-energy microct imaging Method note Page 1 of 12 2 Method note: Dual-energy microct analysis 1. Introduction 1.1. The basis for dual energy imaging Micro-computed tomography

More information

PROVIDE A UNIFORM DOSE IN THE SMALL ANIMAL.

PROVIDE A UNIFORM DOSE IN THE SMALL ANIMAL. Considerations in the Use of the RS 2000 X ray Irradiator for Biological Research (Primarily Small Animal, tissue, and cells) and the fallacy of the High KV spectrum. The performance goal for a small animal

More information

NON-COLLIMATED SCATTERED RADIATION TOMOGRAPHY

NON-COLLIMATED SCATTERED RADIATION TOMOGRAPHY NON-COLLIMATED SCATTERED RADIATION TOMOGRAPHY Gorshkov V.A., Space Research Institute, Moscow, Russia Yumashev V.M., State corporation "Rosatom", Centre "Atom-innovation", Moscow, Russia Kirilenko K.V.,

More information

SHIELDING DEPTH DETERMINATION OF COBALT PHOTON SHOWER THROUGH LEAD, ALUMINUM AND AIR USING MONTE CARLO SIMULATION

SHIELDING DEPTH DETERMINATION OF COBALT PHOTON SHOWER THROUGH LEAD, ALUMINUM AND AIR USING MONTE CARLO SIMULATION Research Article SHIELDING DEPTH DETERMINATION OF COBALT PHOTON SHOWER THROUGH LEAD, ALUMINUM AND AIR USING MONTE CARLO SIMULATION 1 Ngadda, Y. H., 2 Ewa, I. O. B. and 3 Chagok, N. M. D. 1 Physics Department,

More information

Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.

Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. DXRaySMCS First User Friendly Interface Developed for Prediction of Diagnostic Radiology X-Ray Spectra Produced by Monte Carlo (MCNP-4C) Simulation in Iran M.T. Bahreyni Toosi a*, H. Moradi b, H. Zare

More information

Loma Linda University Medical Center Dept. of Radiation Medicine

Loma Linda University Medical Center Dept. of Radiation Medicine Loma Linda University Medical Center Dept. of Radiation Medicine and Northern Illinois University Dept. of Physics and Dept. of Computer Science Presented by George Coutrakon, PhD NIU Physics Dept. Collaborators

More information

Comparison of internal and external dose conversion factors using ICRP adult male and MEET Man voxel model phantoms.

Comparison of internal and external dose conversion factors using ICRP adult male and MEET Man voxel model phantoms. Comparison of internal and external dose conversion factors using ICRP adult male and MEET Man voxel model phantoms. D.Leone, A.Häußler Intitute for Nuclear Waste Disposal, Karlsruhe Institute for Technology,

More information

Radiography and Tomography Lab 2: Computing Radiographs

Radiography and Tomography Lab 2: Computing Radiographs Radiography and Tomography Lab 2: Computing Radiographs An Abbreviated View of Radiography Transmission Radiography is the process of measuring and recording changes in a high-energy particle beam (X-rays,

More information

DUAL energy X-ray radiography [1] can be used to separate

DUAL energy X-ray radiography [1] can be used to separate IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 1, FEBRUARY 2006 133 A Scatter Correction Using Thickness Iteration in Dual-Energy Radiography S. K. Ahn, G. Cho, and H. Jeon Abstract In dual-energy

More information

A Radiometry Tolerant Method for Direct 3D/2D Registration of Computed Tomography Data to X-ray Images

A Radiometry Tolerant Method for Direct 3D/2D Registration of Computed Tomography Data to X-ray Images A Radiometry Tolerant Method for Direct 3D/2D Registration of Computed Tomography Data to X-ray Images Transfer Function Independent Registration Boris Peter Selby 1, Georgios Sakas 2, Stefan Walter 1,

More information

Accelerated C-arm Reconstruction by Out-of-Projection Prediction

Accelerated C-arm Reconstruction by Out-of-Projection Prediction Accelerated C-arm Reconstruction by Out-of-Projection Prediction Hannes G. Hofmann, Benjamin Keck, Joachim Hornegger Pattern Recognition Lab, University Erlangen-Nuremberg hannes.hofmann@informatik.uni-erlangen.de

More information

Validation of GEANT4 Monte Carlo Simulation Code for 6 MV Varian Linac Photon Beam

Validation of GEANT4 Monte Carlo Simulation Code for 6 MV Varian Linac Photon Beam Validation of GEANT4 Monte Carlo Code for 6 MV Varian Linac Photon Beam E. Salama ab*, A.S. Ali c, N. Emad d and A. Radi a a Physics Department, Faculty of Science, Ain Shams University, Cairo, Egypt;

More information

Chapter 35. The Nature of Light and the Laws of Geometric Optics

Chapter 35. The Nature of Light and the Laws of Geometric Optics Chapter 35 The Nature of Light and the Laws of Geometric Optics Introduction to Light Light is basic to almost all life on Earth. Light is a form of electromagnetic radiation. Light represents energy transfer

More information

Muon imaging for innovative tomography of large volume and heterogeneous cemented waste packages

Muon imaging for innovative tomography of large volume and heterogeneous cemented waste packages Muon imaging for innovative tomography of large volume and heterogeneous cemented waste packages This project has received funding from the Euratom research and training programme 2014-2018 under grant

More information

Digital Image Processing

Digital Image Processing Digital Image Processing SPECIAL TOPICS CT IMAGES Hamid R. Rabiee Fall 2015 What is an image? 2 Are images only about visual concepts? We ve already seen that there are other kinds of image. In this lecture

More information

New Technology in Radiation Oncology. James E. Gaiser, Ph.D. DABR Physics and Computer Planning Charlotte, NC

New Technology in Radiation Oncology. James E. Gaiser, Ph.D. DABR Physics and Computer Planning Charlotte, NC New Technology in Radiation Oncology James E. Gaiser, Ph.D. DABR Physics and Computer Planning Charlotte, NC Technology s s everywhere From the imaging chain To the planning system To the linac To QA..it..it

More information

Medical Image Processing: Image Reconstruction and 3D Renderings

Medical Image Processing: Image Reconstruction and 3D Renderings Medical Image Processing: Image Reconstruction and 3D Renderings 김보형 서울대학교컴퓨터공학부 Computer Graphics and Image Processing Lab. 2011. 3. 23 1 Computer Graphics & Image Processing Computer Graphics : Create,

More information

high performance medical reconstruction using stream programming paradigms

high performance medical reconstruction using stream programming paradigms high performance medical reconstruction using stream programming paradigms This Paper describes the implementation and results of CT reconstruction using Filtered Back Projection on various stream programming

More information

Modifications for P551 Fall 2014

Modifications for P551 Fall 2014 LAB DEMONSTRATION COMPUTED TOMOGRAPHY USING DESKCAT 1 Modifications for P551 Fall 2014 Introduction This lab demonstration explores the physics and technology of Computed Tomography (CT) and guides the

More information

Massively Parallel GPU-friendly Algorithms for PET. Szirmay-Kalos László, Budapest, University of Technology and Economics

Massively Parallel GPU-friendly Algorithms for PET. Szirmay-Kalos László,   Budapest, University of Technology and Economics Massively Parallel GPU-friendly Algorithms for PET Szirmay-Kalos László, http://cg.iit.bme.hu, Budapest, University of Technology and Economics (GP)GPU: CUDA (OpenCL) Multiprocessor N Multiprocessor 2

More information

Physical bases of X-ray diagnostics

Physical bases of X-ray diagnostics Physical bases of X-ray diagnostics Dr. István Voszka Possibilities of X-ray production (X-ray is produced, when charged particles of high velocity are stopped) X-ray tube: Relatively low accelerating

More information

Comparison of Predictions by MCNP and EGSnrc of Radiation Dose

Comparison of Predictions by MCNP and EGSnrc of Radiation Dose Comparison of Predictions by MCNP and EGSnrc of Radiation Dose Computational Medical Physics Working Group Workshop II, Sep 30 Oct 3, 2007 at UF imparted to various Material Targets by Beams and small

More information

ATLAS Tracking Detector Upgrade studies using the Fast Simulation Engine

ATLAS Tracking Detector Upgrade studies using the Fast Simulation Engine Journal of Physics: Conference Series PAPER OPEN ACCESS ATLAS Tracking Detector Upgrade studies using the Fast Simulation Engine To cite this article: Noemi Calace et al 2015 J. Phys.: Conf. Ser. 664 072005

More information

Artifact Mitigation in High Energy CT via Monte Carlo Simulation

Artifact Mitigation in High Energy CT via Monte Carlo Simulation PIERS ONLINE, VOL. 7, NO. 8, 11 791 Artifact Mitigation in High Energy CT via Monte Carlo Simulation Xuemin Jin and Robert Y. Levine Spectral Sciences, Inc., USA Abstract The high energy (< 15 MeV) incident

More information

MPEXS benchmark results

MPEXS benchmark results MPEXS benchmark results - phase space data - Akinori Kimura 14 February 2017 Aim To validate results of MPEXS with phase space data by comparing with Geant4 results Depth dose and lateral dose distributions

More information

Mathematical methods and simulations tools useful in medical radiation physics

Mathematical methods and simulations tools useful in medical radiation physics Mathematical methods and simulations tools useful in medical radiation physics Michael Ljungberg, professor Department of Medical Radiation Physics Lund University SE-221 85 Lund, Sweden Major topic 1:

More information

Proton dose calculation algorithms and configuration data

Proton dose calculation algorithms and configuration data Proton dose calculation algorithms and configuration data Barbara Schaffner PTCOG 46 Educational workshop in Wanjie, 20. May 2007 VARIAN Medical Systems Agenda Broad beam algorithms Concept of pencil beam

More information

Spiral CT. Protocol Optimization & Quality Assurance. Ge Wang, Ph.D. Department of Radiology University of Iowa Iowa City, Iowa 52242, USA

Spiral CT. Protocol Optimization & Quality Assurance. Ge Wang, Ph.D. Department of Radiology University of Iowa Iowa City, Iowa 52242, USA Spiral CT Protocol Optimization & Quality Assurance Ge Wang, Ph.D. Department of Radiology University of Iowa Iowa City, Iowa 52242, USA Spiral CT Protocol Optimization & Quality Assurance Protocol optimization

More information

ELECTRON DOSE KERNELS TO ACCOUNT FOR SECONDARY PARTICLE TRANSPORT IN DETERMINISTIC SIMULATIONS

ELECTRON DOSE KERNELS TO ACCOUNT FOR SECONDARY PARTICLE TRANSPORT IN DETERMINISTIC SIMULATIONS Computational Medical Physics Working Group Workshop II, Sep 30 Oct 3, 2007 University of Florida (UF), Gainesville, Florida USA on CD-ROM, American Nuclear Society, LaGrange Park, IL (2007) ELECTRON DOSE

More information

Ray tracing based fast refraction method for an object seen through a cylindrical glass

Ray tracing based fast refraction method for an object seen through a cylindrical glass 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1 6 December 2013 www.mssanz.org.au/modsim2013 Ray tracing based fast refraction method for an object seen through a cylindrical

More information

Spring 2010 Research Report Judson Benton Locke. High-Statistics Geant4 Simulations

Spring 2010 Research Report Judson Benton Locke. High-Statistics Geant4 Simulations Florida Institute of Technology High Energy Physics Research Group Advisors: Marcus Hohlmann, Ph.D. Kondo Gnanvo, Ph.D. Note: During September 2010, it was found that the simulation data presented here

More information

SCIENCE 8 WORKBOOK. Chapter 5 Light Optics (Section 1) Ms. Jamieson This workbook belongs to:

SCIENCE 8 WORKBOOK. Chapter 5 Light Optics (Section 1) Ms. Jamieson This workbook belongs to: SCIENCE 8 WORKBOOK Chapter 5 Light Optics (Section 1) Ms. Jamieson 2018 This workbook belongs to: Eric Hamber Secondary 5025 Willow Street Vancouver, BC Table of Contents A. Chapter 5.1 - The Ray Model

More information

I. INTRODUCTION. Figure 1. Radiation room model at Dongnai General Hospital

I. INTRODUCTION. Figure 1. Radiation room model at Dongnai General Hospital International Journal of Computational Engineering Research Vol, 04 Issue, 4 Simulation of Photon and Electron dose distributions 5 code for the treatment area using the linear electron accelerator (LINAC)

More information

Tomographic Reconstruction

Tomographic Reconstruction Tomographic Reconstruction 3D Image Processing Torsten Möller Reading Gonzales + Woods, Chapter 5.11 2 Overview Physics History Reconstruction basic idea Radon transform Fourier-Slice theorem (Parallel-beam)

More information

Open Inventor Medical Edition High-performance 3D software development tools

Open Inventor Medical Edition High-performance 3D software development tools Open Inventor Medical Edition High-performance 3D software development tools Open Inventor Medical Edition is an object-oriented 2D and 3D software development toolkit (SDK) for developing professional

More information

THE SIMULATION OF THE 4 MV VARIAN LINAC WITH EXPERIMENTAL VALIDATION

THE SIMULATION OF THE 4 MV VARIAN LINAC WITH EXPERIMENTAL VALIDATION 2007 International Nuclear Atlantic Conference - INAC 2007 Santos, SP, Brazil, September 30 to October 5, 2007 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-02-1 THE SIMULATION OF

More information

Deliverable D10.2. WP10 JRA04 INDESYS Innovative solutions for nuclear physics detectors

Deliverable D10.2. WP10 JRA04 INDESYS Innovative solutions for nuclear physics detectors MS116 Characterization of light production, propagation and collection for both organic and inorganic scintillators D10.2 R&D on new and existing scintillation materials: Report on the light production,

More information

MEDICAL IMAGING 2nd Part Computed Tomography

MEDICAL IMAGING 2nd Part Computed Tomography MEDICAL IMAGING 2nd Part Computed Tomography Introduction 2 In the last 30 years X-ray Computed Tomography development produced a great change in the role of diagnostic imaging in medicine. In convetional

More information

Metal Artifact Reduction CT Techniques. Tobias Dietrich University Hospital Balgrist University of Zurich Switzerland

Metal Artifact Reduction CT Techniques. Tobias Dietrich University Hospital Balgrist University of Zurich Switzerland Metal Artifact Reduction CT Techniques R S S S Tobias Dietrich University Hospital Balgrist University of Zurich Switzerland N. 1 v o 4 1 0 2. Postoperative CT Metal Implants CT is accurate for assessment

More information

arxiv: v1 [cs.cv] 6 Jun 2017

arxiv: v1 [cs.cv] 6 Jun 2017 Volume Calculation of CT lung Lesions based on Halton Low-discrepancy Sequences Liansheng Wang a, Shusheng Li a, and Shuo Li b a Department of Computer Science, Xiamen University, Xiamen, China b Dept.

More information

GPU-accelerated ray-tracing for real-time treatment planning

GPU-accelerated ray-tracing for real-time treatment planning Journal of Physics: Conference Series OPEN ACCESS GPU-accelerated ray-tracing for real-time treatment planning To cite this article: H Heinrich et al 2014 J. Phys.: Conf. Ser. 489 012050 View the article

More information

Comparison of High-Speed Ray Casting on GPU

Comparison of High-Speed Ray Casting on GPU Comparison of High-Speed Ray Casting on GPU using CUDA and OpenGL November 8, 2008 NVIDIA 1,2, Andreas Weinlich 1, Holger Scherl 2, Markus Kowarschik 2 and Joachim Hornegger 1 1 Chair of Pattern Recognition

More information

Georgia Institute of Technology, August 17, Justin W. L. Wan. Canada Research Chair in Scientific Computing

Georgia Institute of Technology, August 17, Justin W. L. Wan. Canada Research Chair in Scientific Computing Real-Time Rigid id 2D-3D Medical Image Registration ti Using RapidMind Multi-Core Platform Georgia Tech/AFRL Workshop on Computational Science Challenge Using Emerging & Massively Parallel Computer Architectures

More information

Scatter Correction Methods in Dimensional CT

Scatter Correction Methods in Dimensional CT Scatter Correction Methods in Dimensional CT Matthias Baer 1,2, Michael Hammer 3, Michael Knaup 1, Ingomar Schmidt 3, Ralf Christoph 3, Marc Kachelrieß 2 1 Institute of Medical Physics, Friedrich-Alexander-University

More information

Scalable multi-gpu cloud raytracing with OpenGL

Scalable multi-gpu cloud raytracing with OpenGL Scalable multi-gpu cloud raytracing with OpenGL University of Žilina Digital technologies 2014, Žilina, Slovakia Overview Goals Rendering distant details in visualizations Raytracing Multi-GPU programming

More information

Sensor-aided Milling with a Surgical Robot System

Sensor-aided Milling with a Surgical Robot System 1 Sensor-aided Milling with a Surgical Robot System Dirk Engel, Joerg Raczkowsky, Heinz Woern Institute for Process Control and Robotics (IPR), Universität Karlsruhe (TH) Engler-Bunte-Ring 8, 76131 Karlsruhe

More information

Acknowledgments. High Performance Cone-Beam CT of Acute Traumatic Brain Injury

Acknowledgments. High Performance Cone-Beam CT of Acute Traumatic Brain Injury A. Sisniega et al. (presented at RSNA 214) High Performance Cone-Beam CT of Acute Traumatic Brain Injury A. Sisniega 1 W. Zbijewski 1, H. Dang 1, J. Xu 1 J. W. Stayman 1, J. Yorkston 2, N. Aygun 3 V. Koliatsos

More information

Evaluation of RayXpert for shielding design of medical facilities

Evaluation of RayXpert for shielding design of medical facilities Evaluation of Raypert for shielding design of medical facilities Sylvie Derreumaux 1,*, Sophie Vecchiola 1, Thomas Geoffray 2, and Cécile Etard 1 1 Institut for radiation protection and nuclear safety,

More information

Lecture 6 Introduction to Scattering

Lecture 6 Introduction to Scattering Lecture 6 Introduction to Scattering Collin Roesler http://www.whoi.edu/cms/images/mediarelations/turbid_high_316298.jpg 12 July 2017 Scattering Theory B = scatterance b= scattering coefficient (m -1 )

More information

FRED Display Application Note

FRED Display Application Note FRED Display Application Note Most displays consist of several optical components. The most important component is the source of light that illuminates the display. All displays need a mechanism to send

More information

Phase-Contrast Imaging and Tomography at 60 kev using a Conventional X-ray Tube

Phase-Contrast Imaging and Tomography at 60 kev using a Conventional X-ray Tube Phase-Contrast Imaging and Tomography at 60 kev using a Conventional X-ray Tube T. Donath* a, F. Pfeiffer a,b, O. Bunk a, W. Groot a, M. Bednarzik a, C. Grünzweig a, E. Hempel c, S. Popescu c, M. Hoheisel

More information

X-ray simulation and applications

X-ray simulation and applications Computerized Tomography for Industrial Applications and Image Processing in Radiology March 15-17, 1999, Berlin, Germany DGZfP Proceedings BB 67-CD Paper 17 X-ray simulation and applications P. Hugonnard,

More information

Energy resolved X-ray diffraction Cl. J.Kosanetzky, G.Harding, U.Neitzel

Energy resolved X-ray diffraction Cl. J.Kosanetzky, G.Harding, U.Neitzel Proc. Of SPIE Vol 0626, Application of Optical Instrumentation in Medicine XIV and Picture Archiving and Communication Systems(PACS IV) for Medical Applications IV, ed. S J Dwyer/R H Schneider (Jan 1986)

More information

Shadow casting. What is the problem? Cone Beam Computed Tomography THE OBJECTIVES OF DIAGNOSTIC IMAGING IDEAL DIAGNOSTIC IMAGING STUDY LIMITATIONS

Shadow casting. What is the problem? Cone Beam Computed Tomography THE OBJECTIVES OF DIAGNOSTIC IMAGING IDEAL DIAGNOSTIC IMAGING STUDY LIMITATIONS Cone Beam Computed Tomography THE OBJECTIVES OF DIAGNOSTIC IMAGING Reveal pathology Reveal the anatomic truth Steven R. Singer, DDS srs2@columbia.edu IDEAL DIAGNOSTIC IMAGING STUDY Provides desired diagnostic

More information

Dose Calculations: Where and How to Calculate Dose. Allen Holder Trinity University.

Dose Calculations: Where and How to Calculate Dose. Allen Holder Trinity University. Dose Calculations: Where and How to Calculate Dose Trinity University www.trinity.edu/aholder R. Acosta, W. Brick, A. Hanna, D. Lara, G. McQuilen, D. Nevin, P. Uhlig and B. Slater Dose Calculations - Why

More information

Physics 4C Chapter 33: Electromagnetic Waves

Physics 4C Chapter 33: Electromagnetic Waves Physics 4C Chapter 33: Electromagnetic Waves Our greatest glory is not in never failing, but in rising up every time we fail. Ralph Waldo Emerson If you continue to do what you've always done, you'll continue

More information

NOISE PROPAGATION FROM VIBRATING STRUCTURES

NOISE PROPAGATION FROM VIBRATING STRUCTURES NOISE PROPAGATION FROM VIBRATING STRUCTURES Abstract R. Helfrich, M. Spriegel (INTES GmbH, Germany) Noise and noise exposure are becoming more important in product development due to environmental legislation.

More information

Basic Radiation Oncology Physics

Basic Radiation Oncology Physics Basic Radiation Oncology Physics T. Ganesh, Ph.D., DABR Chief Medical Physicist Fortis Memorial Research Institute Gurgaon Acknowledgment: I gratefully acknowledge the IAEA resources of teaching slides

More information

Some reference material

Some reference material Some reference material Physics reference book on medical imaging: A good one is The Essential Physics of Medical Imaging, 3 rd Ed. by Bushberg et al. ($170! new). However, there are several similar books

More information

Z-MOTION. Universal Digital Radiographic System Z-MOTION. Control-X Medical CONTROL-X MEDICAL

Z-MOTION. Universal Digital Radiographic System Z-MOTION. Control-X Medical CONTROL-X MEDICAL Control-X Medical Z-MOTION Compact design, low ceiling height requirement Motorized and manual movement capability Wide motion / SID range Best-in-class image quality Flexible connectivity to PACS systems

More information

Offline Tutorial I. Małgorzata Janik Łukasz Graczykowski. Warsaw University of Technology

Offline Tutorial I. Małgorzata Janik Łukasz Graczykowski. Warsaw University of Technology Offline Tutorial I Małgorzata Janik Łukasz Graczykowski Warsaw University of Technology Offline Tutorial, 5.07.2011 1 Contents ALICE experiment AliROOT ROOT GRID & AliEn Event generators - Monte Carlo

More information

Today s Outline - April 17, C. Segre (IIT) PHYS Spring 2018 April 17, / 22

Today s Outline - April 17, C. Segre (IIT) PHYS Spring 2018 April 17, / 22 Today s Outline - April 17, 2018 C. Segre (IIT) PHYS 570 - Spring 2018 April 17, 2018 1 / 22 Today s Outline - April 17, 2018 Diffraction enhanced imaging C. Segre (IIT) PHYS 570 - Spring 2018 April 17,

More information