Computer Vision EE837, CS867, CE803

Size: px
Start display at page:

Download "Computer Vision EE837, CS867, CE803"

Transcription

1 Computer Vision EE837, CS867, CE803

2 Introduction Lecture 01 Computer Vision

3 Prerequisites Basic linear Algebra, probability, calculus - Required Basic data structures/programming knowledge - Required Working knowledge of MATLAB - Required Knowledge and understanding of basic image processing - Preferable

4 Text and Reading Class slides, research papers, tutorials and supplemental material Linda G. Shapiro and George Stockman, Computer Vision, Upper Saddle River, NJ: Prentice Hall, David A. Forsyth and Jean Ponce, Computer Vision A Modern Approach, 2nd edition, Prentice Hall, Inc., Richard Szeliski, Computer Vision: Algorithms and Applications, Springer; 2011 edition, Made available online by the author: Extra List of CV books

5 Broader course topics Camera geometry and basic transformations Camera calibration and camera- parameters estimation Sources, shadows, shading and shape from shading Feature Extraction Texture Synthesis Template Matching and Image Registration Segmentation Vision based Tracking Multiple view geometry

6 Grading policy Homework Mostly programming assignments: Midterm/Hourly: 15% Surprise quizzes/attendance: 10% Final Project: 30% Final exam: 30% 15%

7 Grading policy Homework/programming assignments: Reports should be type-written Code and program output are required Final Project: Brain storm on project ideas Project highlights 10 minute each group Individual or a group of max two with individual roles clearly defined Type-written report upto 10 pages in CVPR format, with additional pages for commented codes as appendix. Project presentation Late Policy: No credit for late submissions

8 Grading policy Plagiarism is strictly prohibited Cite the source Negative marking will be done, where found

9 Material citations Dr George Stockman Professor Emeritus, Michigan State University Dr Mubarak Shah Professor, University of Central Florida The Robotics Institute Carnegie Mellon University

10 Any queries? By appointment only: Cdr Dr Hammad PG 111 Preferably Tuesday and Wednesday11AM Noon

11 Lets start!!!

12 What is an image? What we see What a computer sees

13 What is an image? What we see What a computer sees

14 Where is the Sun?

15 Image Processing Fourier Transform Sampling, Convolution Image enhancement Feature detection

16 What is Computer Vision? Inverse Optics Intelligent interpretation of Imagery Building a Visual Cortex Part of the cerebral cortex responsible for processing visual information No matter what your definition is Vision is complex.but is FUN!!!

17 Difference between CV and IP Image processing: Process the output of sensors. Computer vision: Relates the output of the sensors to real world. Image processing: The output is a transformed image. Computer vision: The output is usually a decision. Image Processing: Signal processing. Computer Vision: Artificial Intelligence. Defect detection or automatic driving relates to? Enhancing an image relates to?

18 Components of a Computer Vision System Camera Image acquisition Lighting Scene Computer Scene Interpretation

19 Video clip

20 Sequence of images 16 images in succession that shows motion

21 Shape from shading Shade deceives human visual system Changes the 3D shape Gradual variation of the shading gives 3D information

22 Shape from texture (1,0,1) (-1,1,1) (-1,-1,1)

23 3D from Shading Shape from Shading

24 Shape from texture Same shape (circles) repeated, forms texture Circles become ellipses at some places Gives 3D cue Texture can be used to recover 3D

25 Shape from motion Cannot understand just from dots that what it is Humans have this capability to understand motion

26 Shape from motion

27 Optical flow Sequence Color wheel Completing pixel wise motion Raw optical flow

28 Optical Flow

29 Microsoft photosynth Panorama stitching Can capture in amazing resolution and full 3D. For anyone with a D-SLR (Single Lens Reflex) or a point-and-shoot camera.

30 Video clip and mosaic Stitching images together

31 Applications of Computer Vision Face Recognition Object Recognition Video Surveillance and Monitoring Object detection, tracking and behavior analysis Remote Sensing: UAVs Robotics Computer Graphics And more.

32 Face Recognition Principle Components Analysis (PCA) Fisher Linear Discriminant (FLD)

33 Face recognition

34 Facial expression Surprised Smiling

35 Detecting driver alertness

36 Human detection Left UAV image Bounding boxes Will learn basic techniques on how we can track these moving objects

37 Video surveillance and monitoring Object detection Object tracking Object classification Automated surveillance systems Detection and tracking Activity recognition

38 Airport surveillance

39 Aerial imagery - UAVs Drones Military use Instead of drones many want to brand the technology as "Unmanned Aerial Systems" (UAS) in preference over "drones. Aerial surveying of crops Acrobatic aerial footage in filmmaking Search and rescue operations Inspecting power lines and pipelines Counting wildlife Delivering medical supplies to inaccessible regions

40 Aerial imagery Camera motion compensation Feature based + gradient Motion detection Object tracking Frame differencing + background modeling + object segmentation Kernel tracking + blob tracking + occlusion Event detection and tracking

41 Aerial imagery Registration results

42 Aerial imagery Detection results

43 Aerial imagery Tracking results

44 Wide area surveillance

45 Wide area surveillance

46 Tracking results

47 Unmanned Ground Vehicle Comes under Robot vision Google Self driving car The system combines information from Google Street View with artificial intelligence software that combines input from: Video cameras inside the car Identifying pedestrians and moving obstacles LIDAR sensor on top of the vehicle For 3D map Radar sensors on the front of the vehicle Position of distant objects Position sensor attached to one of the rear wheels Locate the car's position on the map.

48 Unmanned Ground Vehicle Defense Advanced Research Projects Agency (DARPA) urban challenge

49 Human activity recognition Involves Events Actions Activities Different datasets available for analysis

50 Human activity recognition - datasets Weizmann action dataset 10 actions 09 actors per action KTH Data Set 06 categories 25 actors 04 instances 600 clips

51 Human activity recognition - datasets UCF Sports dataset 9 actions 142 videos Bench swing Kick IMAX multi-view dataset Dive Lift Swing Ride Golf swing Run Skate

52 Human activity recognition - datasets UCF 50

53 Stereo Regular camera lose 3D information Microsoft Kinect sensor game changer Gives direct 3D information + RGB image 50,000 different gestures Challenge is that can you identify all/some of these IR LED Emitter 3D depth sensors Tilt motor Array of microphones RGB Camera

54 Binocular Stereo

55 Stereo Regular camera lose 3D information

56 Range Scanning and Structured Light

57 High density crowded scenes Tracking required for: Crowd management Public space design Virtual environments Visual surveillance Intelligent environments And more!!!

58 High density crowded scenes Can we do tracking in this kind of crowd? Political Rallies Religious Festivals Marathons High Density Moving Objects

59 High density crowded scenes Can we do tracking in this kind of crowd? Average chip size 14 x 22 pixels 492 Frames Selected 199 athletes for tracking Successfully tracked 143 athletes

60 High density crowded scenes Can we do tracking in this kind of crowd?

61 High density crowded scenes Can we do tracking in this kind of crowd? Average chip size 14 x 17 pixels 453 Frames Selected 50 athletes for tracking

62 High density crowded scenes Can we do tracking in this kind of crowd?

63 Behaviors in crowded scenes Can we identify the behavior of the crowd?

64 Image localization Input Output Location in terms of Longitude ( ) Latitude ( ) Image compared with database of images

65 Geospatial trajectory extraction Sequence of images compared with database

66 Computer graphics CV used for movies like Harry Potter, Avatar, Matrix etc

67 Layer based image composition Segmentation method Green Chroma key screen Green and blue differ the most in hue from skin colors Virtual studio y

68 Layer based video composition Segmentation method

69 Layer based video composition Segmentation method

70 Industrial robots vs low skilled workers

CAP 5415 Computer Vision. Fall 2011

CAP 5415 Computer Vision. Fall 2011 CAP 5415 Computer Vision Fall 2011 General Instructor: Dr. Mubarak Shah Email: shah@eecs.ucf.edu Office: 247-F HEC Course Class Time Tuesdays, Thursdays 12 Noon to 1:15PM 383 ENGR Office hours Tuesdays

More information

EECS 442 Computer Vision fall 2011

EECS 442 Computer Vision fall 2011 EECS 442 Computer Vision fall 2011 Instructor Silvio Savarese silvio@eecs.umich.edu Office: ECE Building, room: 4435 Office hour: Tues 4:30-5:30pm or under appoint. (after conversation hour) GSIs: Mohit

More information

Edge Detection Lecture 03 Computer Vision

Edge Detection Lecture 03 Computer Vision Edge Detection Lecture 3 Computer Vision Suggested readings Chapter 5 Linda G. Shapiro and George Stockman, Computer Vision, Upper Saddle River, NJ, Prentice Hall,. Chapter David A. Forsyth and Jean Ponce,

More information

CS595:Introduction to Computer Vision

CS595:Introduction to Computer Vision CS595:Introduction to Computer Vision Instructor: Qi Li Instructor Course syllabus E-mail: qi.li@cs.wku.edu Office: TCCW 135 Office hours MW: 9:00-10:00, 15:00-16:00 T: 9:00-12:00, 14:00-16:00 F: 9:00-10:00

More information

EECS 442 Computer Vision fall 2012

EECS 442 Computer Vision fall 2012 EECS 442 Computer Vision fall 2012 Instructor Silvio Savarese silvio@eecs.umich.edu Office: ECE Building, room: 4435 Office hour: Tues 4:30-5:30pm or under appoint. GSI: Johnny Chao (ywchao125@gmail.com)

More information

Computer Vision. I-Chen Lin, Assistant Professor Dept. of CS, National Chiao Tung University

Computer Vision. I-Chen Lin, Assistant Professor Dept. of CS, National Chiao Tung University Computer Vision I-Chen Lin, Assistant Professor Dept. of CS, National Chiao Tung University About the course Course title: Computer Vision Lectures: EC016, 10:10~12:00(Tues.); 15:30~16:20(Thurs.) Pre-requisites:

More information

Segmentation (continued)

Segmentation (continued) Segmentation (continued) Lecture 05 Computer Vision Material Citations Dr George Stockman Professor Emeritus, Michigan State University Dr Mubarak Shah Professor, University of Central Florida The Robotics

More information

What is Computer Vision? Introduction. We all make mistakes. Why is this hard? What was happening. What do you see? Intro Computer Vision

What is Computer Vision? Introduction. We all make mistakes. Why is this hard? What was happening. What do you see? Intro Computer Vision What is Computer Vision? Trucco and Verri (Text): Computing properties of the 3-D world from one or more digital images Introduction Introduction to Computer Vision CSE 152 Lecture 1 Sockman and Shapiro:

More information

Computer Vision. Introduction

Computer Vision. Introduction Computer Vision Introduction Filippo Bergamasco (filippo.bergamasco@unive.it) http://www.dais.unive.it/~bergamasco DAIS, Ca Foscari University of Venice Academic year 2016/2017 About this course Official

More information

Introductions. Today. Computer Vision Jan 19, What is computer vision? 1. Vision for measurement. Computer Vision

Introductions. Today. Computer Vision Jan 19, What is computer vision? 1. Vision for measurement. Computer Vision Introductions Instructor: Prof. Kristen Grauman grauman@cs.utexas.edu Computer Vision Jan 19, 2011 TA: Shalini Sahoo shalini@cs.utexas.edu Today What is computer vision? Course overview Requirements, logistics

More information

Course Name: Computer Vision Course Code: IT444

Course Name: Computer Vision Course Code: IT444 Course Name: Computer Vision Course Code: IT444 I. Basic Course Information Major or minor element of program: Major Department offering the course:information Technology Department Academic level:400

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Introduction to 2 What is? A process that produces from images of the external world a description

More information

Computer and Machine Vision

Computer and Machine Vision Computer and Machine Vision Lecture Week 4 Part-2 February 5, 2014 Sam Siewert Outline of Week 4 Practical Methods for Dealing with Camera Streams, Frame by Frame and De-coding/Re-encoding for Analysis

More information

Computer Vision, CS766. Staff. Instructor: Li Zhang TA: Jake Rosin

Computer Vision, CS766. Staff. Instructor: Li Zhang TA: Jake Rosin Computer Vision, CS766 Staff Instructor: Li Zhang lizhang@cs.wisc.edu TA: Jake Rosin rosin@cs.wisc.edu Today Introduction Administrative Stuff Overview of the Course About Me Li Zhang ( 张力 ) Last name

More information

Introduction to Computer Vision MARCH 2018

Introduction to Computer Vision MARCH 2018 Introduction to Computer Vision RODNEY DOCKTER, PH.D. MARCH 2018 1 Rodney Dockter (me) Ph.D. in Mechanical Engineering from the University of Minnesota Worked in Dr. Tim Kowalewski s lab Medical robotics

More information

Image Registration Lecture 1: Introduction

Image Registration Lecture 1: Introduction Image Registration Lecture 1: Introduction Prof. Charlene Tsai Outline Syllabus Registration problem Applications of registration Components of a solution Thematic questions underlying registration Software

More information

CSc I6716 Spring D Computer Vision. Introduction. Instructor: Zhigang Zhu City College of New York

CSc I6716 Spring D Computer Vision. Introduction. Instructor: Zhigang Zhu City College of New York Introduction CSc I6716 Spring 2012 Introduction Instructor: Zhigang Zhu City College of New York zzhu@ccny.cuny.edu Course Information Basic Information: Course participation p Books, notes, etc. Web page

More information

Image Analysis. Lars Schmidt-Thieme

Image Analysis. Lars Schmidt-Thieme Image Analysis Image Analysis Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute for Business Economics and Information Systems & Institute for Computer Science University

More information

COMPUTER VISION. Dr. Sukhendu Das Deptt. of Computer Science and Engg., IIT Madras, Chennai

COMPUTER VISION. Dr. Sukhendu Das Deptt. of Computer Science and Engg., IIT Madras, Chennai COMPUTER VISION Dr. Sukhendu Das Deptt. of Computer Science and Engg., IIT Madras, Chennai 600036. Email: sdas@iitm.ac.in URL: //www.cs.iitm.ernet.in/~sdas 1 INTRODUCTION 2 Human Vision System (HVS) Vs.

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu ECG782: Multidimensional Digital Signal Processing Lecture 01 Introduction http://www.ee.unlv.edu/~b1morris/ecg782/ 2 Outline Computer Vision

More information

CSE 527: Intro. to Computer

CSE 527: Intro. to Computer CSE 527: Intro. to Computer Vision CSE 527: Intro. to Computer Vision www.cs.sunysb.edu/~cse527 Instructor: Prof. M. Alex O. Vasilescu Email: maov@cs.sunysb.edu Phone: 631 632-8457 Office: 1421 Prerequisites:

More information

3D Computer Vision. Introduction. Introduction. CSc I6716 Fall Instructor: Zhigang Zhu City College of New York

3D Computer Vision. Introduction. Introduction. CSc I6716 Fall Instructor: Zhigang Zhu City College of New York Introduction CSc I6716 Fall 2010 3D Computer Vision Introduction Instructor: Zhigang Zhu City College of New York zzhu@ccny.cuny.edu Course Information Basic Information: Course participation Books, notes,

More information

Why is computer vision difficult?

Why is computer vision difficult? Why is computer vision difficult? Viewpoint variation Illumination Scale Why is computer vision difficult? Intra-class variation Motion (Source: S. Lazebnik) Background clutter Occlusion Challenges: local

More information

Lecture 18: Human Motion Recognition

Lecture 18: Human Motion Recognition Lecture 18: Human Motion Recognition Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Introduction Motion classification using template matching Motion classification i using spatio

More information

Computer Vision Lecture 17

Computer Vision Lecture 17 Computer Vision Lecture 17 Epipolar Geometry & Stereo Basics 13.01.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Announcements Seminar in the summer semester

More information

12/3/2009. What is Computer Vision? Applications. Application: Assisted driving Pedestrian and car detection. Application: Improving online search

12/3/2009. What is Computer Vision? Applications. Application: Assisted driving Pedestrian and car detection. Application: Improving online search Introduction to Artificial Intelligence V22.0472-001 Fall 2009 Lecture 26: Computer Vision Rob Fergus Dept of Computer Science, Courant Institute, NYU Slides from Andrew Zisserman What is Computer Vision?

More information

Computer Vision Lecture 17

Computer Vision Lecture 17 Announcements Computer Vision Lecture 17 Epipolar Geometry & Stereo Basics Seminar in the summer semester Current Topics in Computer Vision and Machine Learning Block seminar, presentations in 1 st week

More information

Introduction to Computer Vision

Introduction to Computer Vision Introduction to Computer Vision Dr. Gerhard Roth COMP 4102A Winter 2015 Version 2 General Information Instructor: Adjunct Prof. Dr. Gerhard Roth gerhardroth@rogers.com read hourly gerhardroth@cmail.carleton.ca

More information

Video Mosaics for Virtual Environments, R. Szeliski. Review by: Christopher Rasmussen

Video Mosaics for Virtual Environments, R. Szeliski. Review by: Christopher Rasmussen Video Mosaics for Virtual Environments, R. Szeliski Review by: Christopher Rasmussen September 19, 2002 Announcements Homework due by midnight Next homework will be assigned Tuesday, due following Tuesday.

More information

CS4495/6495 Introduction to Computer Vision. 1A-L1 Introduction

CS4495/6495 Introduction to Computer Vision. 1A-L1 Introduction CS4495/6495 Introduction to Computer Vision 1A-L1 Introduction Outline What is computer vision? State of the art Why is this hard? Course overview Software Why study Computer Vision? Images (and movies)

More information

Final Exam Study Guide

Final Exam Study Guide Final Exam Study Guide Exam Window: 28th April, 12:00am EST to 30th April, 11:59pm EST Description As indicated in class the goal of the exam is to encourage you to review the material from the course.

More information

COMPUTER VISION FOR VISUAL EFFECTS

COMPUTER VISION FOR VISUAL EFFECTS COMPUTER VISION FOR VISUAL EFFECTS Modern blockbuster movies seamlessly introduce impossible characters and action into real-world settings using digital visual effects. These effects are made possible

More information

AUTOMATIC 3D HUMAN ACTION RECOGNITION Ajmal Mian Associate Professor Computer Science & Software Engineering

AUTOMATIC 3D HUMAN ACTION RECOGNITION Ajmal Mian Associate Professor Computer Science & Software Engineering AUTOMATIC 3D HUMAN ACTION RECOGNITION Ajmal Mian Associate Professor Computer Science & Software Engineering www.csse.uwa.edu.au/~ajmal/ Overview Aim of automatic human action recognition Applications

More information

3D Computer Vision Introduction

3D Computer Vision Introduction 3D Computer Vision Introduction Tom Henderson CS 6320 S2014 tch@cs.utah.edu Acknowledgements: slides from Guido Gerig (Utah) & Marc Pollefeys, UNC Chapel Hill) Administration Classes: M & W, 1:25-2:45

More information

Announcements. Introduction. Why is this hard? What is Computer Vision? We all make mistakes. What do you see? Class Web Page is up:

Announcements. Introduction. Why is this hard? What is Computer Vision? We all make mistakes. What do you see? Class Web Page is up: Announcements Introduction Computer Vision I CSE 252A Lecture 1 Class Web Page is up: http://www.cs.ucsd.edu/classes/wi05/cse252a/ Assignment 0: Getting Started with Matlab is posted to web page, due 1/13/04

More information

MOVING OBJECT DETECTION USING BACKGROUND SUBTRACTION ALGORITHM USING SIMULINK

MOVING OBJECT DETECTION USING BACKGROUND SUBTRACTION ALGORITHM USING SIMULINK MOVING OBJECT DETECTION USING BACKGROUND SUBTRACTION ALGORITHM USING SIMULINK Mahamuni P. D 1, R. P. Patil 2, H.S. Thakar 3 1 PG Student, E & TC Department, SKNCOE, Vadgaon Bk, Pune, India 2 Asst. Professor,

More information

Structure from Motion. Lecture-15

Structure from Motion. Lecture-15 Structure from Motion Lecture-15 Shape From X Recovery of 3D (shape) from one or two (2D images). Shape From X Stereo Motion Shading Photometric Stereo Texture Contours Silhouettes Defocus Applications

More information

Global Flow Estimation. Lecture 9

Global Flow Estimation. Lecture 9 Motion Models Image Transformations to relate two images 3D Rigid motion Perspective & Orthographic Transformation Planar Scene Assumption Transformations Translation Rotation Rigid Affine Homography Pseudo

More information

Self-calibration of a pair of stereo cameras in general position

Self-calibration of a pair of stereo cameras in general position Self-calibration of a pair of stereo cameras in general position Raúl Rojas Institut für Informatik Freie Universität Berlin Takustr. 9, 14195 Berlin, Germany Abstract. This paper shows that it is possible

More information

Overview of Computer Vision. CS308 Data Structures

Overview of Computer Vision. CS308 Data Structures Overview of Computer Vision CS308 Data Structures What is Computer Vision? Deals with the development of the theoretical and algorithmic basis by which useful information about the 3D world can be automatically

More information

Computer Vision. Alexandra Branzan Albu Spring 2009

Computer Vision. Alexandra Branzan Albu Spring 2009 Computer Vision Alexandra Branzan Albu Spring 2009 Staff Instructor: Alexandra Branzan Albu www.ece.uvic.ca/~aalbu email: aalbu@ece.uvic.ca Office hours (EOW 315): by appointment CENG 421/ ELEC 536 : Computer

More information

Global Flow Estimation. Lecture 9

Global Flow Estimation. Lecture 9 Global Flow Estimation Lecture 9 Global Motion Estimate motion using all pixels in the image. Parametric flow gives an equation, which describes optical flow for each pixel. Affine Projective Global motion

More information

Presented at the FIG Congress 2018, May 6-11, 2018 in Istanbul, Turkey

Presented at the FIG Congress 2018, May 6-11, 2018 in Istanbul, Turkey Presented at the FIG Congress 2018, May 6-11, 2018 in Istanbul, Turkey Evangelos MALTEZOS, Charalabos IOANNIDIS, Anastasios DOULAMIS and Nikolaos DOULAMIS Laboratory of Photogrammetry, School of Rural

More information

Computer Vision. Alexandra Branzan Albu Spring 2010

Computer Vision. Alexandra Branzan Albu Spring 2010 Computer Vision Alexandra Branzan Albu Spring 2010 Staff Instructor: Alexandra Branzan Albu www.ece.uvic.ca/~aalbu email: aalbu@ece.uvic.ca Office hours (EOW 631): by appointment CENG 421/ ELEC 536 : Computer

More information

Project 4 Results. Representation. Data. Learning. Zachary, Hung-I, Paul, Emanuel. SIFT and HoG are popular and successful.

Project 4 Results. Representation. Data. Learning. Zachary, Hung-I, Paul, Emanuel. SIFT and HoG are popular and successful. Project 4 Results Representation SIFT and HoG are popular and successful. Data Hugely varying results from hard mining. Learning Non-linear classifier usually better. Zachary, Hung-I, Paul, Emanuel Project

More information

3D Computer Vision Introduction. Guido Gerig CS 6320, Spring 2012

3D Computer Vision Introduction. Guido Gerig CS 6320, Spring 2012 3D Computer Vision Introduction Guido Gerig CS 6320, Spring 2012 gerig@sci.utah.edu Administrivia Classes: M & W, 1.25-2:45 Room WEB L126 Instructor: Guido Gerig gerig@sci.utah.edu (801) 585 0327 Prerequisites:

More information

Why study Computer Vision?

Why study Computer Vision? Computer Vision Why study Computer Vision? Images and movies are everywhere Fast-growing collection of useful applications building representations of the 3D world from pictures automated surveillance

More information

Announcements. Recognition. Recognition. Recognition. Recognition. Homework 3 is due May 18, 11:59 PM Reading: Computer Vision I CSE 152 Lecture 14

Announcements. Recognition. Recognition. Recognition. Recognition. Homework 3 is due May 18, 11:59 PM Reading: Computer Vision I CSE 152 Lecture 14 Announcements Computer Vision I CSE 152 Lecture 14 Homework 3 is due May 18, 11:59 PM Reading: Chapter 15: Learning to Classify Chapter 16: Classifying Images Chapter 17: Detecting Objects in Images Given

More information

Towards Autonomous Vehicle. What is an autonomous vehicle? Vehicle driving on its own with zero mistakes How? Using sensors

Towards Autonomous Vehicle. What is an autonomous vehicle? Vehicle driving on its own with zero mistakes How? Using sensors 7 May 2017 Disclaimer Towards Autonomous Vehicle What is an autonomous vehicle? Vehicle driving on its own with zero mistakes How? Using sensors Why Vision Sensors? Humans use both eyes as main sense

More information

Computer and Machine Vision

Computer and Machine Vision Computer and Machine Vision Lecture Week 12 Part-2 Additional 3D Scene Considerations March 29, 2014 Sam Siewert Outline of Week 12 Computer Vision APIs and Languages Alternatives to C++ and OpenCV API

More information

Computer Vision and Virtual Reality. Introduction

Computer Vision and Virtual Reality. Introduction Computer Vision and Virtual Reality Introduction Tomáš Svoboda, svoboda@cmp.felk.cvut.cz Czech Technical University in Prague, Center for Machine Perception http://cmp.felk.cvut.cz Last update: October

More information

Digital Images. Kyungim Baek. Department of Information and Computer Sciences. ICS 101 (November 1, 2016) Digital Images 1

Digital Images. Kyungim Baek. Department of Information and Computer Sciences. ICS 101 (November 1, 2016) Digital Images 1 Digital Images Kyungim Baek Department of Information and Computer Sciences ICS 101 (November 1, 2016) Digital Images 1 iclicker Question I know a lot about how digital images are represented, stored,

More information

Chaplin, Modern Times, 1936

Chaplin, Modern Times, 1936 Chaplin, Modern Times, 1936 [A Bucket of Water and a Glass Matte: Special Effects in Modern Times; bonus feature on The Criterion Collection set] Multi-view geometry problems Structure: Given projections

More information

CS535: Interactive Computer Graphics

CS535: Interactive Computer Graphics CS535: Interactive Computer Graphics Instructor: Daniel G. Aliaga (aliaga@cs.purdue.edu, www.cs.purdue.edu/homes/aliaga) Classroom: LWSN B134 Time: MWF @ 1:30-2:20pm Office hours: by appointment (LWSN

More information

(Sample) Final Exam with brief answers

(Sample) Final Exam with brief answers Name: Perm #: (Sample) Final Exam with brief answers CS/ECE 181B Intro to Computer Vision March 24, 2017 noon 3:00 pm This is a closed-book test. There are also a few pages of equations, etc. included

More information

Lecture 19: Depth Cameras. Visual Computing Systems CMU , Fall 2013

Lecture 19: Depth Cameras. Visual Computing Systems CMU , Fall 2013 Lecture 19: Depth Cameras Visual Computing Systems Continuing theme: computational photography Cameras capture light, then extensive processing produces the desired image Today: - Capturing scene depth

More information

ME/CS 132: Introduction to Vision-based Robot Navigation! Low-level Image Processing" Larry Matthies"

ME/CS 132: Introduction to Vision-based Robot Navigation! Low-level Image Processing Larry Matthies ME/CS 132: Introduction to Vision-based Robot Navigation! Low-level Image Processing" Larry Matthies" lhm@jpl.nasa.gov, 818-354-3722" Announcements" First homework grading is done! Second homework is due

More information

Multi-View Geometry (Ch7 New book. Ch 10/11 old book)

Multi-View Geometry (Ch7 New book. Ch 10/11 old book) Multi-View Geometry (Ch7 New book. Ch 10/11 old book) Guido Gerig CS-GY 6643, Spring 2016 gerig@nyu.edu Credits: M. Shah, UCF CAP5415, lecture 23 http://www.cs.ucf.edu/courses/cap6411/cap5415/, Trevor

More information

Computational Imaging for Self-Driving Vehicles

Computational Imaging for Self-Driving Vehicles CVPR 2018 Computational Imaging for Self-Driving Vehicles Jan Kautz--------Ramesh Raskar--------Achuta Kadambi--------Guy Satat Computational Imaging for Self-Driving Vehicles Jan Kautz--------Ramesh Raskar--------Achuta

More information

Miniature faking. In close-up photo, the depth of field is limited.

Miniature faking. In close-up photo, the depth of field is limited. Miniature faking In close-up photo, the depth of field is limited. http://en.wikipedia.org/wiki/file:jodhpur_tilt_shift.jpg Miniature faking Miniature faking http://en.wikipedia.org/wiki/file:oregon_state_beavers_tilt-shift_miniature_greg_keene.jpg

More information

CV: 3D to 2D mathematics. Perspective transformation; camera calibration; stereo computation; and more

CV: 3D to 2D mathematics. Perspective transformation; camera calibration; stereo computation; and more CV: 3D to 2D mathematics Perspective transformation; camera calibration; stereo computation; and more Roadmap of topics n Review perspective transformation n Camera calibration n Stereo methods n Structured

More information

Computer Graphics. Instructor: Oren Kapah. Office Hours: T.B.A.

Computer Graphics. Instructor: Oren Kapah. Office Hours: T.B.A. Computer Graphics Instructor: Oren Kapah (orenkapahbiu@gmail.com) Office Hours: T.B.A. The CG-IDC slides for this course were created by Toky & Hagit Hel-Or 1 CG-IDC 2 Exercise and Homework The exercise

More information

3D Computer Vision Introduction

3D Computer Vision Introduction 3D Computer Vision Introduction Guido Gerig CS 6320, Spring 2013 gerig@sci.utah.edu Acknowledgements: some slides from Marc Pollefeys and Prof. Trevor Darrell, trevor@eecs.berkeley.edu Administrivia Classes:

More information

All good things must...

All good things must... Lecture 17 Final Review All good things must... UW CSE vision faculty Course Grading Programming Projects (80%) Image scissors (20%) -DONE! Panoramas (20%) - DONE! Content-based image retrieval (20%) -

More information

Human Detection. A state-of-the-art survey. Mohammad Dorgham. University of Hamburg

Human Detection. A state-of-the-art survey. Mohammad Dorgham. University of Hamburg Human Detection A state-of-the-art survey Mohammad Dorgham University of Hamburg Presentation outline Motivation Applications Overview of approaches (categorized) Approaches details References Motivation

More information

CSE 167: Introduction to Computer Graphics. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013

CSE 167: Introduction to Computer Graphics. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 CSE 167: Introduction to Computer Graphics Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 Today Course organization Course overview 2 Course Staff Instructor Jürgen Schulze,

More information

Image-Based Modeling and Rendering

Image-Based Modeling and Rendering Image-Based Modeling and Rendering Richard Szeliski Microsoft Research IPAM Graduate Summer School: Computer Vision July 26, 2013 How far have we come? Light Fields / Lumigraph - 1996 Richard Szeliski

More information

3D Computer Vision Introduction. Guido Gerig CS 6320, Spring 2012

3D Computer Vision Introduction. Guido Gerig CS 6320, Spring 2012 3D Computer Vision Introduction Guido Gerig CS 6320, Spring 2012 gerig@sci.utah.edu Administrivia Classes: M & W, 1.25-2:45 Room WEB L126 Instructor: Guido Gerig gerig@sci.utah.edu (801) 585 0327 Prerequisites:

More information

Understanding Tracking and StroMotion of Soccer Ball

Understanding Tracking and StroMotion of Soccer Ball Understanding Tracking and StroMotion of Soccer Ball Nhat H. Nguyen Master Student 205 Witherspoon Hall Charlotte, NC 28223 704 656 2021 rich.uncc@gmail.com ABSTRACT Soccer requires rapid ball movements.

More information

ce Hours: MW 12:30 PM 1:30 PM (till 12/12/18), or by appointment

ce Hours: MW 12:30 PM 1:30 PM (till 12/12/18), or by appointment DRAFT EXCERPT (Subject to Revision) CS459-001 Fundamentals of Computer Graphics, Fall 2018 LEC 401 MW 2:00 pm 2:50 pm, PHY 145 LAB 801 Th 9:00 am 10:45 am, EMS 942 LAB 802 Th 11:00 am 12:45 pm, EMS 942

More information

What is computer vision?

What is computer vision? What is computer vision? Computer vision (image understanding) is a discipline that studies how to reconstruct, interpret and understand a 3D scene from its 2D images in terms of the properties of the

More information

Thanks to Chris Bregler. COS 429: Computer Vision

Thanks to Chris Bregler. COS 429: Computer Vision Thanks to Chris Bregler COS 429: Computer Vision COS 429: Computer Vision Instructor: Thomas Funkhouser funk@cs.princeton.edu Preceptors: Ohad Fried, Xinyi Fan {ohad,xinyi}@cs.princeton.edu Web page: http://www.cs.princeton.edu/courses/archive/fall13/cos429/

More information

AUTOMATED UAV-BASED VIDEO EXPLOITATION FOR MAPPING AND SURVEILLANCE

AUTOMATED UAV-BASED VIDEO EXPLOITATION FOR MAPPING AND SURVEILLANCE AUTOMATED UAV-BASED VIDEO EXPLOITATION FOR MAPPING AND SURVEILLANCE Stephen Se a, *, Pezhman Firoozfam a, Norman Goldstein a, Melanie Dutkiewicz a, Paul Pace b a MDA Systems Ltd., 13800 Commerce Parkway,

More information

CS A485 Computer and Machine Vision

CS A485 Computer and Machine Vision CS A485 Computer and Machine Vision Lecture 1 Introduction Part-2 January 14, 2014 Sam Siewert Biological Vision vs. Machine Vision (Why A Honey Bee is Better than HPC for CV) Humans - 100 million Photoreceptors

More information

Assignment 2: Stereo and 3D Reconstruction from Disparity

Assignment 2: Stereo and 3D Reconstruction from Disparity CS 6320, 3D Computer Vision Spring 2013, Prof. Guido Gerig Assignment 2: Stereo and 3D Reconstruction from Disparity Out: Mon Feb-11-2013 Due: Mon Feb-25-2013, midnight (theoretical and practical parts,

More information

Computer Vision eine Herausforderung in der Künstlichen Intelligenz

Computer Vision eine Herausforderung in der Künstlichen Intelligenz Computer Vision eine Herausforderung in der Künstlichen Intelligenz Prof. Carsten Rother Computer Vision Lab Dresden Institute of Artificial Intelligence 11/12/2013 Computer Vision a hard case for AI Roadmap

More information

Notes 9: Optical Flow

Notes 9: Optical Flow Course 049064: Variational Methods in Image Processing Notes 9: Optical Flow Guy Gilboa 1 Basic Model 1.1 Background Optical flow is a fundamental problem in computer vision. The general goal is to find

More information

Data-driven Approaches to Simulation (Motion Capture)

Data-driven Approaches to Simulation (Motion Capture) 1 Data-driven Approaches to Simulation (Motion Capture) Ting-Chun Sun tingchun.sun@usc.edu Preface The lecture slides [1] are made by Jessica Hodgins [2], who is a professor in Computer Science Department

More information

CSE 167: Introduction to Computer Graphics. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016

CSE 167: Introduction to Computer Graphics. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 CSE 167: Introduction to Computer Graphics Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016 Today Course organization Course overview 2 Course Staff Instructor Jürgen Schulze,

More information

3D Fusion of Infrared Images with Dense RGB Reconstruction from Multiple Views - with Application to Fire-fighting Robots

3D Fusion of Infrared Images with Dense RGB Reconstruction from Multiple Views - with Application to Fire-fighting Robots 3D Fusion of Infrared Images with Dense RGB Reconstruction from Multiple Views - with Application to Fire-fighting Robots Yuncong Chen 1 and Will Warren 2 1 Department of Computer Science and Engineering,

More information

Thanks to Chris Bregler. COS 429: Computer Vision

Thanks to Chris Bregler. COS 429: Computer Vision Thanks to Chris Bregler COS 429: Computer Vision COS 429: Computer Vision Instructor: Szymon Rusinkiewicz TA: Linjie Luo smr@cs.princeton.edu linjiel@cs.princeton.edu Course web page http://www.cs.princeton.edu/courses/archive/fall09/cos429/

More information

A Data Fusion Platform for Supporting Bridge Deck Condition Monitoring by Merging Aerial and Ground Inspection Imagery

A Data Fusion Platform for Supporting Bridge Deck Condition Monitoring by Merging Aerial and Ground Inspection Imagery A Data Fusion Platform for Supporting Bridge Deck Condition Monitoring by Merging Aerial and Ground Inspection Imagery Zhexiong Shang, 1 Chongsheng Cheng, 2 and Zhigang Shen, Ph.D. 3 1 NH 113, Durham School

More information

0. Introduction: What is Computer Graphics? 1. Basics of scan conversion (line drawing) 2. Representing 2D curves

0. Introduction: What is Computer Graphics? 1. Basics of scan conversion (line drawing) 2. Representing 2D curves CSC 418/2504: Computer Graphics Course web site (includes course information sheet): http://www.dgp.toronto.edu/~elf Instructor: Eugene Fiume Office: BA 5266 Phone: 416 978 5472 (not a reliable way) Email:

More information

Detection of a Single Hand Shape in the Foreground of Still Images

Detection of a Single Hand Shape in the Foreground of Still Images CS229 Project Final Report Detection of a Single Hand Shape in the Foreground of Still Images Toan Tran (dtoan@stanford.edu) 1. Introduction This paper is about an image detection system that can detect

More information

EE 6882 Statistical Methods for Video Indexing and Analysis

EE 6882 Statistical Methods for Video Indexing and Analysis EE 6882 Statistical Methods for Video Indexing and Analysis Fall 2004 Prof. ShihFu Chang http://www.ee.columbia.edu/~sfchang Lecture 1 part A (9/8/04) 1 EE E6882 SVIA Lecture #1 Part I Introduction Course

More information

Emerging Vision Technologies: Enabling a New Era of Intelligent Devices

Emerging Vision Technologies: Enabling a New Era of Intelligent Devices Emerging Vision Technologies: Enabling a New Era of Intelligent Devices Computer vision overview Computer vision is being integrated in our daily lives Acquiring, processing, and understanding visual data

More information

Computer Vision. CS664 Computer Vision. 1. Introduction. Course Requirements. Preparation. Applications. Applications of Computer Vision

Computer Vision. CS664 Computer Vision. 1. Introduction. Course Requirements. Preparation. Applications. Applications of Computer Vision Computer Vision CS664 Computer Vision. Introduction Dan Huttenlocher Machines that see Broad field, any course will cover a subset of problems and techniques Closely related fields of study Artificial

More information

DEPTH AND GEOMETRY FROM A SINGLE 2D IMAGE USING TRIANGULATION

DEPTH AND GEOMETRY FROM A SINGLE 2D IMAGE USING TRIANGULATION 2012 IEEE International Conference on Multimedia and Expo Workshops DEPTH AND GEOMETRY FROM A SINGLE 2D IMAGE USING TRIANGULATION Yasir Salih and Aamir S. Malik, Senior Member IEEE Centre for Intelligent

More information

Computer Vision with MATLAB MATLAB Expo 2012 Steve Kuznicki

Computer Vision with MATLAB MATLAB Expo 2012 Steve Kuznicki Computer Vision with MATLAB MATLAB Expo 2012 Steve Kuznicki 2011 The MathWorks, Inc. 1 Today s Topics Introduction Computer Vision Feature-based registration Automatic image registration Object recognition/rotation

More information

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching Stereo Matching Fundamental matrix Let p be a point in left image, p in right image l l Epipolar relation p maps to epipolar line l p maps to epipolar line l p p Epipolar mapping described by a 3x3 matrix

More information

AUTONOMOUS IMAGE EXTRACTION AND SEGMENTATION OF IMAGE USING UAV S

AUTONOMOUS IMAGE EXTRACTION AND SEGMENTATION OF IMAGE USING UAV S AUTONOMOUS IMAGE EXTRACTION AND SEGMENTATION OF IMAGE USING UAV S Radha Krishna Rambola, Associate Professor, NMIMS University, India Akash Agrawal, Student at NMIMS University, India ABSTRACT Due to the

More information

CS 534: Computer Vision Texture

CS 534: Computer Vision Texture CS 534: Computer Vision Texture Ahmed Elgammal Dept of Computer Science CS 534 Texture - 1 Outlines Finding templates by convolution What is Texture Co-occurrence matrices for texture Spatial Filtering

More information

Lecture 10: Multi view geometry

Lecture 10: Multi view geometry Lecture 10: Multi view geometry Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Stereo vision Correspondence problem (Problem Set 2 (Q3)) Active stereo vision systems Structure from

More information

視覚情報処理論. (Visual Information Processing ) 開講所属 : 学際情報学府水 (Wed)5 [16:50-18:35]

視覚情報処理論. (Visual Information Processing ) 開講所属 : 学際情報学府水 (Wed)5 [16:50-18:35] 視覚情報処理論 (Visual Information Processing ) 開講所属 : 学際情報学府水 (Wed)5 [16:50-18:35] Computer Vision Design algorithms to implement the function of human vision 3D reconstruction from 2D image (retinal image)

More information

Block Diagram. Physical World. Image Acquisition. Enhancement and Restoration. Segmentation. Feature Selection/Extraction.

Block Diagram. Physical World. Image Acquisition. Enhancement and Restoration. Segmentation. Feature Selection/Extraction. Block Diagram Physical World Image Acquisition Imaging Image Sampling, Quantization, Compression Image Processing Enhancement and Restoration Segmentation Image Analysis Feature Selection/Extraction Image

More information

The Kinect Sensor. Luís Carriço FCUL 2014/15

The Kinect Sensor. Luís Carriço FCUL 2014/15 Advanced Interaction Techniques The Kinect Sensor Luís Carriço FCUL 2014/15 Sources: MS Kinect for Xbox 360 John C. Tang. Using Kinect to explore NUI, Ms Research, From Stanford CS247 Shotton et al. Real-Time

More information

L2 Data Acquisition. Mechanical measurement (CMM) Structured light Range images Shape from shading Other methods

L2 Data Acquisition. Mechanical measurement (CMM) Structured light Range images Shape from shading Other methods L2 Data Acquisition Mechanical measurement (CMM) Structured light Range images Shape from shading Other methods 1 Coordinate Measurement Machine Touch based Slow Sparse Data Complex planning Accurate 2

More information

Finally: Motion and tracking. Motion 4/20/2011. CS 376 Lecture 24 Motion 1. Video. Uses of motion. Motion parallax. Motion field

Finally: Motion and tracking. Motion 4/20/2011. CS 376 Lecture 24 Motion 1. Video. Uses of motion. Motion parallax. Motion field Finally: Motion and tracking Tracking objects, video analysis, low level motion Motion Wed, April 20 Kristen Grauman UT-Austin Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys, and S. Lazebnik

More information

CS 684 Fall 2005 Image-based Modeling and Rendering. Ruigang Yang

CS 684 Fall 2005 Image-based Modeling and Rendering. Ruigang Yang CS 684 Fall 2005 Image-based Modeling and Rendering Ruigang Yang Administrivia Classes: Monday and Wednesday, 4:00-5:15 PM Instructor: Ruigang Yang ryang@cs.uky.edu Office Hour: Robotics 514D, MW 1500-1600

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 21 Nov 16 th, 2017 Pranav Mantini Ack: Shah. M Image Processing Geometric Transformation Point Operations Filtering (spatial, Frequency) Input Restoration/

More information