WHERE THEORY MEETS PRACTICE

Size: px
Start display at page:

Download "WHERE THEORY MEETS PRACTICE"

Transcription

1 world from others, leica geosystems WHERE THEORY MEETS PRACTICE A NEW BULLETIN COLUMN BY CHARLES GHILANI ON PRACTICAL ASPECTS OF SURVEYING WITH A THEORETICAL SLANT february 2012 ² ACSM BULLETIN ² 27

2 USGS A COMMON REFERENCE FOR GIS MAPPING : THE STATE PLANE COORDINATE SYSTEM This is the first in a series of articles on state plane computation commonly needed by practitioners but not always understood. BY CHARLES D. GHILANI The ellipsoid is a mathematical surface on which all points on the Earth can be assigned geodetic coordinate values of latitude and longitude. Map projections establish a 1-to-1 relationship between points on the ellipsoid and those on the map projection surface. The process of taking a curved surface and placing it on a flat surface will always introduce some distortions to the projected objects. A well known distortion present on many maps is that areas are enlarged at the 28 µ extremities of the projection. For example, Greenland appears much larger on a map using a Mercator projection than it does on a globe of the Earth due to the process of transforming the geodetic coordinates of the boundary to their equivalent map coordinates. All map projection systems introduce some distortions when they are applied to the Earth. For example, some will result in scaling differences between distances while others will distort shapes of objects. A conformal ACSM BULLETIN ² february 2012 map projection preserves shapes of objects at the expense of distances. Preserving shapes means that angles are preserved for a limited region about a point. These particular projections are convenient for surveying applications since there is little need to reduce angles. However there is an exception to this when the sight distances become long. The map projection systems used for state plane coordinate systems have scaling differences in distances and

3 theory & practice areas primarily. To maintain the accuracy of your survey when using a state plane coordinate system, the scaling differences between distances measured at the surface of the Earth with those on the map projection surface must be taken into account. Figure 1 depicts the differences between horizontal distances measured at the surface of the Earth L m and the equivalent geodetic length of L e and mapping surface length of L g. When the National Geodetic Survey established the first state plane coordinate system (SPCS) zone in the 1930s, it was decided to limit the scaling differences between geodetic distances on the ellipsoid and their equivalent map (grid) distances to be better than 1:10,000. This meant that a survey performed on the ellipsoid (near sea level in the 1930s) would not have to reduce any measured distances to maintain 1:10,000 survey accuracies. This worked fine for the 1930 surveys where typical accuracies were well under 1:10,000. However as can be seen in Figure 1, if the survey is performed at some elevation, the scaling differences between the measured distance and the geodetic distance can be significant due to the elevation of the line. In fact, at 2300 ft, the elevation factor will yield results that are less than 1:10,000. Figure 1. Differences between the measured distance L m, geodetic distance L e, and the map distance L g. Today, surveys performed at less than 1:10,000 would be considered deficient. Thus proper reductions must be performed to maintain the accuracies of the survey no matter where the survey is performed. Additionally, the vertical datum (geoid) is about 100 ft below the ellipsoid throughout the conterminous United States. What does this mean? This means that all observed horizontal distances must be reduced to account for both the geodetic height of the observing station and scaling differences between the geodetic and mapping distances. Grid versus Observed Distances Geodetic distances can be determined from observed horizontal distances by multiplying the measured distance with an elevation factor. The elevation factor is given by following equation. Re Re EF R h R H N e where R e is the radius of the Earth, h is the geodetic height at the observing station, H is the orthometric height (commonly known as the elevation) at the observing station, and N is the geoid height at the observing station. Since the mathematical surface of the Earth is best approximated by an ellipsoid, the radius of the Earth varies at any point, depending on the azimuth of the line. However, for all but the most precise surveys, the mean radius of the Earth (6,371,000 m or 20,902,000 ft) works sufficiently well. Once the distance is scaled to its equivalent geodetic distance, it can be further scaled to its equivalent mapping distance using the scale factor of the line. This scale factor is a product of the state plane coordinate computations and is often supplied by the conversion software during the computational process. The scale factor is a function of the latitude of the point. Because most survey lines are relatively short, an average of the scale factor at the end points of the line is typically used for the scale factor of the line. If, however, long lines are observed, NGS recommends a weighted scale factor be used for each line. This equation is: where k is the scale factor for the line, k 1 is the scale factor at the observing station, k 2 is the scale factor at the e february 2012 ACSM BULLETIN 29

4 theory & practice sighted station, and k mid is the scale factor at the midpoint of the line. As most surveys are limited in area, it is often possible to establish a single combined factor for the entire survey. This combined factor is the product of an average elevation factor for the survey and an average scale factor. All of today s survey controller software allows the user to input this single combined factor into their software. When this is done, the software reduces all observed horizontal distances to their map equivalents before computing coordinates and applies the inverse when staking out coordinates. When can a single combined factor be used in a survey? It depends on the intended accuracy of the survey, elevation difference in the survey, average elevation of the survey, and the length of the longest observed distance. For example, in most surveys in Pennsylvania, the lengths of lines are limited by environmental conditions; in general, they are less than 1000 ft. This means that the typical observed distance has five significant figures (###.## ft). A simplistic definition for a significant figure is all digits that are common plus one that varies. In other words, the distance is certain to 0.1 ft, but the 0.01 ft digit can vary with each observation. The values computed for the various factors should thus have at least four common digits plus one that varies. However, it would be better if the digits in the scale factors were not to vary in the places held by the number of significant figures in the distances, as that would ensure no variability in the elevation factors first five decimal places. For example,assume the average elevation of a survey is 300 m (~1000 ft) and that the survey varies in elevation by 30 m (~100 ft). Furthermore assume that the geoid height for the factors for lowest (285 m) and highest (315 m) points in the survey are and , respectively. These factors vary in the fifth decimal place, matching the precision of the observed distance. Now assume that the survey was performed in the PA South zone at latitude , which yields a scale factor of Further assume that the survey goes about 2000 ft north to latitude , which has a scale factor of The significant figures for these scale factors vary in the fifth decimal place. If the lowest elevation is at , then the combined factor for this point is , which yields If the highest elevation is at , its combined factor is , which yields These combined factors have four common digits and a different digit in the fifth decimal place, which yields five significant figures. For observed length of ft, the reduced map lengths using the two combined factors will be ft and ft. This leads to a difference of only ft. In fact, for a ft line the difference is only 0.01 ft. If this difference is more than can be tolerated for the purpose of the survey, then full reductions should be performed for every line in the survey. Alternatively, an average combined factor can be determined for the survey. In this case it would be Using the average combined factor, a ft line would correspond to ft of its true map length. This single combined factor can be entered into a data collector which will then perform the necessary reductions for computation of coordinates and stake out of lines. Grid versus Geodetic Azimuths In the state plane coordinate systems, all meridians on the map are parallel to the map's central meridian. Thus the direction of grid north at any location on the map is parallel to the central meridian. Since geodetic meridians all converge at the pole, azimuths of lines based on grid north will be different than azimuths based on geodetic north except at the central meridian. The difference in the azimuth is known as the convergence angle. Convergence angles east of the central meridian are considered positive and are considered negative west of the central meridian. From Figure 2 we conclude that the relationship between grid north and geodetic north is: Az grid = Az geodetic where Az grid is the grid azimuth of the line, Az geodetic is the equivalent geodetic azimuth, and is the convergence angle at the observing station. Figure 2. Difference between geodetic and mapping azimuths of a line. The convergence angle for any line can be computed as: = (77 45 )n where is a positive western longitude of the observation station, and n is a defined zone constant. If lines of sight are over 8 km, an additional secondterm (also known as the arc-to-chord) correction is needed. This correction is discussed in Chapter 20 of Elementary Surveying: An Introduction to Geomatics (Ghilani, 2012). 30 ACSM BULLETIN february 2012

5 theory & practice L-R: ohiolanndsurveys.com; mrsc.org; mssparky.com To properly compute coordinates in a state plane coordinate system zone, one must reduce all the distances using the appropriate combined factor. If a geodetic azimuth is available for the starting course, then its grid azimuth needs to be computed. If, however, there is a usable grid azimuth, no conversion is required. Summary The bottom line is that only map values should be used to compute mapping coordinates if you wish to compute state plane coordinates and maintain the accuracy of your survey. However, as we have seen, it is possible to minimize work involved in computing mapping coordinates by using a single combined factor in distance reductions. Once a project scale factor has been determined for the survey and entered into your data collector, all observed distances will be correctly scaled to their mapping equivalents which, in turn, will be used to correctly compute state plane coordinates. During stake out, the state plane coordinates help to determine the mapping length and then correctly scale these lengths to the surface for proper placement of the stake in the ground. Another application is in GIS (geographic information systems) mapping, where the state plane coordinate system provides a common reference plane to allow surveys of various types to be combined into a cohesive map. However, if state plane coordinates are incorrectly computed, the end result will be a mismatch of mapping elements that were located by various surveys and, in the end, a map of little or no value. ALTA / ACSM STANDARDS A regular column by GARY R. KENT, L.S., on all issues related to ALTA/ACSM Land Title Surveys The specific Table A items in the 2011 ALTA/ACSM Standards end with item 21. My question is regarding item 22, which is blank. Q: We have run into a lender who wants us to add a Table A item 22, stating measured finished floor elevations of structures on the property, and a Table A item 23, to include a note on the survey stating what the required parking would be (as determined by use, and by the zoning ordinance). Whether a surveyor should include a statement about required parking on a survey is subject to great debate. Our question is whether the ALTA/ACSM standards allow for the inclusion of multiple additional Table A items, and if so, what would be the best way to document this on the face of the survey? A : The committee did anticipate that there could be more than one additional item. But, any and all additional items need to be identified as Item 22, since there is no Item 23 provided for in the Standards. Thus, if there are more than one additional item, they should be identified as 22a, 22b, 22c, etc. Otherwise there will be confusion, as the Standards Reference only mention 22 Table A items. If the surveyor and client agree to any Ghilani, Charles D. and Paul R. Wolf additional items, the content of those items needs to be explained with Elementary Surveying: An Introduction a note, such as, in the case of your first example, Table A, item 22 perto Geomatics. Prentice Hall Publishers, tains to establishing finished floor elevations on the structures on this Upper Saddle River, NJ. property. Without any explanation, stating that you certified to Table A item 22 (or 22a and 22b, in the case of multiple items) would not An article with the same topic but different rendition mean anything to the person reviewing the survey. Gary Kent can be previously appeared in the Pennsylvania Surveyor. contacted at gkent@schneidercorp.com februaryy 2012 ² ACSM BULLETIN ² 31

State Plane Coordinates and Computations using them GISC Spring 2013

State Plane Coordinates and Computations using them GISC Spring 2013 State Plane Coordinates and Computations using them GISC-3325 - Spring 2013 Map Projections From UNAVCO site hosting.soonet.ca/eliris/gpsgis/lec2geodesy.html Taken from Ghilani, SPC State Plane Coordinate

More information

LECTURE TWO Representations, Projections and Coordinates

LECTURE TWO Representations, Projections and Coordinates LECTURE TWO Representations, Projections and Coordinates GEOGRAPHIC COORDINATE SYSTEMS Why project? What is the difference between a Geographic and Projected coordinate system? PROJECTED COORDINATE SYSTEMS

More information

Software for Land Development Professionals

Software for Land Development Professionals Software for Land Development Professionals SurvNET Carlson SurvNET is SurvCADD's Network Least Squares Reduction (NLSA) program. This module will perform a least squares adjustment and statistical analysis

More information

THE FUTURE OF STATE PLANE COORDINATES AT ODOT

THE FUTURE OF STATE PLANE COORDINATES AT ODOT THE FUTURE OF STATE PLANE COORDINATES AT ODOT BY: RAY FOOS P.S. AND BRIAN MEADE P.S. THE OHIO DEPARTMENT OF TRANSPORTATION WORKING WITH STATE PLANE COORDINATES OR HOW TO MAKE THE EARTH FLAT SURVEYORS AND

More information

Purpose : Understanding Projections, 12D, and the System 1200.

Purpose : Understanding Projections, 12D, and the System 1200. Purpose : Understanding Projections, 12D, and the System 1200. 1. For any Cad work created inside 12D, the distances entered are plane (Horizontal Chord) distances. 2. Setting a projection, or changing

More information

Real Geodetic Map (Map without Projection) Abstract Keywords: 1. Introduction

Real Geodetic Map (Map without Projection) Abstract Keywords: 1. Introduction Real ( without Projection) Ahmad Shaker 1 Abdullah Saad 1 Abdurrahman Arafa 2* 1.Surveying Dep., Shoubra Faculty of Engineering, Benha University, Egypt 2.Manager of Surveying Dep. in Horse Company. Egypt

More information

Navigation coordinate systems

Navigation coordinate systems Lecture 3 Navigation coordinate systems Topic items: 1. Basic Coordinate Systems. 2. Plane Cartesian Coordinate Systems. 3. Polar Coordinate Systems. 4. Earth-Based Locational Reference Systems. 5. Reference

More information

10.1 Conversions. Grid to Geodetic

10.1 Conversions. Grid to Geodetic 10.1 Conversions Geodetic conversions work with the current geodetic settings. Convert grid coordinates to geodetic (Latitude/Longitude) or vice versa with any of the available projections. All results

More information

3.1 Units. Angle Unit. Direction Reference

3.1 Units. Angle Unit. Direction Reference Various settings allow the user to configure the software to function to his/her preference. It is important to review all the settings prior to using the software to ensure they are set to produce the

More information

SurvCE: Localizations

SurvCE: Localizations SurvCE: Localizations Mark Silver Electrical Engineer, not a Surveyor Carlson Dealer in Salt Lake City Utah Embarrassing Fact: I have a 250,000+ sheet paper map collection. igage Mapping Corporation www.igage.com

More information

BASIC MATHEMATICS FOR CADASTRAL MAPPING

BASIC MATHEMATICS FOR CADASTRAL MAPPING BASIC MATHEMATICS FOR CADASTRAL MAPPING Chapter 5 2015 Cadastral Mapping Manual 5-1 Introduction Data which a mapper must use to solve problems comes from a myriad of sources both new and old. The general

More information

Prosurv cez Users Manual. cez Conversions. Prosurv cez Conversions has 14 functions as shown above.

Prosurv cez Users Manual. cez Conversions. Prosurv cez Conversions has 14 functions as shown above. cez Conversions Prosurv cez Conversions has 14 functions as shown above. Azimuth to Bearing Enter an Azimuth and it s corresponding Bearing is computed and displayed. Note that many functions in Prosurv

More information

Reduction of Field Observations

Reduction of Field Observations Reduction of Field Observations GNSS/GPS measurements or Latitudes, Longitudes, HAE: We re interested in projected coordinates, e.g., State Plane Survey measurements in a projected coordinate system, on

More information

VLA Test Memorandum 102. Site Coordinate Systems and Conversions. C. M. Wade 20 February 1974

VLA Test Memorandum 102. Site Coordinate Systems and Conversions. C. M. Wade 20 February 1974 VLA Test Memorandum 102 Site Coordinate Systems and Conversions C. M. Wade 20 February 1974 MAR 1 3 1974 Abstract The conversions between geodetic coordinates, the New Mexico State Plane Coordinate System,

More information

Convert Local Coordinate Systems to Standard Coordinate Systems

Convert Local Coordinate Systems to Standard Coordinate Systems BENTLEY SYSTEMS, INC. Convert Local Coordinate Systems to Standard Coordinate Systems Using 2D Conformal Transformation in MicroStation V8i and Bentley Map V8i Jim McCoy P.E. and Alain Robert 4/18/2012

More information

ANGLES 4/18/2017. Surveying Knowledge FE REVIEW COURSE SPRING /19/2017

ANGLES 4/18/2017. Surveying Knowledge FE REVIEW COURSE SPRING /19/2017 FE REVIEW COURSE SPRING 2017 Surveying 4/19/2017 Surveying Knowledge 4 6 problems Angles, distances, & trigonometry Area computations Earthwork & volume computations Closure Coordinate systems State plane,

More information

Fundamentals of Structural Geology Exercise: concepts from chapter 2

Fundamentals of Structural Geology Exercise: concepts from chapter 2 0B Reading: Fundamentals of Structural Geology, Ch 2 1) Develop a MATLAB script that plots the spherical datum (Fig. 2.1a) with unit radius as a wire-frame diagram using lines of constant latitude and

More information

Fundamentals of Surveying MSS 220 Prof. Gamal El-Fiky

Fundamentals of Surveying MSS 220 Prof. Gamal El-Fiky Fundamentals of Surveying MSS 220 Prof. Gamal l-fiky Maritime Studies Department, Faculty of Marine Science King Abdulaziz University gamal_elfiky@yahoo.com Room 221 What is Surveying? Surveying is defined

More information

Chapter 8 Options (updated September 06, 2009)

Chapter 8 Options (updated September 06, 2009) Chapter 8 Options (updated September 06, 2009) Setting Up The Working Environment...................................................8-3 Options Library Manager.............................................................8-4

More information

UNIVERSITI MALAYSIA SARAWAK FACULTY OF ENGINEERING CIVIL ENGINEERING DEPARTMENT

UNIVERSITI MALAYSIA SARAWAK FACULTY OF ENGINEERING CIVIL ENGINEERING DEPARTMENT UNIVERSITI MALAYSIA SARAWAK FACULTY OF ENGINEERING CIVIL ENGINEERING DEPARTMENT KNS 1461 CIVIL ENGINEERING LABORATORY 2 LABORATORY MANUAL (Edited : December 2008) CIVIL ENGINEERING LABORATORY 2 KNS 1461

More information

Table of Contents 1 PURPOSE SCOPE DEFINITIONS PROCEDURE... 5

Table of Contents 1 PURPOSE SCOPE DEFINITIONS PROCEDURE... 5 Table of Contents 1 PURPOSE... 3 2 SCOPE... 3 3 DEFINITIONS... 4 4 PROCEDURE... 5 4.1 Overview - Performing a Site Calibration... 5 4.1.1 Upload Mine Grid Control... 6 4.1.2 Obtain SSM Data... 7 4.1.3

More information

Alternative Solutions for RTK-GPS Applications in Building and Road Constructions

Alternative Solutions for RTK-GPS Applications in Building and Road Constructions Open Journal of Civil Engineering, 2015, 5, 312-321 Published Online September 2015 in SciRes. http://www.scirp.org/journal/ojce http://dx.doi.org/10.4236/ojce.2015.53031 Alternative Solutions for RTK-GPS

More information

RECOMMENDATION ITU-R P DIGITAL TOPOGRAPHIC DATABASES FOR PROPAGATION STUDIES. (Question ITU-R 202/3)

RECOMMENDATION ITU-R P DIGITAL TOPOGRAPHIC DATABASES FOR PROPAGATION STUDIES. (Question ITU-R 202/3) Rec. ITU-R P.1058-1 1 RECOMMENDATION ITU-R P.1058-1 DIGITAL TOPOGRAPHIC DATABASES FOR PROPAGATION STUDIES (Question ITU-R 202/3) Rec. ITU-R P.1058-1 (1994-1997) The ITU Radiocommunication Assembly, considering

More information

HP-33S Calculator Program TM 1

HP-33S Calculator Program TM 1 Programmer: Dr. Bill Hazelton Date: March, 2005. Line Instruction Line Instruction Line Instruction T0001 LBL T U0022 STOP U0061 x < > y T0002 CL Σ U0023 RCL U U0062 x < 0? T0003 INPUT K U0024 RCL E U0063

More information

Section G. POSITIONAL ACCURACY DEFINITIONS AND PROCEDURES Approved 3/12/02

Section G. POSITIONAL ACCURACY DEFINITIONS AND PROCEDURES Approved 3/12/02 Section G POSITIONAL ACCURACY DEFINITIONS AND PROCEDURES Approved 3/12/02 1. INTRODUCTION Modern surveying standards use the concept of positional accuracy instead of error of closure. Although the concepts

More information

Geometric Correction of Imagery

Geometric Correction of Imagery Geometric Correction of Imagery Geometric Correction of Imagery Present by: Dr.Weerakaset Suanpaga D.Eng(RS&GIS) The intent is to compensate for the distortions introduced by a variety of factors, so that

More information

Chapter 3. Survey Module 312

Chapter 3. Survey Module 312 Selecting Print (editor File menu) provided this Level File Report sample Editor Columns: Type: These are small pulldown menus with two-letter level procedure choices. The two letters are abbreviations

More information

HP-35s Calculator Program Closure 7A

HP-35s Calculator Program Closure 7A Traverse Program using Latitude and Longitude and the Gauss Mid-Latitude Formulae Programmer: Dr. Bill Hazelton Date: March, 2008. Version: 1.0 Line Instruction Display User Programming Instructions J001

More information

Math For Surveyors. James A. Coan Sr. PLS

Math For Surveyors. James A. Coan Sr. PLS Math For Surveyors James A. Coan Sr. PLS Topics Covered 1) The Right Triangle 2) Oblique Triangles 3) Azimuths, Angles, & Bearings 4) Coordinate geometry (COGO) 5) Law of Sines 6) Bearing, Bearing Intersections

More information

UNIVERSITY CALIFORNIA, RIVERSIDE AERIAL TARGET GROUND CONTROL SURVEY REPORT JOB # DATE: MARCH 2011

UNIVERSITY CALIFORNIA, RIVERSIDE AERIAL TARGET GROUND CONTROL SURVEY REPORT JOB # DATE: MARCH 2011 UNIVERSITY CALIFORNIA, RIVERSIDE AERIAL TARGET GROUND CONTROL SURVEY REPORT JOB # 2011018 DATE: MARCH 2011 UNIVERSITY CALIFORNIA, RIVERSIDE AERIAL TARGET GROUND CONTROL SURVEY REPORT I. INTRODUCTION II.

More information

WHAT IS THE STRUVE GEODETIC ARC?

WHAT IS THE STRUVE GEODETIC ARC? WHAT IS THE STRUVE GEODETIC ARC? It has been known since ancient times that one can determine the height of any oblique triangle by knowing the exact length of one of its sides(the baseline) and two angles

More information

Well Unknown ID AKA EPSG: 3857

Well Unknown ID AKA EPSG: 3857 Well Unknown ID AKA EPSG: 3857 Pamela Kanu November 2016 WGS 1984 WEB MERCATOR ALIASES: AUXILIARY SPHERE, WKID: 3857, WKID: 102100, WKID: 102113, SHERICAL MERCATOR, WGS 84/PSEUDO-MERCATOR, OPEN LAYERS:

More information

Technical Specifications

Technical Specifications 1 Contents INTRODUCTION...3 ABOUT THIS LAB...3 IMPORTANCE OF THIS MODULE...3 EXPORTING AND IMPORTING DATA...4 VIEWING PROJECTION INFORMATION...5...6 Assigning Projection...6 Reprojecting Data...7 CLIPPING/SUBSETTING...7

More information

COORDINATE TRANSFORMATION. Lecture 6

COORDINATE TRANSFORMATION. Lecture 6 COORDINATE TRANSFORMATION Lecture 6 SGU 1053 SURVEY COMPUTATION 1 Introduction Geomatic professional are mostly confronted in their work with transformations from one two/three-dimensional coordinate system

More information

CHAPTER 01 Basics of Surveying

CHAPTER 01 Basics of Surveying CHAPTER 01 Basics of Surveying 1.1 How do plane surveys and geodetic surveys differ? Plane surveying assumes all horizontal measurements are taken on a single plane and all vertical measurements are relative

More information

Many of the following steps can be saved as default so when a new project is created, the settings need not be re-entered.

Many of the following steps can be saved as default so when a new project is created, the settings need not be re-entered. Carlson SurvNET The heart and sole of any survey software package is in its data processing and adjustment program. SurvNET is a least squares adjustment program that allows you to perform a mathematically

More information

Geographic Information Systems. using QGIS

Geographic Information Systems. using QGIS Geographic Information Systems using QGIS 1 - INTRODUCTION Generalities A GIS (Geographic Information System) consists of: -Computer hardware -Computer software - Digital Data Generalities GIS softwares

More information

Updating Autonomous Start to an RTK Field Survey (Part II)

Updating Autonomous Start to an RTK Field Survey (Part II) Updating Autonomous Start to an RTK Field Survey (Part II) Oscar R. Cantu Topcon University FTP Site For access to previously offered webinars and supporting documentation, please go to: ftp://tulive+topconuniversity.com:tulive@ftp.topconuniversity.com

More information

Smart GIS Course. Developed By. Mohamed Elsayed Elshayal. Elshayal Smart GIS Map Editor and Surface Analysis. First Arabian GIS Software

Smart GIS Course. Developed By. Mohamed Elsayed Elshayal. Elshayal Smart GIS Map Editor and Surface Analysis. First Arabian GIS Software Smart GIS Course Developed By Mohamed Elsayed Elshayal Elshayal Smart GIS Map Editor and Surface Analysis First Arabian GIS Software http://www.freesmartgis.blogspot.com/ http://tech.groups.yahoo.com/group/elshayalsmartgis/

More information

LOCAL GEODETIC HORIZON COORDINATES

LOCAL GEODETIC HORIZON COORDINATES LOCAL GEODETIC HOIZON COODINATES In many surveying applications it is necessary to convert geocentric Cartesian coordinates X,,Z to local geodetic horizon Cartesian coordinates E,N,U (East,North,Up). Figure

More information

TPC Desktop Series. Geodetic Learning Guide

TPC Desktop Series. Geodetic Learning Guide TPC Desktop Series Geodetic Learning Guide 1/18 NOTICE The information in this document is subject to change without notice. TRAVERSE PC. Inc. assumes no responsibility for any errors that may appear in

More information

Applying Geodetic Coordinate Reference Systems in Building Information Modeling (BIM)

Applying Geodetic Coordinate Reference Systems in Building Information Modeling (BIM) Applying Geodetic Coordinate Reference Systems in Building Information Modeling (BIM) Presented at the FIG Working Week 2017, May 29 - June 2, 2017 in Helsinki, Finland Robert Kaden und Christian Clemen

More information

Section 1.2: Points and Lines

Section 1.2: Points and Lines Section 1.2: Points and Lines Objective: Graph points and lines using x and y coordinates. Often, to get an idea of the behavior of an equation we will make a picture that represents the solutions to the

More information

Higher Surveying Dr. Ajay Dashora Department of Civil Engineering Indian Institute of Technology, Guwahati

Higher Surveying Dr. Ajay Dashora Department of Civil Engineering Indian Institute of Technology, Guwahati Higher Surveying Dr. Ajay Dashora Department of Civil Engineering Indian Institute of Technology, Guwahati Module - 2 Lecture - 03 Coordinate System and Reference Frame Hello everyone. Welcome back on

More information

Inaccuracies When Mixing Coordinate Reference Frameworks in a System of Systems Simulation

Inaccuracies When Mixing Coordinate Reference Frameworks in a System of Systems Simulation 1 Inaccuracies When Mixing Coordinate Reference Frameworks in a System of Systems Simulation Bernardt Duvenhage and Jan Jacobus Nel Abstract The modelling of military systems of systems invariably involves

More information

The National Geodetic Survey NADCON Tool

The National Geodetic Survey NADCON Tool The National Geodetic Survey NADCON Tool The most frequently used item in the NGS Geodetic Tool Kit is the North American Datum Conversion (NADCON) tool. NADCON transforms geographic coordinates between

More information

Computation of Slope

Computation of Slope Computation of Slope Prepared by David R. Maidment and David Tarboton GIS in Water Resources Class University of Texas at Austin September 2011, Revised December 2011 There are various ways in which slope

More information

Chapter -7- Traversing. 1/28/2018 Assistant Lecturer / Asmaa Abdulmajeed 1. Contents

Chapter -7- Traversing. 1/28/2018 Assistant Lecturer / Asmaa Abdulmajeed 1. Contents Ishik University Sulaimani Civil Engineering Department Surveying II CE 215 Chapter -7- Traversing 1/28/2018 Assistant Lecturer / Asmaa Abdulmajeed 1 Contents 1. Traversing 2. Traversing Computations 3.

More information

SPECS FOR G.I.S. DATA PROVIDED TO ONE-CALL

SPECS FOR G.I.S. DATA PROVIDED TO ONE-CALL SPECS FOR G.I.S. DATA PROVIDED TO ONE-CALL DIGITAL MAPPING FILES (very efficient/extremely accurate): 1. G.I.S. dataset formats that we can accept: FORMAT FILE EXT(S) FORMAT FILE EXT(S) AutoCAD (*.dwg,

More information

Doc #: IDI06-11F Rev: 1.3 Issued: 22/02/18. Well Seeker PRO How To Guide Rev 1.3. Page 1 of 26

Doc #: IDI06-11F Rev: 1.3 Issued: 22/02/18. Well Seeker PRO How To Guide Rev 1.3. Page 1 of 26 Well Seeker PRO How To Guide Rev 1.3 Page 1 of 26 Contents 1.0 - Getting Started... 4 1.1 - Display... 4 2.0 - Creating a new Well... 5 2.1 - Unit Selection... 5 2.2 - New Instant Plan / Survey... 6 2.3

More information

3. Map Overlay and Digitizing

3. Map Overlay and Digitizing 3. Map Overlay and Digitizing 3.1 Opening Map Files NavviewW/SprayView supports digital map files in ShapeFile format from ArcView, DXF format from AutoCAD, MRK format from AG-NAV, Bitmap and JPEG formats

More information

SPECS FOR G.I.S. DATA PROVIDED TO ONE-CALL

SPECS FOR G.I.S. DATA PROVIDED TO ONE-CALL SPECS FOR G.I.S. DATA PROVIDED TO ONE-CALL DIGITAL MAPPING FILES (very efficient/extremely accurate): 1. G.I.S. dataset formats that we can accept: FORMAT FILE EXT(S) FORMAT FILE EXT(S) AutoCAD (*.dwg,

More information

5 Classifications of Accuracy and Standards

5 Classifications of Accuracy and Standards 5 Classifications of Accuracy and Standards 5.1 Classifications of Accuracy All surveys performed by Caltrans or others on all Caltrans-involved transportation improvement projects shall be classified

More information

Chapter 2 File Management (updated September 5, 2009)

Chapter 2 File Management (updated September 5, 2009) Chapter 2 File Management (updated September 5, 2009) General Discussion.................................................................2-3 Creating New Project................................................................2-5

More information

GLOBAL EDITION. Elementary Surveying. An Introduction to Geomatics FOURTEENTH EDITION. Charles D. Ghilani Paul R. Wolf

GLOBAL EDITION. Elementary Surveying. An Introduction to Geomatics FOURTEENTH EDITION. Charles D. Ghilani Paul R. Wolf GLOBAL EDITION Elementary Surveying An Introduction to Geomatics FOURTEENTH EDITION Charles D. Ghilani Paul R. Wolf Vice President and Editorial Director, ECS: Marcia Horton Executive Editor: Holly Stark

More information

Introduction to Distance Sampling. Automated Survey Design Exercises

Introduction to Distance Sampling. Automated Survey Design Exercises Introduction to Distance Sampling Automated Survey Design Exercises 1. Point transect survey of North-eastern Mexico Reviewing the data Extract and open the project MexicoUnPrj from the archive MexicoUnPrj.zip.

More information

Modern Navigation. Thomas Herring

Modern Navigation. Thomas Herring 12.215 Modern Navigation Thomas Herring Review of Wednesday Class Definition of heights Ellipsoidal height (geometric) Orthometric height (potential field based) Shape of equipotential surface: Geoid for

More information

Yandex.Maps API Background theory

Yandex.Maps API Background theory 8.02.2018 .. Version 1.0 Document build date: 8.02.2018. This volume is a part of Yandex technical documentation. Yandex helpdesk site: http://help.yandex.ru 2008 2018 Yandex LLC. All rights reserved.

More information

SPECS FOR G.I.S. DATA PROVIDED TO ONE-CALL

SPECS FOR G.I.S. DATA PROVIDED TO ONE-CALL SPECS FOR G.I.S. DATA PROVIDED TO ONE-CALL DIGITAL MAPPING FILES (very efficient/extremely accurate): 1. G.I.S. dataset formats that we can accept: FORMAT FILE EXT(S) FORMAT FILE EXT(S) AutoCAD (*.dwg,

More information

6-1. METHODS OF EXPRESSING DIRECTION

6-1. METHODS OF EXPRESSING DIRECTION CHAPTER 6 DIRECTION Being in the right place at the prescribed time is necessary to successfully accomplish military missions. Direction plays an important role in a soldier's everyday life. It can be

More information

FM CHAPTER 6 DIRECTION

FM CHAPTER 6 DIRECTION CHAPTER 6 DIRECTION Being in the right place at the prescribed time is necessary to successfully accomplish military missions. Direction plays an important role in a soldier's everyday life. It can be

More information

SurvNET Lesson One - Processing an Assumed Coordinate System 2D Total Station Network

SurvNET Lesson One - Processing an Assumed Coordinate System 2D Total Station Network SurvNET Lesson One - Processing an Assumed Coordinate System 2D Total Station Network This tutorial is divided into two lessons covering the process of reducing and adjusting raw survey data into final

More information

Grade 6 Math Circles October 16 & Non-Euclidean Geometry and the Globe

Grade 6 Math Circles October 16 & Non-Euclidean Geometry and the Globe Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 6 Math Circles October 16 & 17 2018 Non-Euclidean Geometry and the Globe (Euclidean) Geometry Review:

More information

How to Create the Best Suitable Map Projection

How to Create the Best Suitable Map Projection How to Create the Best Suitable Map Projection Yury HURYEU and Uladzimir PADSHYVALAU, Belarus Key words: map projection, best suitable projection, polyconic projection, composite projection, coordinate

More information

APPENDIX 13 TERRAIN NAVIGATOR PRO BASICS. Prepared by the Mapping and Marking Committee. Fifth Edition (Revised and Expanded) June 2014

APPENDIX 13 TERRAIN NAVIGATOR PRO BASICS. Prepared by the Mapping and Marking Committee. Fifth Edition (Revised and Expanded) June 2014 APPENDIX 13 TERRAIN NAVIGATOR PRO BASICS Prepared by the Mapping and Marking Committee Fifth Edition (Revised and Expanded) June 2014 Published by the Oregon-California Trails Association P.O. Box 1019

More information

MLEP Intermediate GPS Workshop Exercise Two Using Maps

MLEP Intermediate GPS Workshop Exercise Two Using Maps During this exercise, you will scale coordinates from a map and enter them into the GPS receiver. This requires a ruler (provided) and all calculations require a paper and pencil. During this exercise,

More information

Module 4. Stereographic projection: concept and application. Lecture 4. Stereographic projection: concept and application

Module 4. Stereographic projection: concept and application. Lecture 4. Stereographic projection: concept and application Module 4 Stereographic projection: concept and application Lecture 4 Stereographic projection: concept and application 1 NPTEL Phase II : IIT Kharagpur : Prof. R. N. Ghosh, Dept of Metallurgical and Materials

More information

Vectors and the Geometry of Space

Vectors and the Geometry of Space Vectors and the Geometry of Space In Figure 11.43, consider the line L through the point P(x 1, y 1, z 1 ) and parallel to the vector. The vector v is a direction vector for the line L, and a, b, and c

More information

Novel Real-Time Coordinate Transformations based on N-Dimensional Geo-Registration Parameters' Matrices

Novel Real-Time Coordinate Transformations based on N-Dimensional Geo-Registration Parameters' Matrices FIG Working Week 009, Eilat, Israel, -8 May 009 Novel Real-Time Coordinate Transformations based on N-Dimensional Geo-Registration Parameters' Matrices Sagi Dalyot, Ariel Gershkovich, Yerach Doythser Mapping

More information

Accounting for Earth Curvature in Directional Drilling

Accounting for Earth Curvature in Directional Drilling Accounting for Earth Curvature in Directional Drilling Noel Zinn ExxonMobil Exploration Company Society of Petroleum Engineers Annual Technical Conference and Exhibition 10-13 13 October 2005 1 1 Homage

More information

SSC-JE CIVIL ENGINEERING STUDY MATERIAL SURVEYING ENGINEERING STAFF SELECTION COMMISSION SURVEYING. Page 1 of 98 SSC-JE CIVIL ENGINEERING

SSC-JE CIVIL ENGINEERING STUDY MATERIAL SURVEYING ENGINEERING STAFF SELECTION COMMISSION SURVEYING. Page 1 of 98 SSC-JE CIVIL ENGINEERING Page 1 of 98 SSC-JE STAFF SELECTION COMMISSION CIVIL ENGINEERING STUDY MATERIAL ENGINEERING Page 2 of 98 SSC-JE Civil Engineering : Surveying syllabus Surveying: Principles of surveying, measurement of

More information

For storage efficiency, longitude and latitude values are often represented in DMS format. For McBryde Hall:

For storage efficiency, longitude and latitude values are often represented in DMS format. For McBryde Hall: Parsing Input and Formatted Output in C Dealing with Geographic Coordinates You will provide an implementation for a complete C program that reads geographic coordinates from an input file, does some simple

More information

Version 7.1 English. Leica GPS1200+ Applications Field Manual

Version 7.1 English. Leica GPS1200+ Applications Field Manual Version 7.1 English Leica GPS1200+ Applications Field Manual Introduction Purchase Product identification Congratulations on the purchase of a GPS1200+ Series instrument. To use the product in a permitted

More information

Route Surveying. Topic Outline

Route Surveying. Topic Outline Route Surveying CE 305 Intro To Geomatics By Darrell R. Dean, Jr., P.S., Ph.D. Topic Outline Horizontal alignment Types of Horizontal Curves Degree of Curve Geometric elements of curve Station ti number

More information

NATIONAL RADIO ASTRONOMY OBSERVATORY VLA ANTENNA MEMORANDUM NO. 1. April 3, 1968 THE RELATIONSHIP BETWEEN ANTENNA SITES ON THE ARMS OF THE WYE

NATIONAL RADIO ASTRONOMY OBSERVATORY VLA ANTENNA MEMORANDUM NO. 1. April 3, 1968 THE RELATIONSHIP BETWEEN ANTENNA SITES ON THE ARMS OF THE WYE NATIONAL RADIO ASTRONOMY OBSERVATORY VLA ANTENNA MEMORANDUM NO. 1 April 3, 1968 THE RELATIONSHIP BETWEEN ANTENNA SITES ON THE ARMS OF THE WYE A. J. Burford INTRODUCTION This memorandum discusses two methods

More information

Everything you did not want to know about least squares and positional tolerance! (in one hour or less) Raymond J. Hintz, PLS, PhD University of Maine

Everything you did not want to know about least squares and positional tolerance! (in one hour or less) Raymond J. Hintz, PLS, PhD University of Maine Everything you did not want to know about least squares and positional tolerance! (in one hour or less) Raymond J. Hintz, PLS, PhD University of Maine Least squares is used in varying degrees in -Conventional

More information

Investigation of the Use of the Ellipsoidal Normal to Model the Plumb Line in a Millimeter Cadastre

Investigation of the Use of the Ellipsoidal Normal to Model the Plumb Line in a Millimeter Cadastre Investigation of the Use of the Ellipsoidal Normal to Model the Plumb Line in a Millimeter Cadastre Carlton A. BROWN, USA Key words: Cadastre, Land Tenure. ABSTRACT It may soon become possible to routinely

More information

SOLIDS

SOLIDS SOLIDS 11.1.1 11.1.5 The students have already worked with solids, finding the volume and surface area of prisms and other shapes built with blocks. Now the students extend these skills to find the volume

More information

Invasive Alien Plant Program. Part 2. Modules 2.2, 2.3 & 2.4. Prepared by Range Branch. Ministry of Forests and Range

Invasive Alien Plant Program. Part 2. Modules 2.2, 2.3 & 2.4. Prepared by Range Branch. Ministry of Forests and Range Invasive Alien Plant Program REFERENCE GUIDE Part 2 Modules 2.2, 2.3 & 2.4 Prepared by Range Branch Ministry of Forests and Range June 2010 MODULE 2.2:... 3 ADDING A NEW SITE... 3 Step 1 Site Location...

More information

1. Introduction Surveying Method chosen depends on:

1. Introduction Surveying Method chosen depends on: 1. Introduction Surveying Method chosen depends on: by the purpose of the survey e.g. map making, location of specific points, definition of land ownership etc., by the nature of the survey itself e.g.

More information

Use of n-vector for Radar Applications

Use of n-vector for Radar Applications Use of n-vector for Radar Applications Nina Ødegaard, Kenneth Gade Norwegian Defence Research Establishment Kjeller, NORWAY email: Nina.Odegaard@ffi.no Kenneth.Gade@ffi.no Abstract: This paper aims to

More information

SURVEY AND ALIGNMENT OVERVIEW: FERMILAB MAIN INJECTOR RING

SURVEY AND ALIGNMENT OVERVIEW: FERMILAB MAIN INJECTOR RING I/101 SURVEY AND ALIGNMENT OVERVIEW: FERMILAB MAIN INJECTOR RING Virgil Bocean, Babatunde O Sheg Oshinowo, Terry M. Sager Fermi National Accelerator Laboratory, Batavia, Illinois, USA 1. INTRODUCTION The

More information

Acute Angles and Right Triangles. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Acute Angles and Right Triangles. Copyright 2017, 2013, 2009 Pearson Education, Inc. 2 Acute Angles and Right Triangles Copyright 2017, 2013, 2009 Pearson Education, Inc. 1 2.5 Further Applications of Right Triangles Historical Background Bearing Further Applications Copyright 2017, 2013,

More information

Fig 1. Geometry of DGPS

Fig 1. Geometry of DGPS CARRYING DGPS SURVEY AND PREPARATION OF DIGITAL ELEVATION MODEL Tarun Nehra Assistant Professor Department of Civil Engineering, Quantum School of Technology, Roorkee Abstract This work presents a report

More information

PRECISE FORMULA FOR VOLUME COMPUTATIONS USING CONTOURS METHOD Fórmula precisa para cálculo de volumes utilizando o método das curvas

PRECISE FORMULA FOR VOLUME COMPUTATIONS USING CONTOURS METHOD Fórmula precisa para cálculo de volumes utilizando o método das curvas 10.1590/S1982-21702018000100002 PRECISE FORMULA FOR VOLUME COMPUTATIONS USING CONTOURS METHOD Fórmula precisa para cálculo de volumes utilizando o método das curvas E. Napoles 1 - ORCID: 0000-0001-8736-1009

More information

Neighbourhood Operations Specific Theory

Neighbourhood Operations Specific Theory Neighbourhood Operations Specific Theory Neighbourhood operations are a method of analysing data in a GIS environment. They are especially important when a situation requires the analysis of relationships

More information

Grade 6 Math Circles October 16 & Non-Euclidean Geometry and the Globe

Grade 6 Math Circles October 16 & Non-Euclidean Geometry and the Globe Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 6 Math Circles October 16 & 17 2018 Non-Euclidean Geometry and the Globe (Euclidean) Geometry Review:

More information

Geocoding and Georeferencing. Scott Bell GIS Institute

Geocoding and Georeferencing. Scott Bell GIS Institute Geocoding and Georeferencing Scott Bell GIS Institute Learning Outcomes Define coordinate system and map projection Relate coordinate systems and map projections Distinguish between defining and changing

More information

Reference Systems for Surveying and Mapping CTB3310 Surveying and Mapping

Reference Systems for Surveying and Mapping CTB3310 Surveying and Mapping Delft University of Technology Reference Systems for Surveying and Mapping CTB3310 Surveying and Mapping Hans van der Marel ii The front cover shows the NAP (Amsterdam Ordnance Datum) datum point at the

More information

GEO 465/565 - Lab 7 Working with GTOPO30 Data in ArcGIS 9

GEO 465/565 - Lab 7 Working with GTOPO30 Data in ArcGIS 9 GEO 465/565 - Lab 7 Working with GTOPO30 Data in ArcGIS 9 This lab explains how work with a Global 30-Arc-Second (GTOPO30) digital elevation model (DEM) from the U.S. Geological Survey. This dataset can

More information

Box Calibration: Here I entered points 3 and 4 which are the only control points given to us in the plans.

Box Calibration: Here I entered points 3 and 4 which are the only control points given to us in the plans. Box Calibration: Trimble machine control does not like files that are derived from State Plane Coordinates or files that contain a Geoid. Trimble representatives want everyone to do a site calibration

More information

Displaying Strike and Dip Measurements on Your Map in Surfer

Displaying Strike and Dip Measurements on Your Map in Surfer Displaying Strike and Dip Measurements on Your Map in Surfer Measuring strike and dip is a fundamental part of geological mapping, and displaying strike and dip information on a map is an effective way

More information

Theodolite and Angles Measurement

Theodolite and Angles Measurement Building & Construction Technology Engineering Department Theodolite and Angles Measurement Lecture 1 Theodolite and Angles Measurement Lecture No. 1 Main Objectives Lecturer Date of Lecture General advices

More information

ENGINEERING SURVEYING (221 BE)

ENGINEERING SURVEYING (221 BE) ENGINEERING SURVEYING (221 BE) Horizontal Circular Curves Sr Tan Liat Choon Email: tanliatchoon@gmail.com Mobile: 016-4975551 INTRODUCTION The centre line of road consists of series of straight lines interconnected

More information

Raster Images Processing

Raster Images Processing Software PHOTOMOD Module PHOTOMOD VectOr Raster Images Processing Racurs, Moscow, 2009 PHOTOMOD CONTENTS 1. Raster processing in PHOTOMOD VectOr...3 1.1. Raster map...3 1.2. Raster data conversion...4

More information

Fundamentals and Practices Sixth Edition

Fundamentals and Practices Sixth Edition Online Instructor s Manual to accompany Surveying Fundamentals and Practices Sixth Edition Jerry Nathanson Michael T. Lanzafama Philip Kissam Upper Saddle River, New Jersey Columbus, Ohio Copyright 2011

More information

Detailed Geoid Creation

Detailed Geoid Creation Detailed Geoid Creation In addition to the standard methods of Geoid creation found in Carlson X-Port, customized geoids can also be created with Carlson Survey. Carlson X-Port, the desktop product that

More information

Network Adjustment Program using MATLAB

Network Adjustment Program using MATLAB Network Adjustment Program using MATLAB Roya Olyazadeh, Halim Setan and Nima Fouladinejad Department of Geomatic Engineering, Faculty of Geoinformation and Real Estate, Universiti Teknologi Malaysia (UTM),

More information

TxDOT Survey Manual. Manual Notice Archive. by Texas Department of Transportation (512) - all rights reserved

TxDOT Survey Manual. Manual Notice Archive. by Texas Department of Transportation (512) - all rights reserved TxDOT Survey Manual Manual Notice Archive by Texas Department of Transportation (512) - all rights reserved Manual Notice 2011-1 From: Manual: Judy Skeen, P. E., Director, Technology Services Division

More information

Name: Block: What I can do for this unit:

Name: Block: What I can do for this unit: Unit 8: Trigonometry Student Tracking Sheet Math 10 Common Name: Block: What I can do for this unit: After Practice After Review How I Did 8-1 I can use and understand triangle similarity and the Pythagorean

More information