Low-rank Properties, Tree Structure, and Recursive Algorithms with Applications. Jingfang Huang Department of Mathematics UNC at Chapel Hill

Size: px
Start display at page:

Download "Low-rank Properties, Tree Structure, and Recursive Algorithms with Applications. Jingfang Huang Department of Mathematics UNC at Chapel Hill"

Transcription

1 Low-rank Properties, Tree Structure, and Recursive Algorithms with Applications Jingfang Huang Department of Mathematics UNC at Chapel Hill

2 Fundamentals of Fast Multipole (type) Method Fundamentals: Low rank? Low dimensional? Simple rules? Process the low rank/ low dimensional or simple data on the tree structure? Recursive Implementations and parallelization

3 Example: (real parallel code) RECFMM Joint work with Bo Zhang, Xiaobai Sun, and Nikos Pitsianis Open source code available. Cilk Plus runtime used.

4 Parallelizing Recursive Algorithms: Cilk Plus Runtime Scheduler Existing results on parallelizing hierarchy tree structure based algorithms. E.g., Cilk plus runtime scheduler. (Joint work with B. Zhang, X. Sun, N. Pitsianis.)

5 Computational Software section in CiCP 1. Computational Software: Simple FMM Libraries for Electrostatics, Slow Viscous Flow, and Frequency-Domain Wave Propagation, by Zydrunas Gimbutas and Leslie Greengard 2. Computational Software: PVFMM: A Parallel Kernel Independent FMM for Particle and Volume Potentials, by Dhairya Malhotra and George Biros Associate Editors: Prof. Benzhuo Lu (Chinese Academy of Sciences) and J. Huang.

6 L 2 Low rank: Mathematical Analysis vs Numerical Approach

7 Matrix Analysis: PCA or SVD

8 A simple Matlab code clear all; clc; m=400;n=400;x=rand(n); y=rand(m)+2; for i=1:m, for j=1:n, A(i,j)=1/(y(i)-x(j)); end end [U,S,V]=svd(A); format long e; pca=diag(s); pca(1:15)

9 And the results (numerical rank=9) e e e e e e e e e e e e-13

10 Mathematical analysis: Low rank? Taylor expansion:

11 Multipole coefficients: compressed data Note that P=15 for single precision and p=30 for double precision.

12 Low Rank and Low Dimensional Representations Separation of Variables: Low rank and low dimensional data

13 Question: Generalization?

14 Low Rank? Tree? Recursive Algorithm Apply the fundamentals to model and algorithm design. Today s topic 1: Recursive Tree Algorithms for Orthogonal Matrix Generation and Matrix-Vector Multiplications in Rigid Body Dynamics Simulations

15 Background: Rigid body dynamics Consider a molecular system modeled by rigid bodies, each rigid body consists of n beads Given the force on and location of each bead The resultant force (size 3) and torque (size 3)of the rigid body are given by

16 Matrix Language

17 Orthogonal Form

18 Problem Statement

19 Background: Brownian Dynamics with Hydrodynamic Interactions The bead model 1. Molecular system is modeled by m rigid bodies, each with given external forces and torques, j=1,,m. 2. Each rigid body contains n j beads. 3. The bead-to-bead hydrodynamics interactions satisfy where D is the Rotne-Prager-Yamakawa tensor (translation invariant Green s function, particle method for the Stokes equation) Reference: JA McCammon and G Huber (UCSD)

20 Bead model in Brownian dynamics For the given force field on each rigid body, the unknown rigid body velocity vectors satisfy: Or equivalently, Note: Need to solve this at each time marching step

21 Numerical Difficulty Numerical difficulty: calculation of Reminder: Question (1) (Alternative approaches: Schur complement)

22 Reformulation

23 Next Generation Brownian Dynamics Solver We already have 1. Fast multipole method for evaluating 2. Fast direct solver based preconditioner for each rigid body (Codes from Jianlin Xia, et. al. ) Building blocks needed: stable and efficient algorithms for evaluating A nice project for undergrad students (Fuhui Fang, UNC)

24 So the problems:

25 Divide-and-conquer: Recursive Algorithms on the Tree Structure Consider the divide-and-conquer strategy Observations: and

26 Divide-and-conquer: Recursive Algorithms on the Tree Structure

27 Algorithm Complexity and Storage How to go from Tree code to FMM?

28 An upward pass: Algorithm for computing Qv Info-set = multipole coefficients Multiple->Multipole: Parent P and Children X and Y, then,

29 Translation Operator: Inertia Matrix Parent s inertia matrix and Children s inertia matrices then,

30 Residue Vectors We want to compute without explicit forming

31 How to compute residue vector? Then,

32 Computing R from inertia matrix R is readily available from the inertia matrix

33 Recursive Algorithm

34 Downward Pass: Algorithm for Q T v Local Expansions?

35 A downward pass Recursive Algorithm

36 Pseudo-code

37 Numerical Results

38 Storage

39 Implicit Q v CPU time

40 Details: backward stable algorithm? How to make sure Q T Q v v is small? In progress

41 Summary of Topic 1: Use the fundamentals Low rank (comes from rigid body assumption) Tree structure Recursive implementation. Efficient algorithms can be developed.

42 Topic 2: Half-space impedance Green s function for the Helmholtz equation

43 Layered media Green s function On the efficient representation of the half-space impedance Green's function for the Helmholtz equation, by Michael O'Neil, Leslie Greengard, Andras Pataki

44 How to evaluate the convolution? Integral equation formulation where is the Green s function for the half-space with homogeneous impedance boundary conditions, and the resulting Fredholm 2 nd kind integral equation become

45 Method of images Using the free space Green s function

46 Modified fast multipole method Multipole-to-multipole: same as free space FMM, as if the images do NOT exist. Multipole-to-local: modified translation which include all the image contributions. Local-to-local: No change! Error analysis: Low rank? Note that source images are always well-separated from the target box. M2L Translation operator: analytical formula is possible. Either precomputed, or by designing special functions.

47 Generalization to multiple layers? Can we develop the corresponding approximation theory for general multi-layer Green s function in the form of Sommerfeld integral representation? Answer: Yes! Approximation using special basis, current research.

48 Summary (Maybe it is a good idea to) consider recursively (hierarchically) on the tree structure when designing models and algorithms Mathematical analysis may help us to find the special matrix structures.

49 Thanks!

A Kernel-independent Adaptive Fast Multipole Method

A Kernel-independent Adaptive Fast Multipole Method A Kernel-independent Adaptive Fast Multipole Method Lexing Ying Caltech Joint work with George Biros and Denis Zorin Problem Statement Given G an elliptic PDE kernel, e.g. {x i } points in {φ i } charges

More information

Fast Multipole and Related Algorithms

Fast Multipole and Related Algorithms Fast Multipole and Related Algorithms Ramani Duraiswami University of Maryland, College Park http://www.umiacs.umd.edu/~ramani Joint work with Nail A. Gumerov Efficiency by exploiting symmetry and A general

More information

Kernel Independent FMM

Kernel Independent FMM Kernel Independent FMM FMM Issues FMM requires analytical work to generate S expansions, R expansions, S S (M2M) translations S R (M2L) translations R R (L2L) translations Such analytical work leads to

More information

A fast direct solver for high frequency scattering from a cavity in two dimensions

A fast direct solver for high frequency scattering from a cavity in two dimensions 1/31 A fast direct solver for high frequency scattering from a cavity in two dimensions Jun Lai 1 Joint work with: Leslie Greengard (CIMS) Sivaram Ambikasaran (CIMS) Workshop on fast direct solver, Dartmouth

More information

Iterative methods for use with the Fast Multipole Method

Iterative methods for use with the Fast Multipole Method Iterative methods for use with the Fast Multipole Method Ramani Duraiswami Perceptual Interfaces and Reality Lab. Computer Science & UMIACS University of Maryland, College Park, MD Joint work with Nail

More information

The Immersed Interface Method

The Immersed Interface Method The Immersed Interface Method Numerical Solutions of PDEs Involving Interfaces and Irregular Domains Zhiiin Li Kazufumi Ito North Carolina State University Raleigh, North Carolina Society for Industrial

More information

Fast multipole methods for axisymmetric geometries

Fast multipole methods for axisymmetric geometries Fast multipole methods for axisymmetric geometries Victor Churchill New York University May 13, 2016 Abstract Fast multipole methods (FMMs) are one of the main numerical methods used in the solution of

More information

A fast solver for the Stokes equations with distributed forces in complex geometries 1

A fast solver for the Stokes equations with distributed forces in complex geometries 1 A fast solver for the Stokes equations with distributed forces in complex geometries George Biros, Lexing Ying, and Denis Zorin Courant Institute of Mathematical Sciences, New York University, New York

More information

Efficient O(N log N) algorithms for scattered data interpolation

Efficient O(N log N) algorithms for scattered data interpolation Efficient O(N log N) algorithms for scattered data interpolation Nail Gumerov University of Maryland Institute for Advanced Computer Studies Joint work with Ramani Duraiswami February Fourier Talks 2007

More information

Transactions on Modelling and Simulation vol 20, 1998 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 20, 1998 WIT Press,   ISSN X Parallel indirect multipole BEM analysis of Stokes flow in a multiply connected domain M.S. Ingber*, A.A. Mammoli* & J.S. Warsa* "Department of Mechanical Engineering, University of New Mexico, Albuquerque,

More information

Hierarchical Decompositions of Kernel Matrices

Hierarchical Decompositions of Kernel Matrices Hierarchical Decompositions of Kernel Matrices Bill March UT Austin On the job market! Dec. 12, 2015 Joint work with Bo Xiao, Chenhan Yu, Sameer Tharakan, and George Biros Kernel Matrix Approximation Inputs:

More information

Stokes Preconditioning on a GPU

Stokes Preconditioning on a GPU Stokes Preconditioning on a GPU Matthew Knepley 1,2, Dave A. Yuen, and Dave A. May 1 Computation Institute University of Chicago 2 Department of Molecular Biology and Physiology Rush University Medical

More information

Introduction to Multi-body Dynamics

Introduction to Multi-body Dynamics division Graduate Course ME 244) Tentative Draft Syllabus 1. Basic concepts in 3-D rigid-body mechanics 1. Rigid body vs flexible body 2. Spatial kinematics (3-D rotation transformations) and Euler theorem

More information

Panel methods are currently capable of rapidly solving the potential flow equation on rather complex

Panel methods are currently capable of rapidly solving the potential flow equation on rather complex A Fast, Unstructured Panel Solver John Moore 8.337 Final Project, Fall, 202 A parallel high-order Boundary Element Method accelerated by the Fast Multipole Method is presented in this report. The case

More information

Fast Multipole Method on the GPU

Fast Multipole Method on the GPU Fast Multipole Method on the GPU with application to the Adaptive Vortex Method University of Bristol, Bristol, United Kingdom. 1 Introduction Particle methods Highly parallel Computational intensive Numerical

More information

The Fast Multipole Method on NVIDIA GPUs and Multicore Processors

The Fast Multipole Method on NVIDIA GPUs and Multicore Processors The Fast Multipole Method on NVIDIA GPUs and Multicore Processors Toru Takahashi, a Cris Cecka, b Eric Darve c a b c Department of Mechanical Science and Engineering, Nagoya University Institute for Applied

More information

http://miccom-center.org Topic: Continuum-Particle Simulation Software (COPSS-Hydrodynamics) Presenter: Jiyuan Li, The University of Chicago 2017 Summer School 1 What is Continuum-Particle Simulation?

More information

Application of Finite Volume Method for Structural Analysis

Application of Finite Volume Method for Structural Analysis Application of Finite Volume Method for Structural Analysis Saeed-Reza Sabbagh-Yazdi and Milad Bayatlou Associate Professor, Civil Engineering Department of KNToosi University of Technology, PostGraduate

More information

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 6:

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 6: file:///d:/chitra/nptel_phase2/mechanical/cfd/lecture6/6_1.htm 1 of 1 6/20/2012 12:24 PM The Lecture deals with: ADI Method file:///d:/chitra/nptel_phase2/mechanical/cfd/lecture6/6_2.htm 1 of 2 6/20/2012

More information

GPU accelerated heterogeneous computing for Particle/FMM Approaches and for Acoustic Imaging

GPU accelerated heterogeneous computing for Particle/FMM Approaches and for Acoustic Imaging GPU accelerated heterogeneous computing for Particle/FMM Approaches and for Acoustic Imaging Ramani Duraiswami University of Maryland, College Park http://www.umiacs.umd.edu/~ramani With Nail A. Gumerov,

More information

A Parallel Implementation of the BDDC Method for Linear Elasticity

A Parallel Implementation of the BDDC Method for Linear Elasticity A Parallel Implementation of the BDDC Method for Linear Elasticity Jakub Šístek joint work with P. Burda, M. Čertíková, J. Mandel, J. Novotný, B. Sousedík Institute of Mathematics of the AS CR, Prague

More information

Freely Available for Academic Use!!! March 2012

Freely Available for Academic Use!!! March 2012 RoboAnalyzer User Manual Freely Available for Academic Use!!! March 2012 Developed by Prof S. K. Saha & Team Mechatronics Lab, Mechanical Engineering Department, IIT Delhi Courtesy: CD Cell, QIP, IIT Delhi

More information

Acknowledgements. Prof. Dan Negrut Prof. Darryl Thelen Prof. Michael Zinn. SBEL Colleagues: Hammad Mazar, Toby Heyn, Manoj Kumar

Acknowledgements. Prof. Dan Negrut Prof. Darryl Thelen Prof. Michael Zinn. SBEL Colleagues: Hammad Mazar, Toby Heyn, Manoj Kumar Philipp Hahn Acknowledgements Prof. Dan Negrut Prof. Darryl Thelen Prof. Michael Zinn SBEL Colleagues: Hammad Mazar, Toby Heyn, Manoj Kumar 2 Outline Motivation Lumped Mass Model Model properties Simulation

More information

Tree-based methods on GPUs

Tree-based methods on GPUs Tree-based methods on GPUs Felipe Cruz 1 and Matthew Knepley 2,3 1 Department of Mathematics University of Bristol 2 Computation Institute University of Chicago 3 Department of Molecular Biology and Physiology

More information

Cauchy Fast Multipole Method for Analytic Kernel

Cauchy Fast Multipole Method for Analytic Kernel Cauchy Fast Multipole Method for Analytic Kernel Pierre-David Létourneau 1 Cristopher Cecka 2 Eric Darve 1 1 Stanford University 2 Harvard University ICIAM July 2011 Pierre-David Létourneau Cristopher

More information

Fast Methods with Sieve

Fast Methods with Sieve Fast Methods with Sieve Matthew G Knepley Mathematics and Computer Science Division Argonne National Laboratory August 12, 2008 Workshop on Scientific Computing Simula Research, Oslo, Norway M. Knepley

More information

Flexible multibody systems - Relative coordinates approach

Flexible multibody systems - Relative coordinates approach Computer-aided analysis of multibody dynamics (part 2) Flexible multibody systems - Relative coordinates approach Paul Fisette (paul.fisette@uclouvain.be) Introduction In terms of modeling, multibody scientists

More information

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute Jane Li Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute (3 pts) Compare the testing methods for testing path segment and finding first

More information

Hierarchical Low-Rank Approximation Methods on Distributed Memory and GPUs

Hierarchical Low-Rank Approximation Methods on Distributed Memory and GPUs JH160041-NAHI Hierarchical Low-Rank Approximation Methods on Distributed Memory and GPUs Rio Yokota(Tokyo Institute of Technology) Hierarchical low-rank approximation methods such as H-matrix, H2-matrix,

More information

Short Communications

Short Communications Pertanika J. Sci. & Technol. 9 (): 9 35 (0) ISSN: 08-7680 Universiti Putra Malaysia Press Short Communications Singular Value Decomposition Based Sub-band Decomposition and Multiresolution (SVD-SBD-MRR)

More information

Example 13 - Shock Tube

Example 13 - Shock Tube Example 13 - Shock Tube Summary This famous experiment is interesting for observing the shock-wave propagation. Moreover, this case uses the representation of perfect gas and compares the different formulations:

More information

Dynamic Prioritization for Parallel Traversal of Irregularly Structured Spatio-Temporal Graphs

Dynamic Prioritization for Parallel Traversal of Irregularly Structured Spatio-Temporal Graphs Dynamic Prioritization for Parallel Traversal of Irregularly Structured Spatio-Temporal Graphs Bo Zhang Duke University Jingfang Huang University of North Carolina at Chapel Hill Xiaobai Sun Duke University

More information

MSMS (02PCYQW)

MSMS (02PCYQW) MSMS (02PCYQW) 2016-2017 Organization: the course is composed of two parts: the first part is devoted to the Lagrange (LAG) approach the second part is devoted to the Bond-Graph (BG) approach Each part

More information

A comparison of parallel rank-structured solvers

A comparison of parallel rank-structured solvers A comparison of parallel rank-structured solvers François-Henry Rouet Livermore Software Technology Corporation, Lawrence Berkeley National Laboratory Joint work with: - LSTC: J. Anton, C. Ashcraft, C.

More information

Applications. Human and animal motion Robotics control Hair Plants Molecular motion

Applications. Human and animal motion Robotics control Hair Plants Molecular motion Multibody dynamics Applications Human and animal motion Robotics control Hair Plants Molecular motion Generalized coordinates Virtual work and generalized forces Lagrangian dynamics for mass points

More information

Overview of the High-Order ADER-DG Method for Numerical Seismology

Overview of the High-Order ADER-DG Method for Numerical Seismology CIG/SPICE/IRIS/USAF WORKSHOP JACKSON, NH October 8-11, 2007 Overview of the High-Order ADER-DG Method for Numerical Seismology 1, Michael Dumbser2, Josep de la Puente1, Verena Hermann1, Cristobal Castro1

More information

ME964 High Performance Computing for Engineering Applications

ME964 High Performance Computing for Engineering Applications ME964 High Performance Computing for Engineering Applications Outlining Midterm Projects Topic 3: GPU-based FEA Topic 4: GPU Direct Solver for Sparse Linear Algebra March 01, 2011 Dan Negrut, 2011 ME964

More information

The meshfree computation of stationary electric current densities in complex shaped conductors using 3D boundary element methods

The meshfree computation of stationary electric current densities in complex shaped conductors using 3D boundary element methods Boundary Elements and Other Mesh Reduction Methods XXXVII 121 The meshfree computation of stationary electric current densities in complex shaped conductors using 3D boundary element methods A. Buchau

More information

MATLAB. Advanced Mathematics and Mechanics Applications Using. Third Edition. David Halpern University of Alabama CHAPMAN & HALL/CRC

MATLAB. Advanced Mathematics and Mechanics Applications Using. Third Edition. David Halpern University of Alabama CHAPMAN & HALL/CRC Advanced Mathematics and Mechanics Applications Using MATLAB Third Edition Howard B. Wilson University of Alabama Louis H. Turcotte Rose-Hulman Institute of Technology David Halpern University of Alabama

More information

Adarsh Krishnamurthy (cs184-bb) Bela Stepanova (cs184-bs)

Adarsh Krishnamurthy (cs184-bb) Bela Stepanova (cs184-bs) OBJECTIVE FLUID SIMULATIONS Adarsh Krishnamurthy (cs184-bb) Bela Stepanova (cs184-bs) The basic objective of the project is the implementation of the paper Stable Fluids (Jos Stam, SIGGRAPH 99). The final

More information

Algorithms and architectures for N-body methods

Algorithms and architectures for N-body methods Algorithms and architectures for N-body methods George Biros XPS-DSD CCF-1337393 A2MA - Algorithms and Architectures for Multiresolution Applications 2014-2017 Outline Significance Sketch or algorithm

More information

Approaches to Parallel Implementation of the BDDC Method

Approaches to Parallel Implementation of the BDDC Method Approaches to Parallel Implementation of the BDDC Method Jakub Šístek Includes joint work with P. Burda, M. Čertíková, J. Mandel, J. Novotný, B. Sousedík. Institute of Mathematics of the AS CR, Prague

More information

Fast multipole methods for. three-dimensional N-body problems. By P. Koumoutsakos

Fast multipole methods for. three-dimensional N-body problems. By P. Koumoutsakos Center for Turbulence Research Annual Research Briefs 1995 377 Fast multipole methods for three-dimensional N-body problems By P. Koumoutsakos 1. Motivation and objectives We are developing computational

More information

Lecture 14: Basic Multi-View Geometry

Lecture 14: Basic Multi-View Geometry Lecture 14: Basic Multi-View Geometry Stereo If I needed to find out how far point is away from me, I could use triangulation and two views scene point image plane optical center (Graphic from Khurram

More information

ExaFMM. Fast multipole method software aiming for exascale systems. User's Manual. Rio Yokota, L. A. Barba. November Revision 1

ExaFMM. Fast multipole method software aiming for exascale systems. User's Manual. Rio Yokota, L. A. Barba. November Revision 1 ExaFMM Fast multipole method software aiming for exascale systems User's Manual Rio Yokota, L. A. Barba November 2011 --- Revision 1 ExaFMM User's Manual i Revision History Name Date Notes Rio Yokota,

More information

Robot Mapping. Least Squares Approach to SLAM. Cyrill Stachniss

Robot Mapping. Least Squares Approach to SLAM. Cyrill Stachniss Robot Mapping Least Squares Approach to SLAM Cyrill Stachniss 1 Three Main SLAM Paradigms Kalman filter Particle filter Graphbased least squares approach to SLAM 2 Least Squares in General Approach for

More information

Graphbased. Kalman filter. Particle filter. Three Main SLAM Paradigms. Robot Mapping. Least Squares Approach to SLAM. Least Squares in General

Graphbased. Kalman filter. Particle filter. Three Main SLAM Paradigms. Robot Mapping. Least Squares Approach to SLAM. Least Squares in General Robot Mapping Three Main SLAM Paradigms Least Squares Approach to SLAM Kalman filter Particle filter Graphbased Cyrill Stachniss least squares approach to SLAM 1 2 Least Squares in General! Approach for

More information

Sparse Direct Solvers for Extreme-Scale Computing

Sparse Direct Solvers for Extreme-Scale Computing Sparse Direct Solvers for Extreme-Scale Computing Iain Duff Joint work with Florent Lopez and Jonathan Hogg STFC Rutherford Appleton Laboratory SIAM Conference on Computational Science and Engineering

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 20: Sparse Linear Systems; Direct Methods vs. Iterative Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 26

More information

Fast marching methods

Fast marching methods 1 Fast marching methods Lecture 3 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 Metric discretization 2 Approach I:

More information

1. Introduction. We consider the problem of rapidly evaluating the sum. for m =1,...,N,

1. Introduction. We consider the problem of rapidly evaluating the sum. for m =1,...,N, SIAM J. SCI. COMPUT. Vol. 29, No. 3, pp. 1160 1178 c 2007 Society for Industrial and Applied Mathematics AN ACCELERATED KERNEL-INDEPENDENT FAST MULTIPOLE METHOD IN ONE DIMENSION P. G. MARTINSSON AND V.

More information

Center for Computational Science

Center for Computational Science Center for Computational Science Toward GPU-accelerated meshfree fluids simulation using the fast multipole method Lorena A Barba Boston University Department of Mechanical Engineering with: Felipe Cruz,

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 5: Sparse Linear Systems and Factorization Methods Xiangmin Jiao Stony Brook University Xiangmin Jiao Numerical Analysis I 1 / 18 Sparse

More information

Algorithms of Scientific Computing

Algorithms of Scientific Computing Algorithms of Scientific Computing Overview and General Remarks Michael Bader Technical University of Munich Summer 2017 Classification of the Lecture Who is Who? Students of Informatics: Informatics Bachelor

More information

Discontinuous Galerkin Sparse Grid method for Maxwell s equations

Discontinuous Galerkin Sparse Grid method for Maxwell s equations Discontinuous Galerkin Sparse Grid method for Maxwell s equations Student: Tianyang Wang Mentor: Dr. Lin Mu, Dr. David L.Green, Dr. Ed D Azevedo, Dr. Kwai Wong Motivation u We consider the Maxwell s equations,

More information

c 2006 Society for Industrial and Applied Mathematics

c 2006 Society for Industrial and Applied Mathematics SIAM J. MATRIX ANAL. APPL. Vol. 29, No. 1, pp. 67 81 c 2006 Society for Industrial and Applied Mathematics A FAST SOLVER FOR HSS REPRESENTATIONS VIA SPARSE MATRICES S. CHANDRASEKARAN, P. DEWILDE, M. GU,

More information

1. Mathematical Modelling

1. Mathematical Modelling 1. describe a given problem with some mathematical formalism in order to get a formal and precise description see fundamental properties due to the abstraction allow a systematic treatment and, thus, solution

More information

High Performance Computing: Tools and Applications

High Performance Computing: Tools and Applications High Performance Computing: Tools and Applications Edmond Chow School of Computational Science and Engineering Georgia Institute of Technology Lecture 11 False sharing threads that share an array may use

More information

FFT, FMM, OR MULTIGRID? A COMPARATIVE STUDY OF STATE-OF-THE-ART POISSON SOLVERS FOR UNIFORM AND NON-UNIFORM GRIDS IN THE UNIT CUBE

FFT, FMM, OR MULTIGRID? A COMPARATIVE STUDY OF STATE-OF-THE-ART POISSON SOLVERS FOR UNIFORM AND NON-UNIFORM GRIDS IN THE UNIT CUBE FFT, FMM, OR MULTIGRID? A COMPARATIVE STUDY OF STATE-OF-THE-ART POISSON SOLVERS FOR UNIFORM AND NON-UNIFORM GRIDS IN THE UNIT CUBE AMIR GHOLAMI, DHAIRYA MALHOTRA, HARI SUNDAR, AND GEORGE BIROS Abstract.

More information

Robust Face Recognition via Sparse Representation Authors: John Wright, Allen Y. Yang, Arvind Ganesh, S. Shankar Sastry, and Yi Ma

Robust Face Recognition via Sparse Representation Authors: John Wright, Allen Y. Yang, Arvind Ganesh, S. Shankar Sastry, and Yi Ma Robust Face Recognition via Sparse Representation Authors: John Wright, Allen Y. Yang, Arvind Ganesh, S. Shankar Sastry, and Yi Ma Presented by Hu Han Jan. 30 2014 For CSE 902 by Prof. Anil K. Jain: Selected

More information

Fast Multipole Accelerated Indirect Boundary Elements for the Helmholtz Equation

Fast Multipole Accelerated Indirect Boundary Elements for the Helmholtz Equation Fast Multipole Accelerated Indirect Boundary Elements for the Helmholtz Equation Nail A. Gumerov Ross Adelman Ramani Duraiswami University of Maryland Institute for Advanced Computer Studies and Fantalgo,

More information

I. INTRODUCTION. 2 matrix, integral-equation-based methods, matrix inversion.

I. INTRODUCTION. 2 matrix, integral-equation-based methods, matrix inversion. 2404 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 59, NO. 10, OCTOBER 2011 Dense Matrix Inversion of Linear Complexity for Integral-Equation-Based Large-Scale 3-D Capacitance Extraction Wenwen

More information

Regularized Tensor Factorizations & Higher-Order Principal Components Analysis

Regularized Tensor Factorizations & Higher-Order Principal Components Analysis Regularized Tensor Factorizations & Higher-Order Principal Components Analysis Genevera I. Allen Department of Statistics, Rice University, Department of Pediatrics-Neurology, Baylor College of Medicine,

More information

Wavelet-Galerkin Solutions of One and Two Dimensional Partial Differential Equations

Wavelet-Galerkin Solutions of One and Two Dimensional Partial Differential Equations VOL 3, NO0 Oct, 202 ISSN 2079-8407 2009-202 CIS Journal All rights reserved http://wwwcisjournalorg Wavelet-Galerkin Solutions of One and Two Dimensional Partial Differential Equations Sabina, 2 Vinod

More information

Key words. Poisson Solvers, Fast Fourier Transform, Fast Multipole Method, Multigrid, Parallel Computing, Exascale algorithms, Co-Design

Key words. Poisson Solvers, Fast Fourier Transform, Fast Multipole Method, Multigrid, Parallel Computing, Exascale algorithms, Co-Design FFT, FMM, OR MULTIGRID? A COMPARATIVE STUDY OF STATE-OF-THE-ART POISSON SOLVERS AMIR GHOLAMI, DHAIRYA MALHOTRA, HARI SUNDAR,, AND GEORGE BIROS Abstract. We discuss the fast solution of the Poisson problem

More information

Data-Driven Modeling. Scientific Computation J. NATHAN KUTZ OXPORD. Methods for Complex Systems & Big Data

Data-Driven Modeling. Scientific Computation J. NATHAN KUTZ OXPORD. Methods for Complex Systems & Big Data Data-Driven Modeling & Scientific Computation Methods for Complex Systems & Big Data J. NATHAN KUTZ Department ofapplied Mathematics University of Washington OXPORD UNIVERSITY PRESS Contents Prolegomenon

More information

A A Distributed Memory Fast Multipole Method for Volume Potentials

A A Distributed Memory Fast Multipole Method for Volume Potentials A A Distributed Memory Fast Multipole Method for Volume Potentials DHAIRYA MALHOTRA, The University of Texas at Austin, Austin, TX 78712 GEORGE BIROS, The University of Texas at Austin, Austin, TX 78712

More information

Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering. Introduction

Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering. Introduction Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering Introduction A SolidWorks simulation tutorial is just intended to illustrate where to

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

smooth coefficients H. Köstler, U. Rüde

smooth coefficients H. Köstler, U. Rüde A robust multigrid solver for the optical flow problem with non- smooth coefficients H. Köstler, U. Rüde Overview Optical Flow Problem Data term and various regularizers A Robust Multigrid Solver Galerkin

More information

Implementing Strassen-like Fast Matrix Multiplication Algorithms with BLIS

Implementing Strassen-like Fast Matrix Multiplication Algorithms with BLIS Implementing Strassen-like Fast Matrix Multiplication Algorithms with BLIS Jianyu Huang, Leslie Rice Joint work with Tyler M. Smith, Greg M. Henry, Robert A. van de Geijn BLIS Retreat 2016 *Overlook of

More information

The Fast Multipole Method (FMM)

The Fast Multipole Method (FMM) The Fast Multipole Method (FMM) Motivation for FMM Computational Physics Problems involving mutual interactions of N particles Gravitational or Electrostatic forces Collective (but weak) long-range forces

More information

Driven Cavity Example

Driven Cavity Example BMAppendixI.qxd 11/14/12 6:55 PM Page I-1 I CFD Driven Cavity Example I.1 Problem One of the classic benchmarks in CFD is the driven cavity problem. Consider steady, incompressible, viscous flow in a square

More information

Numerical Analysis of Shock Tube Problem by using TVD and ACM Schemes

Numerical Analysis of Shock Tube Problem by using TVD and ACM Schemes Numerical Analysis of Shock Tube Problem by using TVD and Schemes Dr. Mukkarum Husain, Dr. M. Nauman Qureshi, Syed Zaid Hasany IST Karachi, Email: mrmukkarum@yahoo.com Abstract Computational Fluid Dynamics

More information

Using a Fast Multipole Method to Accelerate Spline Evaluations

Using a Fast Multipole Method to Accelerate Spline Evaluations Using a Fast Multipole Method to Accelerate Spline Evaluations FANG CHEN AND DAVID SUTER Monush University, Australia 4 e In considering the problem of interpolating scattered data using spline methods,

More information

Dynamic Analysis of Manipulator Arm for 6-legged Robot

Dynamic Analysis of Manipulator Arm for 6-legged Robot American Journal of Mechanical Engineering, 2013, Vol. 1, No. 7, 365-369 Available online at http://pubs.sciepub.com/ajme/1/7/42 Science and Education Publishing DOI:10.12691/ajme-1-7-42 Dynamic Analysis

More information

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 13: The Lecture deals with:

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 13: The Lecture deals with: The Lecture deals with: Some more Suggestions for Improvement of Discretization Schemes Some Non-Trivial Problems with Discretized Equations file:///d /chitra/nptel_phase2/mechanical/cfd/lecture13/13_1.htm[6/20/2012

More information

A pedestrian introduction to fast multipole methods

A pedestrian introduction to fast multipole methods SCIENCE CHIN Mathematics. RTICLES. May 2012 Vol. 55 No. 5: 1043 1051 doi: 10.1007/s11425-012-4392-0 pedestrian introduction to fast multipole methods YING Lexing Department of Mathematics and ICES, University

More information

Particle-based simulations in Astrophysics

Particle-based simulations in Astrophysics Particle-based simulations in Astrophysics Jun Makino Particle Simulator Research Team, AICS/ Earth-Life Science Institute(ELSI), Tokyo Institute of Technology Feb 28, 2013 3rd AICS International Symposium

More information

(Lec 14) Placement & Partitioning: Part III

(Lec 14) Placement & Partitioning: Part III Page (Lec ) Placement & Partitioning: Part III What you know That there are big placement styles: iterative, recursive, direct Placement via iterative improvement using simulated annealing Recursive-style

More information

SPH: Why and what for?

SPH: Why and what for? SPH: Why and what for? 4 th SPHERIC training day David Le Touzé, Fluid Mechanics Laboratory, Ecole Centrale de Nantes / CNRS SPH What for and why? How it works? Why not for everything? Duality of SPH SPH

More information

SPC 307 Aerodynamics. Lecture 1. February 10, 2018

SPC 307 Aerodynamics. Lecture 1. February 10, 2018 SPC 307 Aerodynamics Lecture 1 February 10, 2018 Sep. 18, 2016 1 Course Materials drahmednagib.com 2 COURSE OUTLINE Introduction to Aerodynamics Review on the Fundamentals of Fluid Mechanics Euler and

More information

Divergence-Free Smoothed Particle Hydrodynamics

Divergence-Free Smoothed Particle Hydrodynamics Copyright of figures and other materials in the paper belongs to original authors. Divergence-Free Smoothed Particle Hydrodynamics Bender et al. SCA 2015 Presented by MyungJin Choi 2016-11-26 1. Introduction

More information

Invariant shape similarity. Invariant shape similarity. Invariant similarity. Equivalence. Equivalence. Equivalence. Equal SIMILARITY TRANSFORMATION

Invariant shape similarity. Invariant shape similarity. Invariant similarity. Equivalence. Equivalence. Equivalence. Equal SIMILARITY TRANSFORMATION 1 Invariant shape similarity Alexer & Michael Bronstein, 2006-2009 Michael Bronstein, 2010 tosca.cs.technion.ac.il/book 2 Invariant shape similarity 048921 Advanced topics in vision Processing Analysis

More information

Efficient Function Evaluations with Lookup Tables for Structured Matrix Operations

Efficient Function Evaluations with Lookup Tables for Structured Matrix Operations Efficient Function Evaluations with Lookup Tables for Structured Matrix Operations Kanwaldeep Sobti, Lanping Deng, Chaitali Chakrabarti, Nikos Pitsianis and Xiaobai Sun October 16, 2006 Department of Computer

More information

A Level Set-Based Topology Optimization Method For Three-Dimensional Acoustic Problems Using Fast Multipole Boundary Element Method

A Level Set-Based Topology Optimization Method For Three-Dimensional Acoustic Problems Using Fast Multipole Boundary Element Method 9 th World Congress on Structural and Multidisciplinary Optimization June 13-17, 2011, Shizuoka, Japan A Level Set-Based Topology Optimization Method For Three-imensional Acoustic Problems Using Fast Multipole

More information

A simple example. Assume we want to find the change in the rotation angles to get the end effector to G. Effect of changing s

A simple example. Assume we want to find the change in the rotation angles to get the end effector to G. Effect of changing s CENG 732 Computer Animation This week Inverse Kinematics (continued) Rigid Body Simulation Bodies in free fall Bodies in contact Spring 2006-2007 Week 5 Inverse Kinematics Physically Based Rigid Body Simulation

More information

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6 Math background 2D Geometric Transformations CS 4620 Lecture 6 Read: Chapter 2: Miscellaneous Math Chapter 5: Linear Algebra Notation for sets, functions, mappings Linear transformations Matrices Matrix-vector

More information

Semester Final Report

Semester Final Report CSUMS SemesterFinalReport InLaTex AnnKimball 5/20/2009 ThisreportisageneralsummaryoftheaccumulationofknowledgethatIhavegatheredthroughoutthis semester. I was able to get a birds eye view of many different

More information

Efficient Imaging Algorithms on Many-Core Platforms

Efficient Imaging Algorithms on Many-Core Platforms Efficient Imaging Algorithms on Many-Core Platforms H. Köstler Dagstuhl, 22.11.2011 Contents Imaging Applications HDR Compression performance of PDE-based models Image Denoising performance of patch-based

More information

Modeling & Simulation of Supersonic Flow Using McCormack s Technique

Modeling & Simulation of Supersonic Flow Using McCormack s Technique Modeling & Simulation of Supersonic Flow Using McCormack s Technique M. Saif Ullah Khalid*, Afzaal M. Malik** Abstract In this work, two-dimensional inviscid supersonic flow around a wedge has been investigated

More information

Optimised corrections for finite-difference modelling in two dimensions

Optimised corrections for finite-difference modelling in two dimensions Optimized corrections for 2D FD modelling Optimised corrections for finite-difference modelling in two dimensions Peter M. Manning and Gary F. Margrave ABSTRACT Finite-difference two-dimensional correction

More information

DIMENSIONAL SYNTHESIS OF SPATIAL RR ROBOTS

DIMENSIONAL SYNTHESIS OF SPATIAL RR ROBOTS DIMENSIONAL SYNTHESIS OF SPATIAL RR ROBOTS ALBA PEREZ Robotics and Automation Laboratory University of California, Irvine Irvine, CA 9697 email: maperez@uci.edu AND J. MICHAEL MCCARTHY Department of Mechanical

More information

Leow Wee Kheng CS4243 Computer Vision and Pattern Recognition. Motion Tracking. CS4243 Motion Tracking 1

Leow Wee Kheng CS4243 Computer Vision and Pattern Recognition. Motion Tracking. CS4243 Motion Tracking 1 Leow Wee Kheng CS4243 Computer Vision and Pattern Recognition Motion Tracking CS4243 Motion Tracking 1 Changes are everywhere! CS4243 Motion Tracking 2 Illumination change CS4243 Motion Tracking 3 Shape

More information

A Parallel Implementation of A Fast Multipole Based 3-D Capacitance Extraction Program on Distributed Memory Multicomputers

A Parallel Implementation of A Fast Multipole Based 3-D Capacitance Extraction Program on Distributed Memory Multicomputers A Parallel Implementation of A Fast Multipole Based 3-D Capacitance Extraction Program on Distributed Memory Multicomputers Yanhong Yuan and Prithviraj Banerjee Department of Electrical and Computer Engineering

More information

Long time integrations of a convective PDE on the sphere by RBF collocation

Long time integrations of a convective PDE on the sphere by RBF collocation Long time integrations of a convective PDE on the sphere by RBF collocation Bengt Fornberg and Natasha Flyer University of Colorado NCAR Department of Applied Mathematics Institute for Mathematics Applied

More information

A new parallel kernel-independent fast multipole method

A new parallel kernel-independent fast multipole method University of Pennsylvania ScholarlyCommons Departmental Papers (MEAM) Department of Mechanical Engineering & Applied Mechanics November 23 A new parallel kernel-independent fast multipole method Lexing

More information

Fundamentals of Digital Image Processing

Fundamentals of Digital Image Processing \L\.6 Gw.i Fundamentals of Digital Image Processing A Practical Approach with Examples in Matlab Chris Solomon School of Physical Sciences, University of Kent, Canterbury, UK Toby Breckon School of Engineering,

More information

Motion Synthesis and Editing. Yisheng Chen

Motion Synthesis and Editing. Yisheng Chen Motion Synthesis and Editing Yisheng Chen Overview Data driven motion synthesis automatically generate motion from a motion capture database, offline or interactive User inputs Large, high-dimensional

More information

CODE-GENERATION FOR DIFFERENTIAL EQUATION SOLVERS

CODE-GENERATION FOR DIFFERENTIAL EQUATION SOLVERS CODE-GENERATION FOR DIFFERENTIAL EQUATION SOLVERS Dániel Berényi Wigner RCP, GPU Laboratory, Budapest, Hungary Perspectives of GPU Computing in Physics and Astrophysics Rome 2014. INTRODUCTION The most

More information