Fast marching methods

Size: px
Start display at page:

Download "Fast marching methods"

Transcription

1 1 Fast marching methods Lecture 3 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009

2 Metric discretization 2 Approach I: discrete metric Discretized shape Discrete metric Metrication error Sampling theorem Approach II: consistently discretized metric Discretized metric

3 Fast marching algorithms 3 Imagine a forest fire

4 Forest fire 4 Fire starts at a source at. Propagates with constant velocity Arrives at time to a point. Fermat s (least action) principle: The fire chooses the quickest path to travel. Governs refraction laws in optics (Snell s law) and acoustics. Fire arrival time = distance map from source.

5 Distance maps on surfaces 5 Distance map on surface Mapped locally to the tangent space A small step in the direction changes the distance by is directional derivative in the direction.

6 Intrinsic gradient 6 For some direction, The perpendicular direction is the direction of steepest change of the distance map. is referred to as the intrinsic gradient. Formally, the intrinsic gradient of function at a point is a map satisfying for any

7 Extrinsic gradient 7 Consider the distance map as a function. The extrinsic gradient of at a point is a map satisfying for any direction In the standard Euclidean basis Usually called the gradient of. What is the connection between intrinsic and extrinsic gradients?

8 Intrinsic and extrinsic gradients 8 Intrinsic gradient = projection of extrinsic gradient on tangent plane In coordinates of a parametrization, is the Jacobian matrix whose columns span.

9 Eikonal equation 9 Let be a minimal geodesic between and. The derivative is the fire front propagation direction. In arclength parametrization. Fermat s principle: Propagation direction = direction of steepest increase of. Geodesic is perpendicular to the level sets of on.

10 Eikonal equation 10 Eikonal equation (from Greek εικων) Hyperbolic PDE with boundary condition Minimal geodesics are characteristics. Describes propagation of waves in medium.

11 Eikonal equation 11 Let be a minimal geodesic between and. The derivative is the fire front propagation direction. In arclength parametrization. Fermat s principle: Propagation direction = direction of steepest increase of. Geodesic is perpendicular to the level sets of on.

12 Uniqueness of solution 12 In classic PDE theory, a solution is a continuous differentiable function satisfying PDE theory guarantees existence and uniqueness of solution. Distance map is not everywhere differentiable. Solution is not unique! 1D example

13 13

14 Sub- and super-derivatives (1D case) 14 Superderivative: the set of all slopes above the graph Subderivative: the set of all slopes below the graph where is differentiable.

15 Viscosity solution 15 is a viscosity solution of the 1D eikonal equation if Monotonicity: viscosity solution Not a viscosity solution does not have local maxima. The largest among all Existence and uniqueness guaranteed. Viscosity solution

16 Fast marching methods (FMM) 16 A family of numerical methods for solving eikonal equation. Finds the viscosity solution = distance map. Simulates wavefront propagation from a source set. A continuous variant of Dijkstra s algorithm. Consistently approximate the intrinsic metric on the surface.

17 Fast marching algorithm 17 Initialize and mark it as black. Initialize for other vertices and mark them as green. Initialize queue of red vertices. Repeat Mark green neighbors of black vertices as red (add to ) For each red vertex For each triangle sharing the vertex Update from the triangle. Mark with minimum value of as black (remove from ) Until there are no more green vertices. Return distance map.

18 Update step 18 Dijkstra s update Vertex updated from adjacent vertex Distance computed from Path restricted to graph edges Fast marching update Vertex updated from triangle Distance computed from and Path can pass on mesh faces

19 Fast marching update step 19 Update from triangle Compute from and Model wave front propagating from planar source unit propagation direction source offset Front hits at time Hits at time When does the front arrive to? Planar source

20 Fast marching update step 20 Assume w.l.o.g. and. is given by the point-to-plane distance Solve for parameters and using the point-to-plane distance In vector notation where,, and. In a non-degenerate triangle matrix is full-rank

21 Fast marching update step 21 Apparently, we have two equations with three variables. However, is a unit vector, hence. where. Substitute and obtain a quadratic equation

22 Causality condition 22 Quadratic equation is satisfied by both and. Two solutions for Causality: front can propagate only forward in time. Causality condition

23 Causality condition 23 Causality condition In other words has to form obtuse angles with both triangle edges. Causality is required to obtain consistent approximation of the distance map. Smallest solution for is inconsistent and is discarded. If largest solution is consistent, live the largest solution!

24 Monotonicity condition 24 Viscosity solution has to be a monotonically increasing function. Monotonicity condition: increase when or increase. In other words: Differentiate w.r.t obtaining

25 Monotonicity condition 25 Substitute Monotonicity satisfied when both coordinates of have the same sign. is positive definite At least one coordinate Causality condition: of is negative Monotonicity condition:

26 Monotonicity condition 26 Since we have Rows of are orthogonal to triangle edges Monotonicity condition: Geometric interpretation: must form obtuse angles with normals to triangle edges. Said differently: must come from within the triangle.

27 One-sided update 27 Monotonicity condition: update direction must come from within the triangle. If it does not, project inside the triangle. will coincide with one of the edges. Update will reduce to Dijkstra s update or

28 Fast marching update 28 Solve for the quadratic equation Compute propagation direction If monotonicity condition is violated, Set

29 Consistency and monotonicity encore 29 Consistency Monotonicity Consistency Acute triangle All directions in the triangle satisfy consistency and monotonicity conditions. Obtuse triangle Some directions in the triangle violate consistency condition!

30 Fast marching on obtuse meshes 30 Inconsistent solution if the mesh contains obtuse triangles Remeshing is costly Solution: split obtuse triangles by adding virtual connections to non-adjacent vertices Done as a pre-processing step in

31 Mesh unfolding 31 Virtual connection splits obtuse angle into two acute ones

32 32 MATLAB intermezzo Fast marching

33 33

34 Eikonal equation on parametric surfaces 34 Parametrization of over. Compute distance map, from source. Chain rule Extrinsic gradient in parametrization coordinates Intrinsic gradient in parametrization coordinates

35 Eikonal equation on parametric surfaces 35 Eikonal equation in parametrization coordinates

36 Fast marching on parametric surfaces 36 Solve eikonal equation in parametrization domain March on discretized parametrization domain. We need to express update step in parametrization coordinates.

37 Fast marching on parametric surfaces 37 Cartesian sampling of with unit step. Some connectivity (e.g. 4- or 8-neighbor). Vertex updated from triangle Assuming w.l.o.g. or in matrix form

38 Fast marching on parametric surfaces 38 Inner product matrix Describes triangle geometry. lengths of the edges. cosine of the angle. Substitute into the update quadratic equation Only first fundamental form coefficients and grid connectivity are required for update. Can measure distances when only surface gradients are known.

39 Unfolding on parametric surfaces 39 Virtual connections can be made directly in parametrizatio domain Parametrization domain On the surface Kimmel & Spira, An efficient solution to the eikonal equation on parametric manifolds, 2004

40 Heap-based grid update 40 Fast marching and Dijkstra s algorithm use heap-based grid update. Next vertex to be updated is decided by extracting the smallest. Update order is unknown and data-dependent. Inefficient use of memory system and cache. Inherently sequential algorithm next update depends on previous one. Can we do better? Regular access to memory (known in advance). Vectorizable (parallelizable) algorithm.

41 Marching even faster 41 Danielsson s algorithm: update the grid in a raster scan order In Euclidean case, parametrization is trivial. Geodesics are straight lines in parametrization domain. Each raster scan covers ¼ of the possible directions of the geodesics. Euclidean distance map computed by four alternating raster scans.

42 Raster scan fast marching 42 Generally, geodesics are curved in parametrization domain. Raster scans have to be repeated to produce a convergent solution. Iterative algorithm. Number of iterations depends on geometry and parametrization. Practically, few iterations are required. 1 iteration 2 iterations 4 iterations 5 iterations 3 iterations 6 iterations

43 Raster scan fast marching 43 What we lost: No more a one-pass algorithm. Computational complexity is data-dependent. What we found: Coherent memory access, efficient use of cache. No heap, each iteration is. Raster scans can be parallelized. BBK, "Parallel algorithms for approximation of distance maps on parametric surfaces, 2007

44 Parallellization 44 Rotate scan directions by All updates performed along a row or column can be parallelized. Constant CPU load suitable for SIMD architecture and GPUs.

45 Parallel marching 45 Rotate scan directions by All updates performed along a row or column can be parallelized. Constant CPU load. Suitable for SIMD architecture and GPUs. GPU implementation computes geodesic on grid with 10,000,000 vertices in less than 50 msec. About 200 million distances per second!

46 Minimal geodesics 46 We have a numerical tool to compute geodesic distance. Sometimes, the shortest path itself is needed. Minimal geodesics are characteristics of the eikonal equation. In other words: Along geodesic, eikonal equation becomes an ODE with initial condition. Solve the ODE for.

47 Minimal geodesics 47 To find a minimal geodesic between two points Compute distance map from to all other points. Starting at, follow the direction of until Steepest descent on the distance map. is reached. In the parametrization coordinates Let be the preimage of in

48 Minimal geodesics 48 Substitute into characteristic equation Steepest descent on surface = scaled steepest descent in parametrization domain.

49 49 Numerical geometry of non-rigid shapes Fast Marching Methods Uses of fast marching Geodesic distances Minimal geodesics Voronoi tessellation & sampling Offset curves

50 Implicit surfaces 50 Shape represented as level set of some Examples: medical images, shape-from-x reconstruction, etc. Triangulation is costly and potentially inaccurate

51 Implicit surfaces 51 Two-manifold Co-dimension 1 Narrow band of radius Three-manifold with boundary smooth if

52 Distances on implicit surfaces 52 Since, for all Similarly, for, and hence The sequence is bounded and nondecreasing and hence converges to the supremum of its range For every and there exists such that

53 Distances on implicit surfaces 53 Uniform convergence of geodesic distances: For every there exists an such that for every, If then where is a constant dependent on the geometry of Convergence of minimal geodesics: Let be a unique minimal geodesic between and let geodesic on. Then be a minimal Memoli & Sapiro, Fast computation of weighted distance functions and geodesics on implicit hyper-surfaces, 2001

54 Eikonal equation on implicit surfaces 54 Explicit Intrinsic eikonal equation Implicit Extrinsic eikonal equation VISCOSITY SOLUTIONS CONVERGE AS

55 Narrow band fast marching 55 Euclidean fast marching on Cartesian grid Only vertices inside narrow band do not participate in update Initial values of source set interpolated on the grid Heap or raster scan grid visiting

Tutorial 9 - Fast Marching Methods

Tutorial 9 - Fast Marching Methods 236861 Numerical Geometry of Images Tutorial 9 Fast Marching Methods c 2012 Why measure distances? Shape analysis Image analysis Registration Morphology Navigation And many other uses.. There are many

More information

Invariant shape similarity. Invariant shape similarity. Invariant similarity. Equivalence. Equivalence. Equivalence. Equal SIMILARITY TRANSFORMATION

Invariant shape similarity. Invariant shape similarity. Invariant similarity. Equivalence. Equivalence. Equivalence. Equal SIMILARITY TRANSFORMATION 1 Invariant shape similarity Alexer & Michael Bronstein, 2006-2009 Michael Bronstein, 2010 tosca.cs.technion.ac.il/book 2 Invariant shape similarity 048921 Advanced topics in vision Processing Analysis

More information

Multidimensional scaling

Multidimensional scaling Multidimensional scaling Lecture 5 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 Cinderella 2.0 2 If it doesn t fit,

More information

Topology-Invariant Similarity and Diffusion Geometry

Topology-Invariant Similarity and Diffusion Geometry 1 Topology-Invariant Similarity and Diffusion Geometry Lecture 7 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 Intrinsic

More information

Discrete geometry. Lecture 2. Alexander & Michael Bronstein tosca.cs.technion.ac.il/book

Discrete geometry. Lecture 2. Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Discrete geometry Lecture 2 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 The world is continuous, but the mind is discrete

More information

Justin Solomon MIT, Spring Numerical Geometry of Nonrigid Shapes

Justin Solomon MIT, Spring Numerical Geometry of Nonrigid Shapes Justin Solomon MIT, Spring 2017 Numerical Geometry of Nonrigid Shapes Intrinsically far Extrinsically close Geodesic distance [jee-uh-des-ik dis-tuh-ns]: Length of the shortest path, constrained not to

More information

(Discrete) Differential Geometry

(Discrete) Differential Geometry (Discrete) Differential Geometry Motivation Understand the structure of the surface Properties: smoothness, curviness, important directions How to modify the surface to change these properties What properties

More information

Introduction to geometry

Introduction to geometry 1 2 Manifolds A topological space in which every point has a neighborhood homeomorphic to (topological disc) is called an n-dimensional (or n-) manifold Introduction to geometry The German way 2-manifold

More information

Numerical Geometry of Nonrigid Shapes. CS 468, Spring 2013 Differential Geometry for Computer Science Justin Solomon and Adrian Butscher

Numerical Geometry of Nonrigid Shapes. CS 468, Spring 2013 Differential Geometry for Computer Science Justin Solomon and Adrian Butscher Numerical Geometry of Nonrigid Shapes CS 468, Spring 2013 Differential Geometry for Computer Science Justin Solomon and Adrian Butscher Intrinsically far Extrinsically close Straightest Geodesics on Polyhedral

More information

An Efficient Solution to the Eikonal Equation on Parametric Manifolds

An Efficient Solution to the Eikonal Equation on Parametric Manifolds An Efficient Solution to the Eikonal Equation on Parametric Manifolds Alon Spira Ron Kimmel Department of Computer Science Technion Israel Institute of Technology Technion City, Haifa 32000, Israel {salon,ron}@cs.technion.ac.il

More information

Geodesic Paths on Triangular Meshes

Geodesic Paths on Triangular Meshes Geodesic Paths on Triangular Meshes Dimas Martínez Luiz Velho Paulo Cezar Carvalho IMPA Instituto Nacional de Matemática Pura e Aplicada Estrada Dona Castorina, 110, 22460-320 Rio de Janeiro, RJ, Brasil

More information

Geodesic Paths on Triangular Meshes

Geodesic Paths on Triangular Meshes Geodesic Paths on Triangular Meshes DIMAS MARTÍNEZ, LUIZ VELHO, PAULO CEZAR CARVALHO IMPA Instituto Nacional de Matemática Pura e Aplicada - Estrada Dona Castorina, 110, 22460-320 Rio de Janeiro, RJ, Brasil

More information

Let and be a differentiable function. Let Then be the level surface given by

Let and be a differentiable function. Let Then be the level surface given by Module 12 : Total differential, Tangent planes and normals Lecture 35 : Tangent plane and normal [Section 35.1] > Objectives In this section you will learn the following : The notion tangent plane to a

More information

Fast Marching Methods (1) are numerical algorithms for

Fast Marching Methods (1) are numerical algorithms for Fast methods for the Eikonal and related Hamilton Jacobi equations on unstructured meshes J. A. Sethian* and A. Vladimirsky Department of Mathematics, University of California, Berkeley, CA 94720 Communicated

More information

Geometric Optics. The Law of Reflection. Physics Waves & Oscillations 3/20/2016. Spring 2016 Semester Matthew Jones

Geometric Optics. The Law of Reflection. Physics Waves & Oscillations 3/20/2016. Spring 2016 Semester Matthew Jones Physics 42200 Waves & Oscillations Lecture 27 Propagation of Light Hecht, chapter 5 Spring 2016 Semester Matthew Jones Geometric Optics Typical problems in geometric optics: Given an optical system, what

More information

04 - Normal Estimation, Curves

04 - Normal Estimation, Curves 04 - Normal Estimation, Curves Acknowledgements: Olga Sorkine-Hornung Normal Estimation Implicit Surface Reconstruction Implicit function from point clouds Need consistently oriented normals < 0 0 > 0

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

GEOMETRIC TOOLS FOR COMPUTER GRAPHICS

GEOMETRIC TOOLS FOR COMPUTER GRAPHICS GEOMETRIC TOOLS FOR COMPUTER GRAPHICS PHILIP J. SCHNEIDER DAVID H. EBERLY MORGAN KAUFMANN PUBLISHERS A N I M P R I N T O F E L S E V I E R S C I E N C E A M S T E R D A M B O S T O N L O N D O N N E W

More information

Parallel algorithms for approximation of distance maps on parametric surfaces

Parallel algorithms for approximation of distance maps on parametric surfaces Parallel algorithms for approximation of distance maps on parametric surfaces Alexander M. Bronstein Michael M. Bronstein Yohai S. Devir Ron Kimmel Ofir Weber Department of Computer Science, Technion Israel

More information

Dijkstra s algorithm, Fast marching & Level sets. Einar Heiberg,

Dijkstra s algorithm, Fast marching & Level sets. Einar Heiberg, Dijkstra s algorithm, Fast marching & Level sets Einar Heiberg, einar@heiberg.se Looking back Medical image segmentation is (usually) selecting a suitable method from a toolbox of available approaches

More information

Graphics Pipeline 2D Geometric Transformations

Graphics Pipeline 2D Geometric Transformations Graphics Pipeline 2D Geometric Transformations CS 4620 Lecture 8 1 Plane projection in drawing Albrecht Dürer 2 Plane projection in drawing source unknown 3 Rasterizing triangles Summary 1 evaluation of

More information

Surface Reconstruction. Gianpaolo Palma

Surface Reconstruction. Gianpaolo Palma Surface Reconstruction Gianpaolo Palma Surface reconstruction Input Point cloud With or without normals Examples: multi-view stereo, union of range scan vertices Range scans Each scan is a triangular mesh

More information

Tutorial 4. Differential Geometry I - Curves

Tutorial 4. Differential Geometry I - Curves 23686 Numerical Geometry of Images Tutorial 4 Differential Geometry I - Curves Anastasia Dubrovina c 22 / 2 Anastasia Dubrovina CS 23686 - Tutorial 4 - Differential Geometry I - Curves Differential Geometry

More information

YEAR 12 Core 1 & 2 Maths Curriculum (A Level Year 1)

YEAR 12 Core 1 & 2 Maths Curriculum (A Level Year 1) YEAR 12 Core 1 & 2 Maths Curriculum (A Level Year 1) Algebra and Functions Quadratic Functions Equations & Inequalities Binomial Expansion Sketching Curves Coordinate Geometry Radian Measures Sine and

More information

Lecture 2 Unstructured Mesh Generation

Lecture 2 Unstructured Mesh Generation Lecture 2 Unstructured Mesh Generation MIT 16.930 Advanced Topics in Numerical Methods for Partial Differential Equations Per-Olof Persson (persson@mit.edu) February 13, 2006 1 Mesh Generation Given a

More information

Fast Marching and Geodesic Methods. Some Applications

Fast Marching and Geodesic Methods. Some Applications Fast Marching and Geodesic Methods. Some Applications Laurent D. COHEN Directeur de Recherche CNRS CEREMADE, UMR CNRS 7534 Université Paris-9 Dauphine Place du Maréchal de Lattre de Tassigny 75016 Paris,

More information

CSE 554 Lecture 6: Fairing and Simplification

CSE 554 Lecture 6: Fairing and Simplification CSE 554 Lecture 6: Fairing and Simplification Fall 2012 CSE554 Fairing and simplification Slide 1 Review Iso-contours in grayscale images and volumes Piece-wise linear representations Polylines (2D) and

More information

Simplicial Hyperbolic Surfaces

Simplicial Hyperbolic Surfaces Simplicial Hyperbolic Surfaces Talk by Ken Bromberg August 21, 2007 1-Lipschitz Surfaces- In this lecture we will discuss geometrically meaningful ways of mapping a surface S into a hyperbolic manifold

More information

Module 1 Session 1 HS. Critical Areas for Traditional Geometry Page 1 of 6

Module 1 Session 1 HS. Critical Areas for Traditional Geometry Page 1 of 6 Critical Areas for Traditional Geometry Page 1 of 6 There are six critical areas (units) for Traditional Geometry: Critical Area 1: Congruence, Proof, and Constructions In previous grades, students were

More information

The Level Set Method. Lecture Notes, MIT J / 2.097J / 6.339J Numerical Methods for Partial Differential Equations

The Level Set Method. Lecture Notes, MIT J / 2.097J / 6.339J Numerical Methods for Partial Differential Equations The Level Set Method Lecture Notes, MIT 16.920J / 2.097J / 6.339J Numerical Methods for Partial Differential Equations Per-Olof Persson persson@mit.edu March 7, 2005 1 Evolving Curves and Surfaces Evolving

More information

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo 05 - Surfaces Acknowledgements: Olga Sorkine-Hornung Reminder Curves Turning Number Theorem Continuous world Discrete world k: Curvature is scale dependent is scale-independent Discrete Curvature Integrated

More information

Motivation. Parametric Curves (later Surfaces) Outline. Tangents, Normals, Binormals. Arclength. Advanced Computer Graphics (Fall 2010)

Motivation. Parametric Curves (later Surfaces) Outline. Tangents, Normals, Binormals. Arclength. Advanced Computer Graphics (Fall 2010) Advanced Computer Graphics (Fall 2010) CS 283, Lecture 19: Basic Geometric Concepts and Rotations Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs283/fa10 Motivation Moving from rendering to simulation,

More information

Lecture 2.2 Cubic Splines

Lecture 2.2 Cubic Splines Lecture. Cubic Splines Cubic Spline The equation for a single parametric cubic spline segment is given by 4 i t Bit t t t i (..) where t and t are the parameter values at the beginning and end of the segment.

More information

Active Geodesics: Region-based Active Contour Segmentation with a Global Edge-based Constraint

Active Geodesics: Region-based Active Contour Segmentation with a Global Edge-based Constraint Active Geodesics: Region-based Active Contour Segmentation with a Global Edge-based Constraint Vikram Appia Anthony Yezzi Georgia Institute of Technology, Atlanta, GA, USA. Abstract We present an active

More information

weighted minimal surface model for surface reconstruction from scattered points, curves, and/or pieces of surfaces.

weighted minimal surface model for surface reconstruction from scattered points, curves, and/or pieces of surfaces. weighted minimal surface model for surface reconstruction from scattered points, curves, and/or pieces of surfaces. joint work with (S. Osher, R. Fedkiw and M. Kang) Desired properties for surface reconstruction:

More information

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece Parallel Computation of Spherical Parameterizations for Mesh Analysis Th. Athanasiadis and I. Fudos, Greece Introduction Mesh parameterization is a powerful geometry processing tool Applications Remeshing

More information

Fast Marching farthest point sampling

Fast Marching farthest point sampling Fast Marching farthest point sampling Carsten Moenning and Neil A. Dodgson University of Cambridge Computer Laboratory 15 JJ Thomson Avenue, Cambridge CB3 0FD - UK {cm230,nad}@cl.cam.ac.uk Abstract We

More information

Kurt Mehlhorn, MPI für Informatik. Curve and Surface Reconstruction p.1/25

Kurt Mehlhorn, MPI für Informatik. Curve and Surface Reconstruction p.1/25 Curve and Surface Reconstruction Kurt Mehlhorn MPI für Informatik Curve and Surface Reconstruction p.1/25 Curve Reconstruction: An Example probably, you see more than a set of points Curve and Surface

More information

Planes Intersecting Cones: Static Hypertext Version

Planes Intersecting Cones: Static Hypertext Version Page 1 of 12 Planes Intersecting Cones: Static Hypertext Version On this page, we develop some of the details of the plane-slicing-cone picture discussed in the introduction. The relationship between the

More information

Digital Geometry Processing Parameterization I

Digital Geometry Processing Parameterization I Problem Definition Given a surface (mesh) S in R 3 and a domain find a bective F: S Typical Domains Cutting to a Disk disk = genus zero + boundary sphere = closed genus zero Creates artificial boundary

More information

As a consequence of the operation, there are new incidences between edges and triangles that did not exist in K; see Figure II.9.

As a consequence of the operation, there are new incidences between edges and triangles that did not exist in K; see Figure II.9. II.4 Surface Simplification 37 II.4 Surface Simplification In applications it is often necessary to simplify the data or its representation. One reason is measurement noise, which we would like to eliminate,

More information

Three Dimensional Geometry. Linear Programming

Three Dimensional Geometry. Linear Programming Three Dimensional Geometry Linear Programming A plane is determined uniquely if any one of the following is known: The normal to the plane and its distance from the origin is given, i.e. equation of a

More information

Möbius Transformations in Scientific Computing. David Eppstein

Möbius Transformations in Scientific Computing. David Eppstein Möbius Transformations in Scientific Computing David Eppstein Univ. of California, Irvine School of Information and Computer Science (including joint work with Marshall Bern from WADS 01 and SODA 03) Outline

More information

Ray Optics I. Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex

Ray Optics I. Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex Phys 531 Lecture 8 20 September 2005 Ray Optics I Last time, finished EM theory Looked at complex boundary problems TIR: Snell s law complex Metal mirrors: index complex Today shift gears, start applying

More information

Fast sweeping methods for eikonal equations on triangular meshes

Fast sweeping methods for eikonal equations on triangular meshes Fast sweeping methods for eikonal equations on triangular meshes Jianliang Qian, Yong-Tao Zhang 2, and Hong-Kai Zhao 3 Abstract The original fast sweeping method, which is an efficient iterative method

More information

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 26 Physics, 4 th Edition James S. Walker Chapter 26 Geometrical Optics Units of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing

More information

Outline. Visualization Discretization Sampling Quantization Representation Continuous Discrete. Noise

Outline. Visualization Discretization Sampling Quantization Representation Continuous Discrete. Noise Fundamentals Data Outline Visualization Discretization Sampling Quantization Representation Continuous Discrete Noise 2 Data Data : Function dependent on one or more variables. Example Audio (1D) - depends

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012029 TITLE: Fast Voronoi Diagrams and Offsets on Triangulated Surfaces DISTRIBUTION: Approved for public release, distribution

More information

The Eikonal Equation

The Eikonal Equation The Eikonal Equation Numerical efficiency versus computational compleity Shu-Ren Hysing III Institute of Applied Mathematics LSIII University of Dortmund Level set - methodology By embedding an interface

More information

An introduction to mesh generation Part IV : elliptic meshing

An introduction to mesh generation Part IV : elliptic meshing Elliptic An introduction to mesh generation Part IV : elliptic meshing Department of Civil Engineering, Université catholique de Louvain, Belgium Elliptic Curvilinear Meshes Basic concept A curvilinear

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 1 3.1 Linearization and Optimization of Functions of Vectors 1 Problem Notation 2 Outline 3.1.1 Linearization 3.1.2 Optimization of Objective Functions 3.1.3 Constrained

More information

GEOPHYS 242: Near Surface Geophysical Imaging. Class 4: First-Arrival Traveltime Tomography Mon, April 11, 2011

GEOPHYS 242: Near Surface Geophysical Imaging. Class 4: First-Arrival Traveltime Tomography Mon, April 11, 2011 GEOPHYS 242: Near Surface Geophysical Imaging Class 4: First-Arrival Traveltime Tomography Mon, April 11, 2011 Wavefront tracing methods - speed versus accuracy Inversion algorithms - any magic approach?

More information

1 (5 max) 2 (10 max) 3 (20 max) 4 (30 max) 5 (10 max) 6 (15 extra max) total (75 max + 15 extra)

1 (5 max) 2 (10 max) 3 (20 max) 4 (30 max) 5 (10 max) 6 (15 extra max) total (75 max + 15 extra) Mierm Exam CS223b Stanford CS223b Computer Vision, Winter 2004 Feb. 18, 2004 Full Name: Email: This exam has 7 pages. Make sure your exam is not missing any sheets, and write your name on every page. The

More information

Chapter 7 Practical Considerations in Modeling. Chapter 7 Practical Considerations in Modeling

Chapter 7 Practical Considerations in Modeling. Chapter 7 Practical Considerations in Modeling CIVL 7/8117 1/43 Chapter 7 Learning Objectives To present concepts that should be considered when modeling for a situation by the finite element method, such as aspect ratio, symmetry, natural subdivisions,

More information

PS Computational Geometry Homework Assignment Sheet I (Due 16-March-2018)

PS Computational Geometry Homework Assignment Sheet I (Due 16-March-2018) Homework Assignment Sheet I (Due 16-March-2018) Assignment 1 Let f, g : N R with f(n) := 8n + 4 and g(n) := 1 5 n log 2 n. Prove explicitly that f O(g) and f o(g). Assignment 2 How can you generalize the

More information

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring Outcomes List for Math 200-200935 Multivariable Calculus (9 th edition of text) Spring 2009-2010 The purpose of the Outcomes List is to give you a concrete summary of the material you should know, and

More information

Lecture 6 Introduction to Numerical Geometry. Lin ZHANG, PhD School of Software Engineering Tongji University Spring 2018

Lecture 6 Introduction to Numerical Geometry. Lin ZHANG, PhD School of Software Engineering Tongji University Spring 2018 Lecture 6 Introduction to Numerical Geometry Lin ZHANG, PhD School of Software Engineering Tongji University Spring 2018 Outline Introduction Basic concepts in geometry Discrete geometry Metric for discrete

More information

Florida Association of Mu Alpha Theta January 2017 Geometry Team Solutions

Florida Association of Mu Alpha Theta January 2017 Geometry Team Solutions Geometry Team Solutions Florida ssociation of Mu lpha Theta January 017 Regional Team nswer Key Florida ssociation of Mu lpha Theta January 017 Geometry Team Solutions Question arts () () () () Question

More information

Columbus State Community College Mathematics Department Public Syllabus. Course and Number: MATH 1172 Engineering Mathematics A

Columbus State Community College Mathematics Department Public Syllabus. Course and Number: MATH 1172 Engineering Mathematics A Columbus State Community College Mathematics Department Public Syllabus Course and Number: MATH 1172 Engineering Mathematics A CREDITS: 5 CLASS HOURS PER WEEK: 5 PREREQUISITES: MATH 1151 with a C or higher

More information

Spline Curves. Spline Curves. Prof. Dr. Hans Hagen Algorithmic Geometry WS 2013/2014 1

Spline Curves. Spline Curves. Prof. Dr. Hans Hagen Algorithmic Geometry WS 2013/2014 1 Spline Curves Prof. Dr. Hans Hagen Algorithmic Geometry WS 2013/2014 1 Problem: In the previous chapter, we have seen that interpolating polynomials, especially those of high degree, tend to produce strong

More information

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6

Math background. 2D Geometric Transformations. Implicit representations. Explicit representations. Read: CS 4620 Lecture 6 Math background 2D Geometric Transformations CS 4620 Lecture 6 Read: Chapter 2: Miscellaneous Math Chapter 5: Linear Algebra Notation for sets, functions, mappings Linear transformations Matrices Matrix-vector

More information

The geometry of reflection and refraction Wave conversion and reflection coefficient

The geometry of reflection and refraction Wave conversion and reflection coefficient 7.2.2 Reflection and Refraction The geometry of reflection and refraction Wave conversion and reflection coefficient The geometry of reflection and refraction A wave incident on a boundary separating two

More information

Geometric Computations for Simulation

Geometric Computations for Simulation 1 Geometric Computations for Simulation David E. Johnson I. INTRODUCTION A static virtual world would be boring and unlikely to draw in a user enough to create a sense of immersion. Simulation allows things

More information

Path Planning and Numerical Methods for Static (Time-Independent / Stationary) Hamilton-Jacobi Equations

Path Planning and Numerical Methods for Static (Time-Independent / Stationary) Hamilton-Jacobi Equations Path Planning and Numerical Methods for Static (Time-Independent / Stationary) Hamilton-Jacobi Equations Ian Mitchell Department of Computer Science University of British Columbia Outline Path Planning

More information

Generalized Higher-Order Voronoi Diagrams on Polyhedral Surfaces

Generalized Higher-Order Voronoi Diagrams on Polyhedral Surfaces Generalized Higher-Order Voronoi Diagrams on Polyhedral Surfaces Marta Fort J. Antoni Sellarès Abstract We present an algorithm for computing exact shortest paths, and consequently distances, from a generalized

More information

coding of various parts showing different features, the possibility of rotation or of hiding covering parts of the object's surface to gain an insight

coding of various parts showing different features, the possibility of rotation or of hiding covering parts of the object's surface to gain an insight Three-Dimensional Object Reconstruction from Layered Spatial Data Michael Dangl and Robert Sablatnig Vienna University of Technology, Institute of Computer Aided Automation, Pattern Recognition and Image

More information

Escher s Circle Limit Anneke Bart Saint Louis University Introduction

Escher s Circle Limit Anneke Bart Saint Louis University  Introduction Escher s Circle Limit Anneke Bart Saint Louis University http://math.slu.edu/escher/ Introduction What are some of the most fundamental things we do in geometry? In the beginning we mainly look at lines,

More information

The World Is Not Flat: An Introduction to Modern Geometry

The World Is Not Flat: An Introduction to Modern Geometry The World Is Not Flat: An to The University of Iowa September 15, 2015 The story of a hunting party The story of a hunting party What color was the bear? The story of a hunting party Overview Gauss and

More information

Correspondence. CS 468 Geometry Processing Algorithms. Maks Ovsjanikov

Correspondence. CS 468 Geometry Processing Algorithms. Maks Ovsjanikov Shape Matching & Correspondence CS 468 Geometry Processing Algorithms Maks Ovsjanikov Wednesday, October 27 th 2010 Overall Goal Given two shapes, find correspondences between them. Overall Goal Given

More information

Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, Politecnico di Milano, February 3, 2017, Lesson 1

Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, Politecnico di Milano, February 3, 2017, Lesson 1 Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, attilio.frangi@polimi.it Politecnico di Milano, February 3, 2017, Lesson 1 1 Politecnico di Milano, February 3, 2017, Lesson 1 2 Outline

More information

Mesh Decimation. Mark Pauly

Mesh Decimation. Mark Pauly Mesh Decimation Mark Pauly Applications Oversampled 3D scan data ~150k triangles ~80k triangles Mark Pauly - ETH Zurich 280 Applications Overtessellation: E.g. iso-surface extraction Mark Pauly - ETH Zurich

More information

Geometric Modeling in Graphics

Geometric Modeling in Graphics Geometric Modeling in Graphics Part 10: Surface reconstruction Martin Samuelčík www.sccg.sk/~samuelcik samuelcik@sccg.sk Curve, surface reconstruction Finding compact connected orientable 2-manifold surface

More information

DEPARTMENT - Mathematics. Coding: N Number. A Algebra. G&M Geometry and Measure. S Statistics. P - Probability. R&P Ratio and Proportion

DEPARTMENT - Mathematics. Coding: N Number. A Algebra. G&M Geometry and Measure. S Statistics. P - Probability. R&P Ratio and Proportion DEPARTMENT - Mathematics Coding: N Number A Algebra G&M Geometry and Measure S Statistics P - Probability R&P Ratio and Proportion YEAR 7 YEAR 8 N1 Integers A 1 Simplifying G&M1 2D Shapes N2 Decimals S1

More information

Geodesics in heat: A new approach to computing distance

Geodesics in heat: A new approach to computing distance Geodesics in heat: A new approach to computing distance based on heat flow Diana Papyan Faculty of Informatics - Technische Universität München Abstract In this report we are going to introduce new method

More information

Optics II. Reflection and Mirrors

Optics II. Reflection and Mirrors Optics II Reflection and Mirrors Geometric Optics Using a Ray Approximation Light travels in a straight-line path in a homogeneous medium until it encounters a boundary between two different media The

More information

CSC Computer Graphics

CSC Computer Graphics // CSC. Computer Graphics Lecture Kasun@dscs.sjp.ac.lk Department of Computer Science University of Sri Jayewardanepura Polygon Filling Scan-Line Polygon Fill Algorithm Span Flood-Fill Algorithm Inside-outside

More information

Mathematical Morphology and Distance Transforms. Robin Strand

Mathematical Morphology and Distance Transforms. Robin Strand Mathematical Morphology and Distance Transforms Robin Strand robin.strand@it.uu.se Morphology Form and structure Mathematical framework used for: Pre-processing Noise filtering, shape simplification,...

More information

2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into

2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into 2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into the viewport of the current application window. A pixel

More information

Lectures in Discrete Differential Geometry 3 Discrete Surfaces

Lectures in Discrete Differential Geometry 3 Discrete Surfaces Lectures in Discrete Differential Geometry 3 Discrete Surfaces Etienne Vouga March 19, 2014 1 Triangle Meshes We will now study discrete surfaces and build up a parallel theory of curvature that mimics

More information

1 Proximity via Graph Spanners

1 Proximity via Graph Spanners CS273: Algorithms for Structure Handout # 11 and Motion in Biology Stanford University Tuesday, 4 May 2003 Lecture #11: 4 May 2004 Topics: Proximity via Graph Spanners Geometric Models of Molecules, I

More information

Computing generalized higher-order Voronoi diagrams on triangulated surfaces

Computing generalized higher-order Voronoi diagrams on triangulated surfaces See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/222808054 Computing generalized higher-order Voronoi diagrams on triangulated surfaces ARTICLE

More information

Higher Course Year /16

Higher Course Year /16 Higher Course Year 11 2015/16 Main heading Outcomes MathsWatch clip number Number Surds Use surds in calculations Simplify surds Rationalise surds 157 158 Expand brackets with surds Use surds in problems

More information

Large Mesh Deformation Using the Volumetric Graph Laplacian

Large Mesh Deformation Using the Volumetric Graph Laplacian Large Mesh Deformation Using the Volumetric Graph Laplacian Kun Zhou1 Jin Huang2 John Snyder3 Xinguo Liu1 Hujun Bao2 Baining Guo1 Heung-Yeung Shum1 1 Microsoft Research Asia 2 Zhejiang University 3 Microsoft

More information

Research in Computational Differential Geomet

Research in Computational Differential Geomet Research in Computational Differential Geometry November 5, 2014 Approximations Often we have a series of approximations which we think are getting close to looking like some shape. Approximations Often

More information

Minimum Bounding Boxes for Regular Cross-Polytopes

Minimum Bounding Boxes for Regular Cross-Polytopes Minimum Bounding Boxes for Regular Cross-Polytopes Salman Shahid Michigan State University shahids1@cse.msu.edu Dr. Sakti Pramanik Michigan State University pramanik@cse.msu.edu Dr. Charles B. Owen Michigan

More information

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a coordinate system and then the measuring of the point with

More information

GG450 4/5/2010. Today s material comes from p and in the text book. Please read and understand all of this material!

GG450 4/5/2010. Today s material comes from p and in the text book. Please read and understand all of this material! GG450 April 6, 2010 Seismic Reflection I Today s material comes from p. 32-33 and 81-116 in the text book. Please read and understand all of this material! Back to seismic waves Last week we talked about

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-4: Constrained optimization Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428 June

More information

A large number of user subroutines and utility routines is available in Abaqus, that are all programmed in Fortran. Subroutines are different for

A large number of user subroutines and utility routines is available in Abaqus, that are all programmed in Fortran. Subroutines are different for 1 2 3 A large number of user subroutines and utility routines is available in Abaqus, that are all programmed in Fortran. Subroutines are different for implicit (standard) and explicit solvers. Utility

More information

Mathematical Analysis of Tetrahedron (solid angle subtended by any tetrahedron at its vertex)

Mathematical Analysis of Tetrahedron (solid angle subtended by any tetrahedron at its vertex) From the SelectedWorks of Harish Chandra Rajpoot H.C. Rajpoot Winter March 29, 2015 Mathematical Analysis of Tetrahedron solid angle subtended by any tetrahedron at its vertex) Harish Chandra Rajpoot Rajpoot,

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 26 Propagation of Light Hecht, chapter 5 Spring 2015 Semester Matthew Jones Geometric Optics Typical problems in geometric optics: Given an optical system, what

More information

03 - Reconstruction. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Spring 17 - Daniele Panozzo

03 - Reconstruction. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Spring 17 - Daniele Panozzo 3 - Reconstruction Acknowledgements: Olga Sorkine-Hornung Geometry Acquisition Pipeline Scanning: results in range images Registration: bring all range images to one coordinate system Stitching/ reconstruction:

More information

Surfaces: notes on Geometry & Topology

Surfaces: notes on Geometry & Topology Surfaces: notes on Geometry & Topology 1 Surfaces A 2-dimensional region of 3D space A portion of space having length and breadth but no thickness 2 Defining Surfaces Analytically... Parametric surfaces

More information

calibrated coordinates Linear transformation pixel coordinates

calibrated coordinates Linear transformation pixel coordinates 1 calibrated coordinates Linear transformation pixel coordinates 2 Calibration with a rig Uncalibrated epipolar geometry Ambiguities in image formation Stratified reconstruction Autocalibration with partial

More information

Week 5: Geometry and Applications

Week 5: Geometry and Applications Week 5: Geometry and Applications Introduction Now that we have some tools from differentiation, we can study geometry, motion, and few other issues associated with functions of several variables. Much

More information

Numerical Methods for PDEs : Video 11: 1D FiniteFebruary Difference 15, Mappings Theory / 15

Numerical Methods for PDEs : Video 11: 1D FiniteFebruary Difference 15, Mappings Theory / 15 22.520 Numerical Methods for PDEs : Video 11: 1D Finite Difference Mappings Theory and Matlab February 15, 2015 22.520 Numerical Methods for PDEs : Video 11: 1D FiniteFebruary Difference 15, Mappings 2015

More information

Copyright. Anna Marie Bouboulis

Copyright. Anna Marie Bouboulis Copyright by Anna Marie Bouboulis 2013 The Report committee for Anna Marie Bouboulis Certifies that this is the approved version of the following report: Poincaré Disc Models in Hyperbolic Geometry APPROVED

More information

Surfaces, meshes, and topology

Surfaces, meshes, and topology Surfaces from Point Samples Surfaces, meshes, and topology A surface is a 2-manifold embedded in 3- dimensional Euclidean space Such surfaces are often approximated by triangle meshes 2 1 Triangle mesh

More information

A Note on Computation of a Ray Bending Path

A Note on Computation of a Ray Bending Path A Note on Computation of a Ray Bending Path Jerry Tessendorf August 7, 017 1 starting point Index of refraction spatial variations within a volume induce bending of the ray marching path that light takes

More information

Global Minimum for Active Contour Models: A Minimal Path Approach

Global Minimum for Active Contour Models: A Minimal Path Approach International Journal of Computer Vision 24(1), 57 78 (1997) c 1997 Kluwer Academic Publishers. Manufactured in The Netherlands. Global Minimum for Active Contour Models: A Minimal Path Approach LAURENT

More information