Machine Learning Department School of Computer Science Carnegie Mellon University. K- Means + GMMs

Size: px
Start display at page:

Download "Machine Learning Department School of Computer Science Carnegie Mellon University. K- Means + GMMs"

Transcription

1 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University K- Means + GMMs Clustering Readings: Murphy 25.5 Bishop 12.1, 12.3 HTF Mitchell - - EM, GMM Readings: Murphy , , Bishop 9 HTF Mitchell Matt Gormley Lecture 16 March 20,

2 Reminders Homework 5: Readings / Application of ML Release: Wed, Mar. 08 Due: Wed, Mar. 22 at 11:59pm 2

3 Peer Tutoring Tutor Tutee 3

4 K- MEANS 5

5 K- Means Outline Clustering: Motivation / Applications Optimization Background Coordinate Descent Block Coordinate Descent Clustering Inputs and Outputs Objective- based Clustering K- Means K- Means Objective Computational Complexity K- Means Algorithm / Lloyd s Method K- Means Initialization Random Farthest Point K- Means++ Last Lecture This Lecture 6

6 Clustering, Informal Goals Goal: Automatically partition unlabeled data into groups of similar datapoints. Question: When and why would we want to do this? Useful for: Automatically organizing data. Understanding hidden structure in data. Preprocessing for further analysis. Representing high- dimensional data in a low- dimensional space (e.g., for visualization purposes). Slide courtesy of Nina Balcan

7 Applications (Clustering comes up everywhere ) Cluster news articles or web pages or search results by topic. Cluster protein sequences by function or genes according to expression profile. Cluster users of social networks by interest (community detection). Facebook network Twitter Network Slide courtesy of Nina Balcan

8 Applications (Clustering comes up everywhere ) Cluster customers according to purchase history. Cluster galaxies or nearby stars (e.g. Sloan Digital Sky Survey) And many many more applications. Slide courtesy of Nina Balcan

9 Whiteboard: Optimization Background Coordinate Descent Block Coordinate Descent 10

10 Clustering Question: Which of these partitions is better? 11

11 Whiteboard: Clustering Inputs and Outputs Objective- based Clustering 12

12 Whiteboard: K- Means K- Means Objective Computational Complexity K- Means Algorithm / Lloyd s Method 13

13 Whiteboard: K- Means Initialization Random Furthest Traversal K- Means++ 14

14 Lloyd s method: Random Initialization Slide courtesy of Nina Balcan

15 Lloyd s method: Random Initialization Example: Given a set of datapoints Slide courtesy of Nina Balcan

16 Lloyd s method: Random Initialization Select initial centers at random Slide courtesy of Nina Balcan

17 Lloyd s method: Random Initialization Assign each point to its nearest center Slide courtesy of Nina Balcan

18 Lloyd s method: Random Initialization Recompute optimal centers given a fixed clustering Slide courtesy of Nina Balcan

19 Lloyd s method: Random Initialization Assign each point to its nearest center Slide courtesy of Nina Balcan

20 Lloyd s method: Random Initialization Recompute optimal centers given a fixed clustering Slide courtesy of Nina Balcan

21 Lloyd s method: Random Initialization Assign each point to its nearest center Slide courtesy of Nina Balcan

22 Lloyd s method: Random Initialization Recompute optimal centers given a fixed clustering Get a good quality solution in this example. Slide courtesy of Nina Balcan

23 Lloyd s method: Performance It always converges, but it may converge at a local optimum that is different from the global optimum, and in fact could be arbitrarily worse in terms of its score. Slide courtesy of Nina Balcan

24 Lloyd s method: Performance Local optimum: every point is assigned to its nearest center and every center is the mean value of its points. Slide courtesy of Nina Balcan

25 Lloyd s method: Performance.It is arbitrarily worse than optimum solution. Slide courtesy of Nina Balcan

26 Lloyd s method: Performance This bad performance, can happen even with well separated Gaussian clusters. Slide courtesy of Nina Balcan

27 Lloyd s method: Performance This bad performance, can happen even with well separated Gaussian clusters. Some Gaussian are combined.. Slide courtesy of Nina Balcan

28 Lloyd s method: Performance If we do random initialization, as k increases, it becomes more likely we won t have perfectly picked one center per Gaussian in our initialization (so Lloyd s method will output a bad solution). For k equal- sized Gaussians, Pr[each initial center is in a different Gaussian] "! " $ % & $ Becomes unlikely as k gets large. Slide courtesy of Nina Balcan

29 Another Initialization Idea: Furthest Point Heuristic Choose c 1 arbitrarily (or at random). For j = 2,, k Pick c j among datapoints x 1, x 2,, x n that is farthest from previously chosen c 1, c 2,, c j01 Fixes the Gaussian problem. But it can be thrown off by outliers. Slide courtesy of Nina Balcan

30 Furthest point heuristic does well on previous example Slide courtesy of Nina Balcan

31 Furthest point initialization heuristic sensitive to outliers Assume k=3 (0,1) (- 2,0) (3,0) (0,- 1) Slide courtesy of Nina Balcan

32 Furthest point initialization heuristic sensitive to outliers Assume k=3 (0,1) (- 2,0) (3,0) (0,- 1) Slide courtesy of Nina Balcan

33 K- means++ Initialization: D 6 sampling [AV07] Interpolate between random and furthest point initialization Let D(x) be the distance between a point x and its nearest center. Chose the next center proportional to D 6 (x). Choose c 1 at random. For j = 2,, k Pick c j among x 1, x 2,, x n according to the distribution Pr(c j = x i ) min x i c j? 2 D 6 (x i ) Theorem: K- means++ always attains an O(log k) approximation to optimal k- means solution in expectation. Running Lloyd s can only further improve the cost. Slide courtesy of Nina Balcan

34 K- means++ Idea: D 6 sampling Interpolate between random and furthest point initialization Let D(x) be the distance between a point x and its nearest center. Chose the next center proportional to D D x = min x i c j? α. α = 0, random sampling α =, furthest point (Side note: it actually works well for k- center) α = 2, k- means++ Side note: α = 1, works well for k- median Slide adapted from Nina Balcan

35 K- means ++ Fix (0,1) (- 2,0) (3,0) (0,- 1) Slide courtesy of Nina Balcan

36 K- means++/ Lloyd s Running Time K- means ++ initialization: O(nd) and one pass over data to select next center. So O(nkd) time in total. Lloyd s method Repeat until there is no change in the cost. For each j: C K {x S whose closest center is c j } Each round takes time O(nkd). For each j: c j mean of C K Exponential # of rounds in the worst case [AV07]. Expected polynomial time in the smoothed analysis (non worst- case) model! Slide courtesy of Nina Balcan

37 K- means++/ Lloyd s Summary Running Lloyd s can only further improve the cost. Exponential # of rounds in the worst case [AV07]. Expected polynomial time in the smoothed analysis model! Does well in practice. K- means++ always attains an O(log k) approximation to optimal k- means solution in expectation. Slide courtesy of Nina Balcan

38 What value of k? Heuristic: Find large gap between (k - 1)- means cost and k- means cost. Hold- out validation/cross- validation on auxiliary task (e.g., supervised learning task). Try hierarchical clustering. Slide courtesy of Nina Balcan

39 EM AND GMMS 43

40 Expectation- Maximization Outline Background Multivariate Gaussian Distribution Marginal Probabilities Building up to GMMs Distinction #1: Model vs. Objective Function Gaussian Naïve Bayes (GNB) Gaussian Discriminant Analysis Gaussian Mixture Model (GMM) Expectation- Maximization Distinction #2: Data Likelihood vs. Marginal Data Likelihood Distinction #3: Latent Variables vs. Parameters Objective Functions for EM Hard (Viterbi) EM Algorithm Example: K- Means as Hard EM Soft (Standard) EM Algorithm Example: Soft EM for GMM Properties of EM Nonconvexity / Local Optimization Example: Grammar Induction Variants of EM 44

41 Whiteboard Background Multivariate Gaussian Distribution Marginal Probabilities 46

42 GAUSSIAN MIXTURE MODEL (GMM) 47

43 Whiteboard Building up to GMMs Distinction #1: Model vs. Objective Function Gaussian Naïve Bayes (GNB) Gaussian Discriminant Analysis Gaussian Mixture Model (GMM) 48

44 Gaussian Discriminant Analysis Data: D = {( (i), (i) )} N i=1 where (i) R M and z (i) {1,...,K} Generative Story: z Categorical( ) Gaussian(µ z, z) Model: Joint: p(,z;, µ, )=p( z; µ, )p(z; ) Log- likelihood: (, µ, )= = N i=1 N i=1 p( (i),z (i) ;, µ, ) p( (i) z (i) ; µ, )+ p(z (i) ; ) 49

45 Gaussian Discriminant Analysis Data: D = {( (i), (i) )} N i=1 where (i) R M and z (i) {1,...,K} Log- likelihood: (, µ, )= N p( (i) z (i) ; µ, )+ p(z (i) ; ) i=1 Maximum Likelihood Estimates: Take the derivative of the Lagrangian, set it equal to zero and solve. N k = 1 N µ k = k = i=1 I(z (i) = k), k N i=1 I(z(i) = k) (i), k N i=1 I(z(i) = k) N i=1 I(z(i) = k)( (i) µ k )( (i) µ k ) T N i=1 I(z(i) = k) Implementation: Just counting, k 50

46 Gaussian Mixture- Model Assume we are given data, D, consisting of N fully unsupervised examples in M dimensions: Data: (i) D = {t(i) }N i=1 where t Generative Story: Model: Joint: RM z Categorical( ) t Gaussian(µz, z) p(t, z;, µ, ) = p(t z; µ, )p(z; ) K Marginal: p(t;, µ, ) = p(t z; µ, )p(z; ) z=1 (Marginal) Log- likelihood: (, µ, ) = HQ; N p(t(i) ;, µ, ) i=1 N = i=1 HQ; K z=1 p(t(i) z; µ, )p(z; ) 51

47 Mixture- Model Assume we are given data, D, consisting of N fully unsupervised examples in M dimensions: Data: (i) D = {t(i) }N i=1 where t Generative Story: Model: RM Multinomial( Categorical( )) pgaussian(µ ( z) z, z) z t p Joint:, (t, z) = p (t z)p (z) K Marginal: p, (t) = p (t z)p (z) z=1 (Marginal) Log- likelihood: ( ) = HQ; N p, (t(i) ) i=1 N = i=1 HQ; K z=1 p (t(i) z)p (z) 52

48 Mixture- Model Assume we are given data, D, consisting of N fully unsupervised examples in M dimensions: Data: (i) D = {t(i) }N i=1 where t Generative Story: Model: RM Multinomial( Categorical( )) pgaussian(µ ( z) ) z, zthis could be any z t p Joint:, arbitrary distribution parameterized by θ. (t, z) = p (t z)p (z) K Marginal: p, (t) = (Marginal) Log- likelihood: ( ) = HQ; Today we re thinking p (t z)p (z) about the case where it z=1 is a Multivariate Gaussian. N p, (t(i) ) i=1 N = i=1 HQ; K z=1 p (t(i) z)p (z) 53

49 Learning a Mixture Model Supervised Learning: The parameters decouple! D = {( (i), (i) )} N i=1 Z Unsupervised Learning: Parameters are coupled by marginalization. D = { (i) } N i=1 Z X 1 X 2 X M X 1 X 2 X M, =, N i=1 p ( (i) z (i) )p (z (i) ), =, N i=1 K z=1 p ( (i) z)p (z) = N p ( (i) z (i) ) i=1 = N p (z (i) ) i=1 54

50 Learning a Mixture Model Supervised Learning: The parameters decouple! Unsupervised Learning: Parameters are coupled by marginalization. D = {(t(i), x(i) )}N i=1 D = {t(i) }N i=1 Z Training certainly isn t as simple as the supervised case., In many cases, we could still use box optimization Xsome black- X2 XM 1 method (e.g. Newton- Raphson) N to solve this coupled (i) (i) (i) = `;K t HQ; p (t z )p (z ) optimization problem., i=1 Z X1, X2 = `;K t, N i=1 HQ; XM K z=1 p (t(i) z)p (z) N = `;K t HQ; p (t(i) z (i) ) This lecture is about a more problem- i=1 specific method: EM. = `;K t N i=1 HQ; p (z (i) ) 55

51 EXAMPLE: K- MEANS VS GMM 56

52 Example: K- Means 57

53 Example: K- Means 58

54 Example: K- Means 59

55 Example: K- Means 60

56 Example: K- Means 61

57 Example: K- Means 62

58 Example: K- Means 63

59 Example: K- Means 64

60 Example: GMM 65

61 Example: GMM 66

62 Example: GMM 67

63 Example: GMM 68

64 Example: GMM 69

65 Example: GMM 70

66 Example: GMM 71

67 Example: GMM 72

68 Example: GMM 73

69 Example: GMM 74

70 Example: GMM 75

71 Example: GMM 76

72 Example: GMM 77

73 Example: GMM 78

74 Example: GMM 79

75 Example: GMM 80

76 Example: GMM 81

77 Example: GMM 82

78 Example: GMM 83

79 Example: GMM 84

80 Example: GMM 85

81 Example: GMM 86

82 K- Means vs. GMM Convergence: K- Means tends to converge much faster than a GMM Speed: Each iteration of K- Means is computationally less intensive than each iteration of a GMM Initialization: To initialize a GMM, we typically first run K- Means and use the resulting cluster centers as the means of the Gaussian components Output: A GMM yields a probability distribution over the cluster assignment for each point; whereas K- Means gives a single hard assignment 87

Clustering. Unsupervised Learning

Clustering. Unsupervised Learning Clustering. Unsupervised Learning Maria-Florina Balcan 03/02/2016 Clustering, Informal Goals Goal: Automatically partition unlabeled data into groups of similar datapoints. Question: When and why would

More information

Clustering. Unsupervised Learning

Clustering. Unsupervised Learning Clustering. Unsupervised Learning Maria-Florina Balcan 11/05/2018 Clustering, Informal Goals Goal: Automatically partition unlabeled data into groups of similar datapoints. Question: When and why would

More information

Clustering. Unsupervised Learning

Clustering. Unsupervised Learning Clustering. Unsupervised Learning Maria-Florina Balcan 04/06/2015 Reading: Chapter 14.3: Hastie, Tibshirani, Friedman. Additional resources: Center Based Clustering: A Foundational Perspective. Awasthi,

More information

Kernels + K-Means Introduction to Machine Learning. Matt Gormley Lecture 29 April 25, 2018

Kernels + K-Means Introduction to Machine Learning. Matt Gormley Lecture 29 April 25, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Kernels + K-Means Matt Gormley Lecture 29 April 25, 2018 1 Reminders Homework 8:

More information

Clustering. CE-717: Machine Learning Sharif University of Technology Spring Soleymani

Clustering. CE-717: Machine Learning Sharif University of Technology Spring Soleymani Clustering CE-717: Machine Learning Sharif University of Technology Spring 2016 Soleymani Outline Clustering Definition Clustering main approaches Partitional (flat) Hierarchical Clustering validation

More information

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning Associate Instructor: Herke van Hoof (herke.vanhoof@mail.mcgill.ca) Slides mostly by: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551

More information

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin Clustering K-means Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, 2014 Carlos Guestrin 2005-2014 1 Clustering images Set of Images [Goldberger et al.] Carlos Guestrin 2005-2014

More information

Clustering web search results

Clustering web search results Clustering K-means Machine Learning CSE546 Emily Fox University of Washington November 4, 2013 1 Clustering images Set of Images [Goldberger et al.] 2 1 Clustering web search results 3 Some Data 4 2 K-means

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Clustering and EM Barnabás Póczos & Aarti Singh Contents Clustering K-means Mixture of Gaussians Expectation Maximization Variational Methods 2 Clustering 3 K-

More information

1 Case study of SVM (Rob)

1 Case study of SVM (Rob) DRAFT a final version will be posted shortly COS 424: Interacting with Data Lecturer: Rob Schapire and David Blei Lecture # 8 Scribe: Indraneel Mukherjee March 1, 2007 In the previous lecture we saw how

More information

Inference and Representation

Inference and Representation Inference and Representation Rachel Hodos New York University Lecture 5, October 6, 2015 Rachel Hodos Lecture 5: Inference and Representation Today: Learning with hidden variables Outline: Unsupervised

More information

Clustering Lecture 5: Mixture Model

Clustering Lecture 5: Mixture Model Clustering Lecture 5: Mixture Model Jing Gao SUNY Buffalo 1 Outline Basics Motivation, definition, evaluation Methods Partitional Hierarchical Density-based Mixture model Spectral methods Advanced topics

More information

Perceptron Introduction to Machine Learning. Matt Gormley Lecture 5 Jan. 31, 2018

Perceptron Introduction to Machine Learning. Matt Gormley Lecture 5 Jan. 31, 2018 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Perceptron Matt Gormley Lecture 5 Jan. 31, 2018 1 Q&A Q: We pick the best hyperparameters

More information

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin Clustering K-means Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, 2014 Carlos Guestrin 2005-2014 1 Clustering images Set of Images [Goldberger et al.] Carlos Guestrin 2005-2014

More information

ECE 5424: Introduction to Machine Learning

ECE 5424: Introduction to Machine Learning ECE 5424: Introduction to Machine Learning Topics: Unsupervised Learning: Kmeans, GMM, EM Readings: Barber 20.1-20.3 Stefan Lee Virginia Tech Tasks Supervised Learning x Classification y Discrete x Regression

More information

Machine Learning. Unsupervised Learning. Manfred Huber

Machine Learning. Unsupervised Learning. Manfred Huber Machine Learning Unsupervised Learning Manfred Huber 2015 1 Unsupervised Learning In supervised learning the training data provides desired target output for learning In unsupervised learning the training

More information

Clustering. K-means clustering

Clustering. K-means clustering Clustering K-means clustering Clustering Motivation: Identify clusters of data points in a multidimensional space, i.e. partition the data set {x 1,...,x N } into K clusters. Intuition: A cluster is a

More information

Clustering COMS 4771

Clustering COMS 4771 Clustering COMS 4771 1. Clustering Unsupervised classification / clustering Unsupervised classification Input: x 1,..., x n R d, target cardinality k N. Output: function f : R d {1,..., k} =: [k]. Typical

More information

K Nearest Neighbor Wrap Up K- Means Clustering. Slides adapted from Prof. Carpuat

K Nearest Neighbor Wrap Up K- Means Clustering. Slides adapted from Prof. Carpuat K Nearest Neighbor Wrap Up K- Means Clustering Slides adapted from Prof. Carpuat K Nearest Neighbor classification Classification is based on Test instance with Training Data K: number of neighbors that

More information

Unsupervised Learning: Clustering

Unsupervised Learning: Clustering Unsupervised Learning: Clustering Vibhav Gogate The University of Texas at Dallas Slides adapted from Carlos Guestrin, Dan Klein & Luke Zettlemoyer Machine Learning Supervised Learning Unsupervised Learning

More information

Mixture Models and the EM Algorithm

Mixture Models and the EM Algorithm Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine c 2017 1 Finite Mixture Models Say we have a data set D = {x 1,..., x N } where x i is

More information

COMS 4771 Clustering. Nakul Verma

COMS 4771 Clustering. Nakul Verma COMS 4771 Clustering Nakul Verma Supervised Learning Data: Supervised learning Assumption: there is a (relatively simple) function such that for most i Learning task: given n examples from the data, find

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University October 9, 2012 Today: Graphical models Bayes Nets: Inference Learning Readings: Required: Bishop chapter

More information

K-Means and Gaussian Mixture Models

K-Means and Gaussian Mixture Models K-Means and Gaussian Mixture Models David Rosenberg New York University June 15, 2015 David Rosenberg (New York University) DS-GA 1003 June 15, 2015 1 / 43 K-Means Clustering Example: Old Faithful Geyser

More information

Expectation Maximization. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University

Expectation Maximization. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University Expectation Maximization Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University April 10 th, 2006 1 Announcements Reminder: Project milestone due Wednesday beginning of class 2 Coordinate

More information

10. MLSP intro. (Clustering: K-means, EM, GMM, etc.)

10. MLSP intro. (Clustering: K-means, EM, GMM, etc.) 10. MLSP intro. (Clustering: K-means, EM, GMM, etc.) Rahil Mahdian 01.04.2016 LSV Lab, Saarland University, Germany What is clustering? Clustering is the classification of objects into different groups,

More information

The EM Algorithm Lecture What's the Point? Maximum likelihood parameter estimates: One denition of the \best" knob settings. Often impossible to nd di

The EM Algorithm Lecture What's the Point? Maximum likelihood parameter estimates: One denition of the \best knob settings. Often impossible to nd di The EM Algorithm This lecture introduces an important statistical estimation algorithm known as the EM or \expectation-maximization" algorithm. It reviews the situations in which EM works well and its

More information

Mixture Models and EM

Mixture Models and EM Table of Content Chapter 9 Mixture Models and EM -means Clustering Gaussian Mixture Models (GMM) Expectation Maximiation (EM) for Mixture Parameter Estimation Introduction Mixture models allows Complex

More information

CS839: Probabilistic Graphical Models. Lecture 10: Learning with Partially Observed Data. Theo Rekatsinas

CS839: Probabilistic Graphical Models. Lecture 10: Learning with Partially Observed Data. Theo Rekatsinas CS839: Probabilistic Graphical Models Lecture 10: Learning with Partially Observed Data Theo Rekatsinas 1 Partially Observed GMs Speech recognition 2 Partially Observed GMs Evolution 3 Partially Observed

More information

CS 6140: Machine Learning Spring 2016

CS 6140: Machine Learning Spring 2016 CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa?on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Logis?cs Exam

More information

Search Engines. Information Retrieval in Practice

Search Engines. Information Retrieval in Practice Search Engines Information Retrieval in Practice All slides Addison Wesley, 2008 Classification and Clustering Classification and clustering are classical pattern recognition / machine learning problems

More information

ECE521: Week 11, Lecture March 2017: HMM learning/inference. With thanks to Russ Salakhutdinov

ECE521: Week 11, Lecture March 2017: HMM learning/inference. With thanks to Russ Salakhutdinov ECE521: Week 11, Lecture 20 27 March 2017: HMM learning/inference With thanks to Russ Salakhutdinov Examples of other perspectives Murphy 17.4 End of Russell & Norvig 15.2 (Artificial Intelligence: A Modern

More information

Clustering. CS294 Practical Machine Learning Junming Yin 10/09/06

Clustering. CS294 Practical Machine Learning Junming Yin 10/09/06 Clustering CS294 Practical Machine Learning Junming Yin 10/09/06 Outline Introduction Unsupervised learning What is clustering? Application Dissimilarity (similarity) of objects Clustering algorithm K-means,

More information

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2017

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2017 CPSC 340: Machine Learning and Data Mining Principal Component Analysis Fall 2017 Assignment 3: 2 late days to hand in tonight. Admin Assignment 4: Due Friday of next week. Last Time: MAP Estimation MAP

More information

Experimental Design + k- Nearest Neighbors

Experimental Design + k- Nearest Neighbors 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Experimental Design + k- Nearest Neighbors KNN Readings: Mitchell 8.2 HTF 13.3

More information

Overview Citation. ML Introduction. Overview Schedule. ML Intro Dataset. Introduction to Semi-Supervised Learning Review 10/4/2010

Overview Citation. ML Introduction. Overview Schedule. ML Intro Dataset. Introduction to Semi-Supervised Learning Review 10/4/2010 INFORMATICS SEMINAR SEPT. 27 & OCT. 4, 2010 Introduction to Semi-Supervised Learning Review 2 Overview Citation X. Zhu and A.B. Goldberg, Introduction to Semi- Supervised Learning, Morgan & Claypool Publishers,

More information

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme, Nicolas Schilling

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme, Nicolas Schilling Machine Learning B. Unsupervised Learning B.1 Cluster Analysis Lars Schmidt-Thieme, Nicolas Schilling Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim,

More information

CSC 411: Lecture 12: Clustering

CSC 411: Lecture 12: Clustering CSC 411: Lecture 12: Clustering Raquel Urtasun & Rich Zemel University of Toronto Oct 22, 2015 Urtasun & Zemel (UofT) CSC 411: 12-Clustering Oct 22, 2015 1 / 18 Today Unsupervised learning Clustering -means

More information

Lecture 11: Clustering Introduction and Projects Machine Learning

Lecture 11: Clustering Introduction and Projects Machine Learning Lecture 11: Clustering Introduction and Projects Machine Learning Andrew Rosenberg March 12, 2010 1/1 Last Time Junction Tree Algorithm Efficient Marginals in Graphical Models 2/1 Today Clustering Project

More information

Backpropagation + Deep Learning

Backpropagation + Deep Learning 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Backpropagation + Deep Learning Matt Gormley Lecture 13 Mar 1, 2018 1 Reminders

More information

Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2017)

Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2017) Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2017) Week 9: Data Mining (4/4) March 9, 2017 Jimmy Lin David R. Cheriton School of Computer Science University of Waterloo These slides

More information

What to come. There will be a few more topics we will cover on supervised learning

What to come. There will be a few more topics we will cover on supervised learning Summary so far Supervised learning learn to predict Continuous target regression; Categorical target classification Linear Regression Classification Discriminative models Perceptron (linear) Logistic regression

More information

Clustering. Image segmentation, document clustering, protein class discovery, compression

Clustering. Image segmentation, document clustering, protein class discovery, compression Clustering CS 444 Some material on these is slides borrowed from Andrew Moore's machine learning tutorials located at: Clustering The problem of grouping unlabeled data on the basis of similarity. A key

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing ECG782: Multidimensional Digital Signal Processing Object Recognition http://www.ee.unlv.edu/~b1morris/ecg782/ 2 Outline Knowledge Representation Statistical Pattern Recognition Neural Networks Boosting

More information

LogisBcs. CS 6140: Machine Learning Spring K-means Algorithm. Today s Outline 3/27/16

LogisBcs. CS 6140: Machine Learning Spring K-means Algorithm. Today s Outline 3/27/16 LogisBcs CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and InformaBon Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Exam

More information

Clustering. So far in the course. Clustering. Clustering. Subhransu Maji. CMPSCI 689: Machine Learning. dist(x, y) = x y 2 2

Clustering. So far in the course. Clustering. Clustering. Subhransu Maji. CMPSCI 689: Machine Learning. dist(x, y) = x y 2 2 So far in the course Clustering Subhransu Maji : Machine Learning 2 April 2015 7 April 2015 Supervised learning: learning with a teacher You had training data which was (feature, label) pairs and the goal

More information

Bioinformatics - Lecture 07

Bioinformatics - Lecture 07 Bioinformatics - Lecture 07 Bioinformatics Clusters and networks Martin Saturka http://www.bioplexity.org/lectures/ EBI version 0.4 Creative Commons Attribution-Share Alike 2.5 License Learning on profiles

More information

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask Machine Learning and Data Mining Clustering (1): Basics Kalev Kask Unsupervised learning Supervised learning Predict target value ( y ) given features ( x ) Unsupervised learning Understand patterns of

More information

Unsupervised Learning. Clustering and the EM Algorithm. Unsupervised Learning is Model Learning

Unsupervised Learning. Clustering and the EM Algorithm. Unsupervised Learning is Model Learning Unsupervised Learning Clustering and the EM Algorithm Susanna Ricco Supervised Learning Given data in the form < x, y >, y is the target to learn. Good news: Easy to tell if our algorithm is giving the

More information

k-means, k-means++ Barna Saha March 8, 2016

k-means, k-means++ Barna Saha March 8, 2016 k-means, k-means++ Barna Saha March 8, 2016 K-Means: The Most Popular Clustering Algorithm k-means clustering problem is one of the oldest and most important problem. K-Means: The Most Popular Clustering

More information

Note Set 4: Finite Mixture Models and the EM Algorithm

Note Set 4: Finite Mixture Models and the EM Algorithm Note Set 4: Finite Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine Finite Mixture Models A finite mixture model with K components, for

More information

Introduction to Mobile Robotics

Introduction to Mobile Robotics Introduction to Mobile Robotics Clustering Wolfram Burgard Cyrill Stachniss Giorgio Grisetti Maren Bennewitz Christian Plagemann Clustering (1) Common technique for statistical data analysis (machine learning,

More information

Hard clustering. Each object is assigned to one and only one cluster. Hierarchical clustering is usually hard. Soft (fuzzy) clustering

Hard clustering. Each object is assigned to one and only one cluster. Hierarchical clustering is usually hard. Soft (fuzzy) clustering An unsupervised machine learning problem Grouping a set of objects in such a way that objects in the same group (a cluster) are more similar (in some sense or another) to each other than to those in other

More information

A Dendrogram. Bioinformatics (Lec 17)

A Dendrogram. Bioinformatics (Lec 17) A Dendrogram 3/15/05 1 Hierarchical Clustering [Johnson, SC, 1967] Given n points in R d, compute the distance between every pair of points While (not done) Pick closest pair of points s i and s j and

More information

Gradient Descent. Wed Sept 20th, James McInenrey Adapted from slides by Francisco J. R. Ruiz

Gradient Descent. Wed Sept 20th, James McInenrey Adapted from slides by Francisco J. R. Ruiz Gradient Descent Wed Sept 20th, 2017 James McInenrey Adapted from slides by Francisco J. R. Ruiz Housekeeping A few clarifications of and adjustments to the course schedule: No more breaks at the midpoint

More information

Clustering. Subhransu Maji. CMPSCI 689: Machine Learning. 2 April April 2015

Clustering. Subhransu Maji. CMPSCI 689: Machine Learning. 2 April April 2015 Clustering Subhransu Maji CMPSCI 689: Machine Learning 2 April 2015 7 April 2015 So far in the course Supervised learning: learning with a teacher You had training data which was (feature, label) pairs

More information

K-Means Clustering 3/3/17

K-Means Clustering 3/3/17 K-Means Clustering 3/3/17 Unsupervised Learning We have a collection of unlabeled data points. We want to find underlying structure in the data. Examples: Identify groups of similar data points. Clustering

More information

Nearest Neighbor with KD Trees

Nearest Neighbor with KD Trees Case Study 2: Document Retrieval Finding Similar Documents Using Nearest Neighbors Machine Learning/Statistics for Big Data CSE599C1/STAT592, University of Washington Emily Fox January 22 nd, 2013 1 Nearest

More information

CS 229 Midterm Review

CS 229 Midterm Review CS 229 Midterm Review Course Staff Fall 2018 11/2/2018 Outline Today: SVMs Kernels Tree Ensembles EM Algorithm / Mixture Models [ Focus on building intuition, less so on solving specific problems. Ask

More information

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition Pattern Recognition Kjell Elenius Speech, Music and Hearing KTH March 29, 2007 Speech recognition 2007 1 Ch 4. Pattern Recognition 1(3) Bayes Decision Theory Minimum-Error-Rate Decision Rules Discriminant

More information

Homework 4: Clustering, Recommenders, Dim. Reduction, ML and Graph Mining (due November 19 th, 2014, 2:30pm, in class hard-copy please)

Homework 4: Clustering, Recommenders, Dim. Reduction, ML and Graph Mining (due November 19 th, 2014, 2:30pm, in class hard-copy please) Virginia Tech. Computer Science CS 5614 (Big) Data Management Systems Fall 2014, Prakash Homework 4: Clustering, Recommenders, Dim. Reduction, ML and Graph Mining (due November 19 th, 2014, 2:30pm, in

More information

Clustering in R d. Clustering. Widely-used clustering methods. The k-means optimization problem CSE 250B

Clustering in R d. Clustering. Widely-used clustering methods. The k-means optimization problem CSE 250B Clustering in R d Clustering CSE 250B Two common uses of clustering: Vector quantization Find a finite set of representatives that provides good coverage of a complex, possibly infinite, high-dimensional

More information

Based on Raymond J. Mooney s slides

Based on Raymond J. Mooney s slides Instance Based Learning Based on Raymond J. Mooney s slides University of Texas at Austin 1 Example 2 Instance-Based Learning Unlike other learning algorithms, does not involve construction of an explicit

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University March 4, 2015 Today: Graphical models Bayes Nets: EM Mixture of Gaussian clustering Learning Bayes Net structure

More information

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016 CPSC 340: Machine Learning and Data Mining Principal Component Analysis Fall 2016 A2/Midterm: Admin Grades/solutions will be posted after class. Assignment 4: Posted, due November 14. Extra office hours:

More information

Value Iteration. Reinforcement Learning: Introduction to Machine Learning. Matt Gormley Lecture 23 Apr. 10, 2019

Value Iteration. Reinforcement Learning: Introduction to Machine Learning. Matt Gormley Lecture 23 Apr. 10, 2019 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Reinforcement Learning: Value Iteration Matt Gormley Lecture 23 Apr. 10, 2019 1

More information

10701 Machine Learning. Clustering

10701 Machine Learning. Clustering 171 Machine Learning Clustering What is Clustering? Organizing data into clusters such that there is high intra-cluster similarity low inter-cluster similarity Informally, finding natural groupings among

More information

Semi-Supervised Clustering with Partial Background Information

Semi-Supervised Clustering with Partial Background Information Semi-Supervised Clustering with Partial Background Information Jing Gao Pang-Ning Tan Haibin Cheng Abstract Incorporating background knowledge into unsupervised clustering algorithms has been the subject

More information

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme

Machine Learning. B. Unsupervised Learning B.1 Cluster Analysis. Lars Schmidt-Thieme Machine Learning B. Unsupervised Learning B.1 Cluster Analysis Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute for Computer Science University of Hildesheim, Germany

More information

Machine Learning for OR & FE

Machine Learning for OR & FE Machine Learning for OR & FE Unsupervised Learning: Clustering Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com (Some material

More information

Cluster analysis formalism, algorithms. Department of Cybernetics, Czech Technical University in Prague.

Cluster analysis formalism, algorithms. Department of Cybernetics, Czech Technical University in Prague. Cluster analysis formalism, algorithms Jiří Kléma Department of Cybernetics, Czech Technical University in Prague http://ida.felk.cvut.cz poutline motivation why clustering? applications, clustering as

More information

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz Unsupervised learning Daniel Hennes 29.01.2018 (WS 2017/18) University Stuttgart - IPVS - Machine Learning & Robotics 1 Today Supervised learning Regression (linear

More information

A Computational Theory of Clustering

A Computational Theory of Clustering A Computational Theory of Clustering Avrim Blum Carnegie Mellon University Based on work joint with Nina Balcan, Anupam Gupta, and Santosh Vempala Point of this talk A new way to theoretically analyze

More information

k-means demo Administrative Machine learning: Unsupervised learning" Assignment 5 out

k-means demo Administrative Machine learning: Unsupervised learning Assignment 5 out Machine learning: Unsupervised learning" David Kauchak cs Spring 0 adapted from: http://www.stanford.edu/class/cs76/handouts/lecture7-clustering.ppt http://www.youtube.com/watch?v=or_-y-eilqo Administrative

More information

10601 Machine Learning. Hierarchical clustering. Reading: Bishop: 9-9.2

10601 Machine Learning. Hierarchical clustering. Reading: Bishop: 9-9.2 161 Machine Learning Hierarchical clustering Reading: Bishop: 9-9.2 Second half: Overview Clustering - Hierarchical, semi-supervised learning Graphical models - Bayesian networks, HMMs, Reasoning under

More information

K-Means Clustering. Sargur Srihari

K-Means Clustering. Sargur Srihari K-Means Clustering Sargur srihari@cedar.buffalo.edu 1 Topics in Mixture Models and EM Mixture models K-means Clustering Mixtures of Gaussians Maximum Likelihood EM for Gaussian mistures EM Algorithm Gaussian

More information

Clustering: Classic Methods and Modern Views

Clustering: Classic Methods and Modern Views Clustering: Classic Methods and Modern Views Marina Meilă University of Washington mmp@stat.washington.edu June 22, 2015 Lorentz Center Workshop on Clusters, Games and Axioms Outline Paradigms for clustering

More information

A Course in Machine Learning

A Course in Machine Learning A Course in Machine Learning Hal Daumé III 13 UNSUPERVISED LEARNING If you have access to labeled training data, you know what to do. This is the supervised setting, in which you have a teacher telling

More information

A Brief Look at Optimization

A Brief Look at Optimization A Brief Look at Optimization CSC 412/2506 Tutorial David Madras January 18, 2018 Slides adapted from last year s version Overview Introduction Classes of optimization problems Linear programming Steepest

More information

Lecture 2 The k-means clustering problem

Lecture 2 The k-means clustering problem CSE 29: Unsupervised learning Spring 2008 Lecture 2 The -means clustering problem 2. The -means cost function Last time we saw the -center problem, in which the input is a set S of data points and the

More information

Scan Matching. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics

Scan Matching. Pieter Abbeel UC Berkeley EECS. Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics Scan Matching Pieter Abbeel UC Berkeley EECS Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics Scan Matching Overview Problem statement: Given a scan and a map, or a scan and a scan,

More information

CS 2750 Machine Learning. Lecture 19. Clustering. CS 2750 Machine Learning. Clustering. Groups together similar instances in the data sample

CS 2750 Machine Learning. Lecture 19. Clustering. CS 2750 Machine Learning. Clustering. Groups together similar instances in the data sample Lecture 9 Clustering Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square Clustering Groups together similar instances in the data sample Basic clustering problem: distribute data into k different groups

More information

ADVANCED MACHINE LEARNING MACHINE LEARNING. Kernel for Clustering kernel K-Means

ADVANCED MACHINE LEARNING MACHINE LEARNING. Kernel for Clustering kernel K-Means 1 MACHINE LEARNING Kernel for Clustering ernel K-Means Outline of Today s Lecture 1. Review principle and steps of K-Means algorithm. Derive ernel version of K-means 3. Exercise: Discuss the geometrical

More information

Expectation-Maximization. Nuno Vasconcelos ECE Department, UCSD

Expectation-Maximization. Nuno Vasconcelos ECE Department, UCSD Expectation-Maximization Nuno Vasconcelos ECE Department, UCSD Plan for today last time we started talking about mixture models we introduced the main ideas behind EM to motivate EM, we looked at classification-maximization

More information

CSE 573: Artificial Intelligence Autumn 2010

CSE 573: Artificial Intelligence Autumn 2010 CSE 573: Artificial Intelligence Autumn 2010 Lecture 16: Machine Learning Topics 12/7/2010 Luke Zettlemoyer Most slides over the course adapted from Dan Klein. 1 Announcements Syllabus revised Machine

More information

10-701/15-781, Fall 2006, Final

10-701/15-781, Fall 2006, Final -7/-78, Fall 6, Final Dec, :pm-8:pm There are 9 questions in this exam ( pages including this cover sheet). If you need more room to work out your answer to a question, use the back of the page and clearly

More information

Latent Variable Models and Expectation Maximization

Latent Variable Models and Expectation Maximization Latent Variable Models and Expectation Maximization Oliver Schulte - CMPT 726 Bishop PRML Ch. 9 2 4 6 8 1 12 14 16 18 2 4 6 8 1 12 14 16 18 5 1 15 2 25 5 1 15 2 25 2 4 6 8 1 12 14 2 4 6 8 1 12 14 5 1 15

More information

L9: Hierarchical Clustering

L9: Hierarchical Clustering L9: Hierarchical Clustering This marks the beginning of the clustering section. The basic idea is to take a set X of items and somehow partition X into subsets, so each subset has similar items. Obviously,

More information

CS 1675 Introduction to Machine Learning Lecture 18. Clustering. Clustering. Groups together similar instances in the data sample

CS 1675 Introduction to Machine Learning Lecture 18. Clustering. Clustering. Groups together similar instances in the data sample CS 1675 Introduction to Machine Learning Lecture 18 Clustering Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square Clustering Groups together similar instances in the data sample Basic clustering problem:

More information

INF4820, Algorithms for AI and NLP: Evaluating Classifiers Clustering

INF4820, Algorithms for AI and NLP: Evaluating Classifiers Clustering INF4820, Algorithms for AI and NLP: Evaluating Classifiers Clustering Erik Velldal University of Oslo Sept. 18, 2012 Topics for today 2 Classification Recap Evaluating classifiers Accuracy, precision,

More information

Clustering gene expression data

Clustering gene expression data Clustering gene expression data 1 How Gene Expression Data Looks Entries of the Raw Data matrix: Ratio values Absolute values Row = gene s expression pattern Column = experiment/condition s profile genes

More information

Kapitel 4: Clustering

Kapitel 4: Clustering Ludwig-Maximilians-Universität München Institut für Informatik Lehr- und Forschungseinheit für Datenbanksysteme Knowledge Discovery in Databases WiSe 2017/18 Kapitel 4: Clustering Vorlesung: Prof. Dr.

More information

Statistics 202: Data Mining. c Jonathan Taylor. Week 8 Based in part on slides from textbook, slides of Susan Holmes. December 2, / 1

Statistics 202: Data Mining. c Jonathan Taylor. Week 8 Based in part on slides from textbook, slides of Susan Holmes. December 2, / 1 Week 8 Based in part on slides from textbook, slides of Susan Holmes December 2, 2012 1 / 1 Part I Clustering 2 / 1 Clustering Clustering Goal: Finding groups of objects such that the objects in a group

More information

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science.

Colorado School of Mines. Computer Vision. Professor William Hoff Dept of Electrical Engineering &Computer Science. Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ 1 Image Segmentation Some material for these slides comes from https://www.csd.uwo.ca/courses/cs4487a/

More information

Content-based image and video analysis. Machine learning

Content-based image and video analysis. Machine learning Content-based image and video analysis Machine learning for multimedia retrieval 04.05.2009 What is machine learning? Some problems are very hard to solve by writing a computer program by hand Almost all

More information

Lecture 10: Semantic Segmentation and Clustering

Lecture 10: Semantic Segmentation and Clustering Lecture 10: Semantic Segmentation and Clustering Vineet Kosaraju, Davy Ragland, Adrien Truong, Effie Nehoran, Maneekwan Toyungyernsub Department of Computer Science Stanford University Stanford, CA 94305

More information

Statistics 202: Data Mining. c Jonathan Taylor. Outliers Based in part on slides from textbook, slides of Susan Holmes.

Statistics 202: Data Mining. c Jonathan Taylor. Outliers Based in part on slides from textbook, slides of Susan Holmes. Outliers Based in part on slides from textbook, slides of Susan Holmes December 2, 2012 1 / 1 Concepts What is an outlier? The set of data points that are considerably different than the remainder of the

More information

( ) =cov X Y = W PRINCIPAL COMPONENT ANALYSIS. Eigenvectors of the covariance matrix are the principal components

( ) =cov X Y = W PRINCIPAL COMPONENT ANALYSIS. Eigenvectors of the covariance matrix are the principal components Review Lecture 14 ! PRINCIPAL COMPONENT ANALYSIS Eigenvectors of the covariance matrix are the principal components 1. =cov X Top K principal components are the eigenvectors with K largest eigenvalues

More information

Semi- Supervised Learning

Semi- Supervised Learning Semi- Supervised Learning Aarti Singh Machine Learning 10-601 Dec 1, 2011 Slides Courtesy: Jerry Zhu 1 Supervised Learning Feature Space Label Space Goal: Optimal predictor (Bayes Rule) depends on unknown

More information

Expectation Maximization: Inferring model parameters and class labels

Expectation Maximization: Inferring model parameters and class labels Expectation Maximization: Inferring model parameters and class labels Emily Fox University of Washington February 27, 2017 Mixture of Gaussian recap 1 2/26/17 Jumble of unlabeled images HISTOGRAM blue

More information