Rendering Synthetic Objects into Real Scenes. based on [Debevec98]

Size: px
Start display at page:

Download "Rendering Synthetic Objects into Real Scenes. based on [Debevec98]"

Transcription

1 Rendering Synthetic Objects into Real Scenes based on [Debevec98]

2 Compositing of synthetic objects Geometry consistency needed: geometric model of synthetic objects needed: (coarse) geometric model of the real scene needed: camera calibration (extrinsics & intrinsics) procedure: rendering of synthetic and real scene with virtual camera identical to real camera 2

3 Compositing of synthetic objects Lighting consistency subproblem 1: the synthetic objects need to be lit by the natural light sources that affect the real scene subproblem 2: the synthetic objects affect the real scene 3

4 1. Illumination of synthetic objects with real light Solution 1 modeling the real light sources light source surveying photographing reference object analysis of photographs Solution 2 recording scene illumination using high dynamic range photography 4

5 High dynamic range photography Natural light requires many more intensity levels than the usual 256 More levels can be acquired by varying exposure times Cameras are fast enough to avoid saturation of the brightest natural light sources 5

6 2. Scene affected by synthetic Shadows objects synthetic objects should cast shadows in the scene Reflections synthetic objects should be reflected by shiny scene objects synthetic objects should cast light in the scene 6

7 Overview Introduction Illumination of synthetic objects Complete method for integrating synthetic objects in natural scenes 7

8 Overview Introduction Illumination of synthetic objects Complete method for integrating synthetic objects in natural scenes 8

9 Recording light using radiance maps Radiance: energy of radiation per unit transverse area, in a given direction, of a source of radiation <W sr-1 m-2> Radiance map: in a point, measure radiance in all directions Practical construction: panorama centered in that point or using spherical or parabolic mirrors 9

10 Radiance map example 10

11 Radiance map example 11

12 Radiance map example 12

13 Inter-register exposures to obtain high range radiance map obtained by photographing polished steel sphere (light probe) 13

14 Illuminate synthetic object using a global illumination algorithm 14

15 Another example 15

16 Another example 16

17 Light probe distortions Not all directions are treated equally poor sampling close to the half-sphere edge Camera acquiring the light-probe image can image itself Solution is to take several images of the light probe additional difficulty of interregistering the images 17

18 Reducing distortions using two light-probe images 18

19 Videos 19

20 Overview Introduction Illumination of synthetic objects Complete method for integrating synthetic objects in natural scenes 20

21 Overview Introduction Illumination of synthetic objects Complete method for integrating synthetic objects in natural scenes 21

22 The general method 22

23 Step 1: background acquisition 23

24 Step 2: light probe 24

25 Step 3: constr. the light-based model 25

26 Step 4: camera calibration 26

27 Step 5: global illumination solution 27

28 Step 7: compositing a. render local scene w/o synthetic objects 28

29 Step 7: compositing b. create synthetic objects mask 29

30 Step 7: compositing c. isolate synthetic objects contribution to local scene subtract apply mask 30

31 add Step 7: compositing d. add to the background the synthetic objects and their contribution to the local scene add 31

32 Results: before and after 32

Image-Based Lighting : Computational Photography Alexei Efros, CMU, Fall Eirik Holmøyvik. with a lot of slides donated by Paul Debevec

Image-Based Lighting : Computational Photography Alexei Efros, CMU, Fall Eirik Holmøyvik. with a lot of slides donated by Paul Debevec Image-Based Lighting Eirik Holmøyvik with a lot of slides donated by Paul Debevec 15-463: Computational Photography Alexei Efros, CMU, Fall 2011 Inserting Synthetic Objects Why does this look so bad? Wrong

More information

Image-Based Lighting. Inserting Synthetic Objects

Image-Based Lighting. Inserting Synthetic Objects Image-Based Lighting 15-463: Rendering and Image Processing Alexei Efros with a lot of slides donated by Paul Debevec Inserting Synthetic Objects Why does this look so bad? Wrong camera orientation Wrong

More information

Image-Based Lighting

Image-Based Lighting Image-Based Lighting Eirik Holmøyvik CS194: Image Manipulation & Computational Photography with a lot of slides Alexei Efros, UC Berkeley, Fall 2014 donated by Paul Debevec Inserting Synthetic Objects

More information

Image-Based Lighting. Eirik Holmøyvik. with a lot of slides donated by Paul Debevec

Image-Based Lighting. Eirik Holmøyvik. with a lot of slides donated by Paul Debevec Image-Based Lighting Eirik Holmøyvik with a lot of slides donated by Paul Debevec 15-463: Computational Photography Alexei Efros, CMU, Fall 2006 Inserting Synthetic Objects Why does this look so bad? Wrong

More information

The 7d plenoptic function, indexing all light.

The 7d plenoptic function, indexing all light. Previous Lecture The 7d plenoptic function, indexing all light. Lightfields: a 4d (not 5d!) data structure which captures all outgoing light from a region and permits reconstruction of arbitrary synthetic

More information

Light Transport CS434. Daniel G. Aliaga Department of Computer Science Purdue University

Light Transport CS434. Daniel G. Aliaga Department of Computer Science Purdue University Light Transport CS434 Daniel G. Aliaga Department of Computer Science Purdue University Topics Local and Global Illumination Models Helmholtz Reciprocity Dual Photography/Light Transport (in Real-World)

More information

Image-based Lighting

Image-based Lighting Image-based Lighting 10/17/15 T2 Computational Photography Derek Hoiem, University of Illinois Many slides from Debevec, some from Efros Next week Derek away for ICCV (Venice) Zhizhong and Aditya will

More information

Image-based Lighting (Part 2)

Image-based Lighting (Part 2) Image-based Lighting (Part 2) 10/19/17 T2 Computational Photography Derek Hoiem, University of Illinois Many slides from Debevec, some from Efros, Kevin Karsch Today Brief review of last class Show how

More information

Reflection Mapping

Reflection Mapping Image-Based Lighting A Photometric Approach to Rendering and Compositing Paul Debevec Computer Science Division University of California at Berkeley http://www.cs.berkeley.edu/~debevec August 1999 Reflection

More information

CS635 Spring Department of Computer Science Purdue University

CS635 Spring Department of Computer Science Purdue University Light Transport CS635 Spring 2010 Daniel G Aliaga Daniel G. Aliaga Department of Computer Science Purdue University Topics Local and GlobalIllumination Models Helmholtz Reciprocity Dual Photography/Light

More information

IMAGE BASED RENDERING: Using High Dynamic Range Photographs to Light Architectural Scenes

IMAGE BASED RENDERING: Using High Dynamic Range Photographs to Light Architectural Scenes IMAGE BASED RENDERING 1 IMAGE BASED RENDERING: Using High Dynamic Range Photographs to Light Architectural Scenes KATHLEEN CHENEY MEHLIKA INANICI University of Washington Abstract Image Based Rendering

More information

A New Image Based Ligthing Method: Practical Shadow-Based Light Reconstruction

A New Image Based Ligthing Method: Practical Shadow-Based Light Reconstruction A New Image Based Ligthing Method: Practical Shadow-Based Light Reconstruction Jaemin Lee and Ergun Akleman Visualization Sciences Program Texas A&M University Abstract In this paper we present a practical

More information

Real-Time Image Based Lighting in Software Using HDR Panoramas

Real-Time Image Based Lighting in Software Using HDR Panoramas Real-Time Image Based Lighting in Software Using HDR Panoramas Jonas Unger, Magnus Wrenninge, Filip Wänström and Mark Ollila Norrköping Visualization and Interaction Studio Linköping University, Sweden

More information

Image Based Lighting with Near Light Sources

Image Based Lighting with Near Light Sources Image Based Lighting with Near Light Sources Shiho Furuya, Takayuki Itoh Graduate School of Humanitics and Sciences, Ochanomizu University E-mail: {shiho, itot}@itolab.is.ocha.ac.jp Abstract Recent some

More information

Image Based Lighting with Near Light Sources

Image Based Lighting with Near Light Sources Image Based Lighting with Near Light Sources Shiho Furuya, Takayuki Itoh Graduate School of Humanitics and Sciences, Ochanomizu University E-mail: {shiho, itot}@itolab.is.ocha.ac.jp Abstract Recent some

More information

Module 5: Video Modeling Lecture 28: Illumination model. The Lecture Contains: Diffuse and Specular Reflection. Objectives_template

Module 5: Video Modeling Lecture 28: Illumination model. The Lecture Contains: Diffuse and Specular Reflection. Objectives_template The Lecture Contains: Diffuse and Specular Reflection file:///d /...0(Ganesh%20Rana)/MY%20COURSE_Ganesh%20Rana/Prof.%20Sumana%20Gupta/FINAL%20DVSP/lecture%2028/28_1.htm[12/30/2015 4:22:29 PM] Diffuse and

More information

A Survey of Light Source Detection Methods

A Survey of Light Source Detection Methods A Survey of Light Source Detection Methods Nathan Funk University of Alberta Mini-Project for CMPUT 603 November 30, 2003 Abstract This paper provides an overview of the most prominent techniques for light

More information

Shading / Light. Thanks to Srinivas Narasimhan, Langer-Zucker, Henrik Wann Jensen, Ravi Ramamoorthi, Hanrahan, Preetham

Shading / Light. Thanks to Srinivas Narasimhan, Langer-Zucker, Henrik Wann Jensen, Ravi Ramamoorthi, Hanrahan, Preetham Shading / Light Thanks to Srinivas Narasimhan, Langer-Zucker, Henrik Wann Jensen, Ravi Ramamoorthi, Hanrahan, Preetham Phong Illumination Model See Shirley, Ch 10 and http://en.wikipedia.org/wiki/phong_shading

More information

The Shading Probe: Fast Appearance Acquisition for Mobile AR

The Shading Probe: Fast Appearance Acquisition for Mobile AR The Shading Probe: Fast Appearance Acquisition for Mobile AR Dan Andrei Calian * Kenny Mitchell Derek Nowrouzezahrai Jan Kautz * * University College London Disney Research Zürich University of Montreal

More information

Research White Paper WHP 143. Multi-camera radiometric surface modelling for image-based re-lighting BRITISH BROADCASTING CORPORATION.

Research White Paper WHP 143. Multi-camera radiometric surface modelling for image-based re-lighting BRITISH BROADCASTING CORPORATION. Research White Paper WHP 143 11 January 2007 Multi-camera radiometric surface modelling for image-based re-lighting Oliver Grau BRITISH BROADCASTING CORPORATION Multi-camera radiometric surface modelling

More information

Announcements. Camera Calibration. Thin Lens: Image of Point. Limits for pinhole cameras. f O Z

Announcements. Camera Calibration. Thin Lens: Image of Point. Limits for pinhole cameras. f O Z Announcements Introduction to Computer Vision CSE 152 Lecture 5 Assignment 1 has been posted. See links on web page for reading Irfanview: http://www.irfanview.com/ is a good windows utility for manipulating

More information

High Dynamic Range Image Texture Mapping based on VRML

High Dynamic Range Image Texture Mapping based on VRML High Dynamic Range Image Texture Mapping based on VRML Sung-Ye Kim and Byoung-Tae Choi 3D Graphics Research Team, Virtual Reality Research and Development Department, Computer Software Research Laboratory,

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction The central problem in computer graphics is creating, or rendering, realistic computergenerated images that are indistinguishable from real photographs, a goal referred to as photorealism.

More information

CS4670: Computer Vision

CS4670: Computer Vision CS467: Computer Vision Noah Snavely Lecture 13: Projection, Part 2 Perspective study of a vase by Paolo Uccello Szeliski 2.1.3-2.1.6 Reading Announcements Project 2a due Friday, 8:59pm Project 2b out Friday

More information

3D Shape and Indirect Appearance By Structured Light Transport

3D Shape and Indirect Appearance By Structured Light Transport 3D Shape and Indirect Appearance By Structured Light Transport CVPR 2014 - Best paper honorable mention Matthew O Toole, John Mather, Kiriakos N. Kutulakos Department of Computer Science University of

More information

3D Editing System for Captured Real Scenes

3D Editing System for Captured Real Scenes 3D Editing System for Captured Real Scenes Inwoo Ha, Yong Beom Lee and James D.K. Kim Samsung Advanced Institute of Technology, Youngin, South Korea E-mail: {iw.ha, leey, jamesdk.kim}@samsung.com Tel:

More information

Skeleton Cube for Lighting Environment Estimation

Skeleton Cube for Lighting Environment Estimation (MIRU2004) 2004 7 606 8501 E-mail: {takesi-t,maki,tm}@vision.kuee.kyoto-u.ac.jp 1) 2) Skeleton Cube for Lighting Environment Estimation Takeshi TAKAI, Atsuto MAKI, and Takashi MATSUYAMA Graduate School

More information

Representing and Computing Polarized Light in a Ray Tracer

Representing and Computing Polarized Light in a Ray Tracer Representing and Computing Polarized Light in a Ray Tracer A Technical Report in STS 4600 Presented to the Faculty of the School of Engineering and Applied Science University of Virginia in Partial Fulfillment

More information

Acquiring 4D Light Fields of Self-Luminous Light Sources Using Programmable Filter

Acquiring 4D Light Fields of Self-Luminous Light Sources Using Programmable Filter Acquiring 4D Light Fields of Self-Luminous Light Sources Using Programmable Filter Motohiro Nakamura 1, Takahiro Okabe 1, and Hendrik P. A. Lensch 2 1 Kyushu Institute of Technology 2 Tübingen University

More information

High Dynamic Range Imaging.

High Dynamic Range Imaging. High Dynamic Range Imaging High Dynamic Range [3] In photography, dynamic range (DR) is measured in exposure value (EV) differences or stops, between the brightest and darkest parts of the image that show

More information

An Evaluation Framework for the Accuracy of Camera Transfer Functions Estimated from Differently Exposed Images

An Evaluation Framework for the Accuracy of Camera Transfer Functions Estimated from Differently Exposed Images Lehrstuhl für Bildverarbeitung Institute of Imaging & Computer Vision An Evaluation Framework for the Accuracy of Camera Transfer Functions Estimated from Differently Exposed Images André A. Bell and Jens

More information

Photorealistic Augmented Reality

Photorealistic Augmented Reality EUROGRAPHICS 2003 Tutorial Photorealistic Augmented Reality Simon Gibson 1, Alan Chalmers 2 1 Advanced Interfaces Group, University of Manchester, UK, 2 Department of Computer Science, University of Bristol,

More information

Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date: Tuesday 21st January 2014 Time: 14:00-16:00

Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE. Date: Tuesday 21st January 2014 Time: 14:00-16:00 Two hours UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE Advanced Computer Graphics Date: Tuesday 21st January 2014 Time: 14:00-16:00 Please answer any TWO Questions from the FOUR Questions provided.

More information

Light source estimation using feature points from specular highlights and cast shadows

Light source estimation using feature points from specular highlights and cast shadows Vol. 11(13), pp. 168-177, 16 July, 2016 DOI: 10.5897/IJPS2015.4274 Article Number: F492B6D59616 ISSN 1992-1950 Copyright 2016 Author(s) retain the copyright of this article http://www.academicjournals.org/ijps

More information

Local vs. Global Illumination & Radiosity

Local vs. Global Illumination & Radiosity Last Time? Local vs. Global Illumination & Radiosity Ray Casting & Ray-Object Intersection Recursive Ray Tracing Distributed Ray Tracing An early application of radiative heat transfer in stables. Reading

More information

Using a Raster Display Device for Photometric Stereo

Using a Raster Display Device for Photometric Stereo DEPARTMEN T OF COMP UTING SC IENC E Using a Raster Display Device for Photometric Stereo Nathan Funk & Yee-Hong Yang CRV 2007 May 30, 2007 Overview 2 MODEL 3 EXPERIMENTS 4 CONCLUSIONS 5 QUESTIONS 1. Background

More information

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier Computer Vision 2 SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung Computer Vision 2 Dr. Benjamin Guthier 3. HIGH DYNAMIC RANGE Computer Vision 2 Dr. Benjamin Guthier Pixel Value Content of this

More information

Consider a partially transparent object that is illuminated with two lights, one visible from each side of the object. Start with a ray from the eye

Consider a partially transparent object that is illuminated with two lights, one visible from each side of the object. Start with a ray from the eye Ray Tracing What was the rendering equation? Motivate & list the terms. Relate the rendering equation to forward ray tracing. Why is forward ray tracing not good for image formation? What is the difference

More information

Illumination in Computer Graphics

Illumination in Computer Graphics Illumination in Computer Graphics Ann McNamara Illumination in Computer Graphics Definition of light sources. Analysis of interaction between light and objects in a scene. Rendering images that are faithful

More information

Digitizing the Parthenon: Estimating Surface Reflectance under Measured Natural Illumination

Digitizing the Parthenon: Estimating Surface Reflectance under Measured Natural Illumination 6 Digitizing the Parthenon: Estimating Surface Reflectance under Measured Natural Illumination Paul Debevec, Chris Tchou, Andrew Gardner, Tim Hawkins, Charis Poullis, Jessi Stumpfel, Andrew Jones, Nathaniel

More information

Color Alignment in Texture Mapping of Images under Point Light Source and General Lighting Condition

Color Alignment in Texture Mapping of Images under Point Light Source and General Lighting Condition Color Alignment in Texture Mapping of Images under Point Light Source and General Lighting Condition Hiroki Unten Graduate School of Information Science and Technology The University of Tokyo unten@cvliisu-tokyoacjp

More information

Estimation of Multiple Illuminants from a Single Image of Arbitrary Known Geometry*

Estimation of Multiple Illuminants from a Single Image of Arbitrary Known Geometry* Estimation of Multiple Illuminants from a Single Image of Arbitrary Known Geometry* Yang Wang, Dimitris Samaras Computer Science Department, SUNY-Stony Stony Brook *Support for this research was provided

More information

Colour Reading: Chapter 6. Black body radiators

Colour Reading: Chapter 6. Black body radiators Colour Reading: Chapter 6 Light is produced in different amounts at different wavelengths by each light source Light is differentially reflected at each wavelength, which gives objects their natural colours

More information

Today. Global illumination. Shading. Interactive applications. Rendering pipeline. Computergrafik. Shading Introduction Local shading models

Today. Global illumination. Shading. Interactive applications. Rendering pipeline. Computergrafik. Shading Introduction Local shading models Computergrafik Matthias Zwicker Universität Bern Herbst 2009 Today Introduction Local shading models Light sources strategies Compute interaction of light with surfaces Requires simulation of physics Global

More information

Working with the BCC Z Space I Filter

Working with the BCC Z Space I Filter Working with the BCC Z Space I Filter Normally, if you create an effect with multiple DVE layers, each layer is rendered separately. The layer that is topmost in the timeline overlaps all other layers,

More information

Image-Based Modeling and Rendering. Image-Based Modeling and Rendering. Final projects IBMR. What we have learnt so far. What IBMR is about

Image-Based Modeling and Rendering. Image-Based Modeling and Rendering. Final projects IBMR. What we have learnt so far. What IBMR is about Image-Based Modeling and Rendering Image-Based Modeling and Rendering MIT EECS 6.837 Frédo Durand and Seth Teller 1 Some slides courtesy of Leonard McMillan, Wojciech Matusik, Byong Mok Oh, Max Chen 2

More information

Ray Tracing. CSCI 420 Computer Graphics Lecture 15. Ray Casting Shadow Rays Reflection and Transmission [Ch ]

Ray Tracing. CSCI 420 Computer Graphics Lecture 15. Ray Casting Shadow Rays Reflection and Transmission [Ch ] CSCI 420 Computer Graphics Lecture 15 Ray Tracing Ray Casting Shadow Rays Reflection and Transmission [Ch. 13.2-13.3] Jernej Barbic University of Southern California 1 Local Illumination Object illuminations

More information

Advanced Lighting casting shadows where the sun never shines!

Advanced Lighting casting shadows where the sun never shines! Advanced Lighting casting shadows where the sun never shines! Overview Shadows in real life are normally considered to be an integral part of scene a natural outcome of the interplay of light and objects.

More information

Tutorial Notes for the DAGM 2001 A Framework for the Acquisition, Processing and Interactive Display of High Quality 3D Models

Tutorial Notes for the DAGM 2001 A Framework for the Acquisition, Processing and Interactive Display of High Quality 3D Models χfiχfi k INFORMATIK Tutorial Notes for the DAGM 2001 A Framework for the Acquisition, Processing and Interactive Display of High Quality 3D Models Research Report MPI-I-2001-4-005 September 2001 Hendrik

More information

Lighting & 3D Graphics. Images from 3D Creative Magazine

Lighting & 3D Graphics. Images from 3D Creative Magazine Lighting & 3D Graphics Images from 3D Creative Magazine Contents Introduction Definitions 3D Lighting Basics 3D Light Sources Lighting Controls & Effects Brightness & Colour Shadows Hotspot And Falloff

More information

Assignment #2. (Due date: 11/6/2012)

Assignment #2. (Due date: 11/6/2012) Computer Vision I CSE 252a, Fall 2012 David Kriegman Assignment #2 (Due date: 11/6/2012) Name: Student ID: Email: Problem 1 [1 pts] Calculate the number of steradians contained in a spherical wedge with

More information

Assignment 3: Path tracing

Assignment 3: Path tracing Assignment 3: Path tracing EDAN30 April 2, 2011 In this assignment you will be asked to extend your ray tracer to support path tracing. In order to pass the assignment you need to complete all tasks. Make

More information

Rendering: Reality. Eye acts as pinhole camera. Photons from light hit objects

Rendering: Reality. Eye acts as pinhole camera. Photons from light hit objects Basic Ray Tracing Rendering: Reality Eye acts as pinhole camera Photons from light hit objects Rendering: Reality Eye acts as pinhole camera Photons from light hit objects Rendering: Reality Eye acts as

More information

Light Field Transfer: Global Illumination Between Real and Synthetic Objects

Light Field Transfer: Global Illumination Between Real and Synthetic Objects Transfer: Global Illumination Between and Objects Oliver Cossairt Shree Nayar Columbia University Ravi Ramamoorthi Captured Interface Scene objects objects Projected Rendering Composite Image Glossy reflection

More information

Today. Global illumination. Shading. Interactive applications. Rendering pipeline. Computergrafik. Shading Introduction Local shading models

Today. Global illumination. Shading. Interactive applications. Rendering pipeline. Computergrafik. Shading Introduction Local shading models Computergrafik Thomas Buchberger, Matthias Zwicker Universität Bern Herbst 2008 Today Introduction Local shading models Light sources strategies Compute interaction of light with surfaces Requires simulation

More information

Computer Graphics (CS 4731) Lecture 16: Lighting, Shading and Materials (Part 1)

Computer Graphics (CS 4731) Lecture 16: Lighting, Shading and Materials (Part 1) Computer Graphics (CS 4731) Lecture 16: Lighting, Shading and Materials (Part 1) Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) Why do we need Lighting & shading? Sphere

More information

CONTENTS. High-Accuracy Stereo Depth Maps Using Structured Light. Yeojin Yoon

CONTENTS. High-Accuracy Stereo Depth Maps Using Structured Light. Yeojin Yoon [Paper Seminar 7] CVPR2003, Vol.1, pp.195-202 High-Accuracy Stereo Depth Maps Using Structured Light Daniel Scharstein Middlebury College Richard Szeliski Microsoft Research 2012. 05. 30. Yeojin Yoon Introduction

More information

Computer Graphics (CS 543) Lecture 7b: Intro to lighting, Shading and Materials + Phong Lighting Model

Computer Graphics (CS 543) Lecture 7b: Intro to lighting, Shading and Materials + Phong Lighting Model Computer Graphics (CS 543) Lecture 7b: Intro to lighting, Shading and Materials + Phong Lighting Model Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) Why do we need Lighting

More information

CMSC427 Advanced shading getting global illumination by local methods. Credit: slides Prof. Zwicker

CMSC427 Advanced shading getting global illumination by local methods. Credit: slides Prof. Zwicker CMSC427 Advanced shading getting global illumination by local methods Credit: slides Prof. Zwicker Topics Shadows Environment maps Reflection mapping Irradiance environment maps Ambient occlusion Reflection

More information

Synthesising Radiance Maps from Legacy Outdoor Photographs for Real-time IBL on HMDs

Synthesising Radiance Maps from Legacy Outdoor Photographs for Real-time IBL on HMDs Synthesising Radiance Maps from Legacy Outdoor Photographs for Real-time IBL on HMDs Wan-Duo Kurt Ma, Thomas Iorns, Andrew Chalmers and Taehyun Rhee School of Engineering and Computer Science, Victoria

More information

Bringing Hollywood to Real Time. Abe Wiley 3D Artist 3-D Application Research Group

Bringing Hollywood to Real Time. Abe Wiley 3D Artist 3-D Application Research Group Bringing Hollywood to Real Time Abe Wiley 3D Artist 3-D Application Research Group Overview > Film Pipeline Overview and compare with Games > The RhinoFX/ATI Relationship > Ruby 1 and 2 The Movies > Breakdown

More information

Scene surface light field representation for realistic lighting

Scene surface light field representation for realistic lighting Scene surface light field representation for realistic lighting Tao Yu Zhong Zhou Jian Hu QinPing Zhao Optical Engineering 52(12), 123103 (December 2013) Scene surface light field representation for realistic

More information

Dynamic range Physically Based Rendering. High dynamic range imaging. HDR image capture Exposure time from 30 s to 1 ms in 1-stop increments.

Dynamic range Physically Based Rendering. High dynamic range imaging. HDR image capture Exposure time from 30 s to 1 ms in 1-stop increments. Dynamic range Ambient luminance levels for some common lighting environments: 094 Physically Based Rendering Sun and Sky and Colour and Environment Maps Jeppe Revall Frisvad Condition Illumination cd/m

More information

Recovering illumination and texture using ratio images

Recovering illumination and texture using ratio images Recovering illumination and texture using ratio images Alejandro Troccoli atroccol@cscolumbiaedu Peter K Allen allen@cscolumbiaedu Department of Computer Science Columbia University, New York, NY Abstract

More information

Lecture 22: Basic Image Formation CAP 5415

Lecture 22: Basic Image Formation CAP 5415 Lecture 22: Basic Image Formation CAP 5415 Today We've talked about the geometry of scenes and how that affects the image We haven't talked about light yet Today, we will talk about image formation and

More information

Face Relighting with Radiance Environment Maps

Face Relighting with Radiance Environment Maps Face Relighting with Radiance Environment Maps Zhen Wen Zicheng Liu Thomas S. Huang University of Illinois Microsoft Research University of Illinois Urbana, IL 61801 Redmond, WA 98052 Urbana, IL 61801

More information

Ambien Occlusion. Lighting: Ambient Light Sources. Lighting: Ambient Light Sources. Summary

Ambien Occlusion. Lighting: Ambient Light Sources. Lighting: Ambient Light Sources. Summary Summary Ambien Occlusion Kadi Bouatouch IRISA Email: kadi@irisa.fr 1. Lighting 2. Definition 3. Computing the ambient occlusion 4. Ambient occlusion fields 5. Dynamic ambient occlusion 1 2 Lighting: Ambient

More information

Illumination. Michael Kazhdan ( /657) HB Ch. 14.1, 14.2 FvDFH 16.1, 16.2

Illumination. Michael Kazhdan ( /657) HB Ch. 14.1, 14.2 FvDFH 16.1, 16.2 Illumination Michael Kazhdan (601.457/657) HB Ch. 14.1, 14.2 FvDFH 16.1, 16.2 Ray Casting Image RayCast(Camera camera, Scene scene, int width, int height) { Image image = new Image(width, height); for

More information

CENG 477 Introduction to Computer Graphics. Ray Tracing: Shading

CENG 477 Introduction to Computer Graphics. Ray Tracing: Shading CENG 477 Introduction to Computer Graphics Ray Tracing: Shading Last Week Until now we learned: How to create the primary rays from the given camera and image plane parameters How to intersect these rays

More information

Multiple Importance Sampling

Multiple Importance Sampling Multiple Importance Sampling Multiple Importance Sampling Reflection of a circular light source by a rough surface Radius Shininess Sampling the light source f()() xgxdx Sampling the BRDF Page 1 Multiple

More information

Precomputed Radiance Transfer: Theory and Practice

Precomputed Radiance Transfer: Theory and Practice 1 Precomputed Radiance Transfer: Peter-Pike Sloan Microsoft Jaakko Lehtinen Helsinki Univ. of Techn. & Remedy Entertainment Jan Kautz MIT 2 Introduction Jan Kautz MIT 3 Introduction We see here an example

More information

Visual Appearance and Color. Gianpaolo Palma

Visual Appearance and Color. Gianpaolo Palma Visual Appearance and Color Gianpaolo Palma LIGHT MATERIAL Visual Appearance Color due to the interaction between the lighting environment (intensity, position, ) and the properties of the object surface

More information

Physics-based Vision: an Introduction

Physics-based Vision: an Introduction Physics-based Vision: an Introduction Robby Tan ANU/NICTA (Vision Science, Technology and Applications) PhD from The University of Tokyo, 2004 1 What is Physics-based? An approach that is principally concerned

More information

Texture. Texture Maps

Texture. Texture Maps Texture Texture maps! Surface color and transparency! Environment and irradiance maps! Reflectance maps! Shadow maps! Displacement and bump maps Level of detail hierarchy Procedural shading and texturing

More information

Overview. Radiometry and Photometry. Foundations of Computer Graphics (Spring 2012)

Overview. Radiometry and Photometry. Foundations of Computer Graphics (Spring 2012) Foundations of Computer Graphics (Spring 2012) CS 184, Lecture 21: Radiometry http://inst.eecs.berkeley.edu/~cs184 Overview Lighting and shading key in computer graphics HW 2 etc. ad-hoc shading models,

More information

Synthesizing Environment Maps from a Single Image

Synthesizing Environment Maps from a Single Image Synthesizing Environment Maps from a Single Image Jean-François Lalonde and Alexei A. Efros {jlalonde,efros}@cs.cmu.edu CMU-RI-TR-10-24 Originally developed in 2008 Published in July 2010 The Robotics

More information

An Adaptive Correspondence Algorithm for Modeling Scenes with Strong Inter-reflections

An Adaptive Correspondence Algorithm for Modeling Scenes with Strong Inter-reflections IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1 An Adaptive Correspondence Algorithm for Modeling Scenes with Strong Inter-reflections Yi Xu and Daniel G. Aliaga Abstract Modeling real-world

More information

Precomputation-Based Rendering. Contents

Precomputation-Based Rendering. Contents Foundations and Trends R in Computer Graphics and Vision Vol. 3, No. 4 (2007) 281 369 c 2009 R. Ramamoorthi DOI: 10.1561/0600000021 Precomputation-Based Rendering By Ravi Ramamoorthi Contents 1 Introduction

More information

Single image based illumination estimation for lighting virtual object in real scene

Single image based illumination estimation for lighting virtual object in real scene 2011 12th International Conference on Computer-Aided Design and Computer Graphics Single image based illumination estimation for lighting virtual object in real scene Xiaowu Chen, Ke Wang and Xin Jin State

More information

Overview. Hierarchy. Level of detail hierarchy Texture maps Procedural shading and texturing Texture synthesis and noise.

Overview. Hierarchy. Level of detail hierarchy Texture maps Procedural shading and texturing Texture synthesis and noise. Overview Level of detail hierarchy Texture maps Procedural shading and texturing Texture synthesis and noise Hierarchy Physics Computer Graphics Geometrical optics Macro-structures Transport Micro-structures

More information

COMP371 COMPUTER GRAPHICS

COMP371 COMPUTER GRAPHICS COMP371 COMPUTER GRAPHICS SESSION 15 RAY TRACING 1 Announcements Programming Assignment 3 out today - overview @ end of the class Ray Tracing 2 Lecture Overview Review of last class Ray Tracing 3 Local

More information

Texture. Detail Representation

Texture. Detail Representation Page 1 Texture Procedural shading and texturing Applied and projected textures Material / light properties Shadow maps Spherical and higher order textures Spherical mappings Environment and irradiance

More information

Il colore: acquisizione e visualizzazione. Lezione 17: 11 Maggio 2012

Il colore: acquisizione e visualizzazione. Lezione 17: 11 Maggio 2012 Il colore: acquisizione e visualizzazione Lezione 17: 11 Maggio 2012 The importance of color information Precision vs. Perception 3D scanned geometry Photo Color and appearance Pure geometry Pure color

More information

Sources, shadows and shading

Sources, shadows and shading Sources, shadows and shading But how bright (or what colour) are objects? One more definition: Exitance of a source is the internally generated power radiated per unit area on the radiating surface similar

More information

ENGN D Photography / Spring 2018 / SYLLABUS

ENGN D Photography / Spring 2018 / SYLLABUS ENGN 2502 3D Photography / Spring 2018 / SYLLABUS Description of the proposed course Over the last decade digital photography has entered the mainstream with inexpensive, miniaturized cameras routinely

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 5: Projection Reading: Szeliski 2.1 Projection Reading: Szeliski 2.1 Projection Müller Lyer Illusion http://www.michaelbach.de/ot/sze_muelue/index.html Modeling

More information

Radiometry & BRDFs CS295, Spring 2017 Shuang Zhao

Radiometry & BRDFs CS295, Spring 2017 Shuang Zhao Radiometry & BRDFs CS295, Spring 2017 Shuang Zhao Computer Science Department University of California, Irvine CS295, Spring 2017 Shuang Zhao 1 Today s Lecture Radiometry Physics of light BRDFs How materials

More information

Announcements. Lighting. Camera s sensor. HW1 has been posted See links on web page for readings on color. Intro Computer Vision.

Announcements. Lighting. Camera s sensor. HW1 has been posted See links on web page for readings on color. Intro Computer Vision. Announcements HW1 has been posted See links on web page for readings on color. Introduction to Computer Vision CSE 152 Lecture 6 Deviations from the lens model Deviations from this ideal are aberrations

More information

Acquiring and Rendering High-Resolution Spherical Mosaics

Acquiring and Rendering High-Resolution Spherical Mosaics Acquiring and Rendering High-Resolution Spherical Mosaics ADAM KROPP NEEL MASTER SETH TELLER MIT Computer Graphics Group {akropp,neel,seth}@graphics.lcs.mit.edu Abstract We describe an acquisition and

More information

CS 354R: Computer Game Technology

CS 354R: Computer Game Technology CS 354R: Computer Game Technology Texture and Environment Maps Fall 2018 Texture Mapping Problem: colors, normals, etc. are only specified at vertices How do we add detail between vertices without incurring

More information

Topics and things to know about them:

Topics and things to know about them: Practice Final CMSC 427 Distributed Tuesday, December 11, 2007 Review Session, Monday, December 17, 5:00pm, 4424 AV Williams Final: 10:30 AM Wednesday, December 19, 2007 General Guidelines: The final will

More information

Assignment 2 Ray Tracing

Assignment 2 Ray Tracing Assignment 2 Ray Tracing Overview The concept of ray tracing: a technique for generating an image by tracing the path of light through pixels in an image plane and simulating the effects of its encounters

More information

What is Computer Vision? Introduction. We all make mistakes. Why is this hard? What was happening. What do you see? Intro Computer Vision

What is Computer Vision? Introduction. We all make mistakes. Why is this hard? What was happening. What do you see? Intro Computer Vision What is Computer Vision? Trucco and Verri (Text): Computing properties of the 3-D world from one or more digital images Introduction Introduction to Computer Vision CSE 152 Lecture 1 Sockman and Shapiro:

More information

Global Illumination CS334. Daniel G. Aliaga Department of Computer Science Purdue University

Global Illumination CS334. Daniel G. Aliaga Department of Computer Science Purdue University Global Illumination CS334 Daniel G. Aliaga Department of Computer Science Purdue University Recall: Lighting and Shading Light sources Point light Models an omnidirectional light source (e.g., a bulb)

More information

BioTechnology. An Indian Journal FULL PAPER. Trade Science Inc. A wavelet based real-time rendering technology for indoor mixed reality ABSTRACT

BioTechnology. An Indian Journal FULL PAPER. Trade Science Inc. A wavelet based real-time rendering technology for indoor mixed reality ABSTRACT [Type text] [Type text] [Type text] ISSN : 0974-7435 Volume 10 Issue 24 2014 BioTechnology An Indian Journal FULL PAPER BTAIJ, 10(24), 2014 [15095-15100] A wavelet based real-time rendering technology

More information

Re-rendering from a Dense/Sparse Set of Images

Re-rendering from a Dense/Sparse Set of Images Re-rendering from a Dense/Sparse Set of Images Ko Nishino Institute of Industrial Science The Univ. of Tokyo (Japan Science and Technology) kon@cvl.iis.u-tokyo.ac.jp Virtual/Augmented/Mixed Reality Three

More information

Relighting for an Arbitrary Shape Object Under Unknown Illumination Environment

Relighting for an Arbitrary Shape Object Under Unknown Illumination Environment Relighting for an Arbitrary Shape Object Under Unknown Illumination Environment Yohei Ogura (B) and Hideo Saito Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa 223-8522, Japan {y.ogura,saito}@hvrl.ics.keio.ac.jp

More information

CS354 Computer Graphics Ray Tracing. Qixing Huang Januray 24th 2017

CS354 Computer Graphics Ray Tracing. Qixing Huang Januray 24th 2017 CS354 Computer Graphics Ray Tracing Qixing Huang Januray 24th 2017 Graphics Pipeline Elements of rendering Object Light Material Camera Geometric optics Modern theories of light treat it as both a wave

More information

Topic 12: Texture Mapping. Motivation Sources of texture Texture coordinates Bump mapping, mip-mapping & env mapping

Topic 12: Texture Mapping. Motivation Sources of texture Texture coordinates Bump mapping, mip-mapping & env mapping Topic 12: Texture Mapping Motivation Sources of texture Texture coordinates Bump mapping, mip-mapping & env mapping Texture sources: Photographs Texture sources: Procedural Texture sources: Solid textures

More information

Video Analysis for Augmented and Mixed Reality. Kiyoshi Kiyokawa Osaka University

Video Analysis for Augmented and Mixed Reality. Kiyoshi Kiyokawa Osaka University Video Analysis for Augmented and Mixed Reality Kiyoshi Kiyokawa Osaka University Introduction Who am I? A researcher on AR / MR / VR / 3DUI / CSCW / Wearable Comp. Visualization / Wearable computing /

More information