Re-rendering from a Dense/Sparse Set of Images

Size: px
Start display at page:

Download "Re-rendering from a Dense/Sparse Set of Images"

Transcription

1 Re-rendering from a Dense/Sparse Set of Images Ko Nishino Institute of Industrial Science The Univ. of Tokyo (Japan Science and Technology) kon@cvl.iis.u-tokyo.ac.jp

2 Virtual/Augmented/Mixed Reality Three consistencies Photometric Geometric Time

3 Photometric Object Modeling? Observation Display

4 Approaches: Appearance-based Image-based Rendering Light rays as a?(<7)d function Compression Interpolation Unknown geometry

5 Approaches: Appearance-based cont d 3D Photography Surface light fields Compression Interpolation Known geometry

6 Approaches: Model-based Inverse Rendering Extract photometric information from images Texture BRDF Lighting Render

7 Our Approach Take full advantage of knowing the geometry of the target 1. From a dense set of images 2. From a sparse set of images

8 Eigen-Texture Rendering Re-rendering from a Dense Set of Images color images geometric model Eigenspace virtual object compression synthesis

9 Cutting Out Texture color images project range images mesh model

10 Cell Image Sequence 357 cell #202 0

11 Compression k eigen-textures Cell image sequence coefficients x 1,1 x 1,2 x 1,3N x 2,1 x 2,2 x 2,3N x 1,1 x 1,2 x 1,3N x 2,1 x 2,2 x 2,3N x k,1 x k,2 x k,3n x M,1 x M,2 x M,3N

12 Synthesis k eigen-textures coefficients synthetic image a M,0 + a M,1 + a M,3 = Linear combination

13 Determining the Dimensions synthetic input If planar and Lambertian 3 Photometric Stereo [Woodham 78] In real life Non-planar Specularity Interreflections Selfshadows Adaptive dimensions based on eigen-ratios

14 Cell-adaptive Compression Input Synthetic Average dimensions Compression ratio RMS error

15 Cell-adaptive Compression Input Synthetic Average dimensions Compression ratio RMS error

16 Interpolation in Eigenspace

17 Sampling Lights +

18 Integration

19 Re-rendering from a Sparse Set of Images As less input images as possible? Assumptions on BRDF Inverse rendering (a hard one) Estimate all three elements

20 Inputs 6 HDR images Camera params Mesh model

21 Reflection on a Surface specular reflection diffuse reflection

22 Reflection Components Radiance of a object surface point I = I D + I S diffuse component specular component = + Image irradiance Scene radiance

23 Diffuse Component Lambertian model isotropic N θ i I D Ω ( θ, φ ) cosθ dω ] = max[ 0, K L D i i i i i

24 Specular Component Torrance-Sparrow model Micro-facets Gaussian dist. α N θ r θ i I S K FG α 2 = S L i Ω cosθ 2σ 2 r ( θ, φ ) exp d i i i ω

25 Reflection Component Separation Intensity specular component diffuse component occluded image

26 Diffuse Texture Map 3D grids in each triangular patch min

27 Diffuse-texture-mapped Images

28 Specular Images - = Ignore interreflections

29 Illumination Hemisphere

30 Initial Illumination Hemisphere

31 Simplify and Discretize T-S I S K FG 2 α 2σ () S, v v L ( ) i θi, φi exp d i = Ω 2 cosθ r Assume F and G are constant Uniform illuminant color L Illumination as a set of point light sources ω I () v I ()L v S = S 2π K () S v L ( θ ) l l, φl N = L exp I S 2 N L cosθ r l 2σ α 2

32 Illumination and Reflectance Parameter Estimation Straightforward minimization ( ) ( ) K T S l S N k N N t s S L K k t s I k t s I,, 2,,,,,, arg σ min s,t : image coords k: image number

33 Specular Reflection as Convolution I S 2π K N cosθ N L S ( s, t, k) = L ( θ, φ ) g BS( s, t, k, θ, ) C( s, t, k) L r l l l l ( ) 1 l φl 2σ 2 specular images z = h u +η filter noise true lighting 2D convolution on the surface of the illumination hemisphere

34 Illumination and Reflectance Parameter Estimation min L, σ f N K L N ( ) = ( ) ( ) + L 2 L, σ min I S s, t, k I s, t, k 2 ρ L( θl, φl ) L, σ k N l L l Alternative Minimization fix estimate σ L fix estimate Robustness L σ M-estimation Conjugate gradient

35 Estimated Results σ = fisheye view

36 View-dependent Rendering 1. Render diffuse reflection image 2. Construct shadow maps Shadow z-buffer 3. Render specular reflection image 4. Add 1 and 3

37 View-dependent Rendering Result

38 Relighting = N L l v l l v l D v v D L M,,,, cosθ K I Diffuse reflection under the original ill-hemipshere Diffuse reflection under a new ill-hemisphere = N L l v l l v l D v v D L M ~,,,, cos ~ ~ ~ θ K I = L L N l v l l v l N l v l l v l D v D v L M L M ~,,,,,, cos ~ ~ cos ~ θ θ I I

39 Relighting Result

40 Relighting Result

41 Relighting Result

42

43

44 Conclusion Re-rendering from a Dense Sampling Appearance-based On the object surface (triangular patch based) Re-rendering from a Sparse Sampling Estimate texture, parametric BRDF and lighting Deconvolution on a spherical surface

45 Pros and Cons Appearance-based Any kind of BRDFs Requires dense sampling Model-based Less input images & compact representation Assumptions on BRDFs Assumptions on lighting

46 Future Work From a dense sampling Higher correlation global eigenspace? From a sparse sampling Relighting under different color illuminants spatio-spectral distribution

47 Collaborators Katsushi Ikeuchi Yoichi Sato The Univ. of Tokyo Zhengyou Zhang Microsoft Research

48 More Info. Ko Nishino Moving soon (Columbia Univ.)

49 Alternating Minimization Joint regularization min u, h f 2 = 2 u, h L Ω ( u, h) min h u z +α TV ( u) + α TV ( h) ( ) Total Variation (TV) norm 1 2 TV ( u) Ω u dxdy AMUH (AMHU) 0 initialize h 0 = u f ( k 1 ) k 1 u, h u Convergence? 0 = h f ( k ) k u 1, h h

Determining Reflectance Parameters and Illumination Distribution from a Sparse Set of Images for View-dependent Image Synthesis

Determining Reflectance Parameters and Illumination Distribution from a Sparse Set of Images for View-dependent Image Synthesis Determining Reflectance Parameters and Illumination Distribution from a Sparse Set of Images for View-dependent Image Synthesis Ko Nishino, Zhengyou Zhang and Katsushi Ikeuchi Dept. of Info. Science, Grad.

More information

Eigen-Texture Method : Appearance Compression based on 3D Model

Eigen-Texture Method : Appearance Compression based on 3D Model Eigen-Texture Method : Appearance Compression based on 3D Model Ko Nishino Yoichi Sato Katsushi Ikeuchi Institute of Industrial Science, The University of Tokyo 7-22-1 Roppongi, Minato-ku, Tokyo 106-8558,

More information

Skeleton Cube for Lighting Environment Estimation

Skeleton Cube for Lighting Environment Estimation (MIRU2004) 2004 7 606 8501 E-mail: {takesi-t,maki,tm}@vision.kuee.kyoto-u.ac.jp 1) 2) Skeleton Cube for Lighting Environment Estimation Takeshi TAKAI, Atsuto MAKI, and Takashi MATSUYAMA Graduate School

More information

Illumination from Shadows

Illumination from Shadows IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. Y, NO. Y, MON 2002 0 Illumination from Shadows Imari Sato, Yoichi Sato, and Katsushi Ikeuchi Abstract In this paper, we introduce a

More information

Re-rendering from a Sparse Set of Images

Re-rendering from a Sparse Set of Images Re-rendering from a Sparse Set of Images Ko Nishino, Drexel University Katsushi Ikeuchi, The University of Tokyo and Zhengyou Zhang, Microsoft Research Technical Report DU-CS-05-12 Department of Computer

More information

Photometric Stereo.

Photometric Stereo. Photometric Stereo Photometric Stereo v.s.. Structure from Shading [1] Photometric stereo is a technique in computer vision for estimating the surface normals of objects by observing that object under

More information

Photometric Stereo. Lighting and Photometric Stereo. Computer Vision I. Last lecture in a nutshell BRDF. CSE252A Lecture 7

Photometric Stereo. Lighting and Photometric Stereo. Computer Vision I. Last lecture in a nutshell BRDF. CSE252A Lecture 7 Lighting and Photometric Stereo Photometric Stereo HW will be on web later today CSE5A Lecture 7 Radiometry of thin lenses δa Last lecture in a nutshell δa δa'cosα δacos β δω = = ( z' / cosα ) ( z / cosα

More information

Draft from Graphical Models and Image Processing, vol. 58, no. 5, September Reflectance Analysis for 3D Computer Graphics Model Generation

Draft from Graphical Models and Image Processing, vol. 58, no. 5, September Reflectance Analysis for 3D Computer Graphics Model Generation page 1 Draft from Graphical Models and Image Processing, vol. 58, no. 5, September 1996 Reflectance Analysis for 3D Computer Graphics Model Generation Running head: Reflectance Analysis for 3D CG Model

More information

And if that 120MP Camera was cool

And if that 120MP Camera was cool Reflectance, Lights and on to photometric stereo CSE 252A Lecture 7 And if that 120MP Camera was cool Large Synoptic Survey Telescope 3.2Gigapixel camera 189 CCD s, each with 16 megapixels Pixels are 10µm

More information

Analysis of Planar Light Fields from Homogeneous Convex Curved Surfaces Under Distant Illumination

Analysis of Planar Light Fields from Homogeneous Convex Curved Surfaces Under Distant Illumination Analysis of Planar Light Fields from Homogeneous Convex Curved Surfaces Under Distant Illumination Ravi Ramamoorthi and Pat Hanrahan {ravir,hanrahan}@graphics.stanford.edu http://graphics.stanford.edu/papers/planarlf/

More information

Radiance. Radiance properties. Radiance properties. Computer Graphics (Fall 2008)

Radiance. Radiance properties. Radiance properties. Computer Graphics (Fall 2008) Computer Graphics (Fall 2008) COMS 4160, Lecture 19: Illumination and Shading 2 http://www.cs.columbia.edu/~cs4160 Radiance Power per unit projected area perpendicular to the ray per unit solid angle in

More information

Announcement. Lighting and Photometric Stereo. Computer Vision I. Surface Reflectance Models. Lambertian (Diffuse) Surface.

Announcement. Lighting and Photometric Stereo. Computer Vision I. Surface Reflectance Models. Lambertian (Diffuse) Surface. Lighting and Photometric Stereo CSE252A Lecture 7 Announcement Read Chapter 2 of Forsyth & Ponce Might find section 12.1.3 of Forsyth & Ponce useful. HW Problem Emitted radiance in direction f r for incident

More information

Chapter 6 Inverse Rendering Under Complex Illumination

Chapter 6 Inverse Rendering Under Complex Illumination Chapter 6 Inverse Rendering Under Complex Illumination The previous two chapters have applied our signal processing framework to efficient rendering with environment maps. In this chapter, we switch from

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction The central problem in computer graphics is creating, or rendering, realistic computergenerated images that are indistinguishable from real photographs, a goal referred to as photorealism.

More information

Lights, Surfaces, and Cameras. Light sources emit photons Surfaces reflect & absorb photons Cameras measure photons

Lights, Surfaces, and Cameras. Light sources emit photons Surfaces reflect & absorb photons Cameras measure photons Reflectance 1 Lights, Surfaces, and Cameras Light sources emit photons Surfaces reflect & absorb photons Cameras measure photons 2 Light at Surfaces Many effects when light strikes a surface -- could be:

More information

Overview. Radiometry and Photometry. Foundations of Computer Graphics (Spring 2012)

Overview. Radiometry and Photometry. Foundations of Computer Graphics (Spring 2012) Foundations of Computer Graphics (Spring 2012) CS 184, Lecture 21: Radiometry http://inst.eecs.berkeley.edu/~cs184 Overview Lighting and shading key in computer graphics HW 2 etc. ad-hoc shading models,

More information

Computer Vision Systems. Viewing Systems Projections Illuminations Rendering Culling and Clipping Implementations

Computer Vision Systems. Viewing Systems Projections Illuminations Rendering Culling and Clipping Implementations Computer Vision Systems Viewing Systems Projections Illuminations Rendering Culling and Clipping Implementations Viewing Systems Viewing Transformation Projective Transformation 2D Computer Graphics Devices

More information

Reflection models and radiometry Advanced Graphics

Reflection models and radiometry Advanced Graphics Reflection models and radiometry Advanced Graphics Rafał Mantiuk Computer Laboratory, University of Cambridge Applications To render realistic looking materials Applications also in computer vision, optical

More information

THE image brightness of a three-dimensional object is the

THE image brightness of a three-dimensional object is the 90 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 5, NO. 3, MARCH 003 Illumination from Shadows Imari Sato, Yoichi Sato, Member, IEEE, and Katsushi Ikeuchi, Fellow, IEEE Abstract

More information

Realistic Image Synthesis

Realistic Image Synthesis Realistic Image Synthesis - BRDFs and Direct ighting - Philipp Slusalle Karol Myszowsi Gurprit Singh Realistic Image Synthesis SS8 BRDFs and Direct ighting Importance Sampling Example Example: Generate

More information

Object Shape and Reflectance Modeling from Observation

Object Shape and Reflectance Modeling from Observation Object Shape and Reflectance Modeling from Observation Yoichi Sato 1, Mark D. Wheeler 2, and Katsushi Ikeuchi 1 ABSTRACT 1 Institute of Industrial Science University of Tokyo An object model for computer

More information

Capturing light. Source: A. Efros

Capturing light. Source: A. Efros Capturing light Source: A. Efros Review Pinhole projection models What are vanishing points and vanishing lines? What is orthographic projection? How can we approximate orthographic projection? Lenses

More information

Radiometry & BRDFs CS295, Spring 2017 Shuang Zhao

Radiometry & BRDFs CS295, Spring 2017 Shuang Zhao Radiometry & BRDFs CS295, Spring 2017 Shuang Zhao Computer Science Department University of California, Irvine CS295, Spring 2017 Shuang Zhao 1 Today s Lecture Radiometry Physics of light BRDFs How materials

More information

Using a Raster Display Device for Photometric Stereo

Using a Raster Display Device for Photometric Stereo DEPARTMEN T OF COMP UTING SC IENC E Using a Raster Display Device for Photometric Stereo Nathan Funk & Yee-Hong Yang CRV 2007 May 30, 2007 Overview 2 MODEL 3 EXPERIMENTS 4 CONCLUSIONS 5 QUESTIONS 1. Background

More information

BRDF Computer Graphics (Spring 2008)

BRDF Computer Graphics (Spring 2008) BRDF Computer Graphics (Spring 2008) COMS 4160, Lecture 20: Illumination and Shading 2 http://www.cs.columbia.edu/~cs4160 Reflected Radiance proportional to Irradiance Constant proportionality: BRDF [CW

More information

Rendering Light Reflection Models

Rendering Light Reflection Models Rendering Light Reflection Models Visual Imaging in the Electronic Age Donald P. Greenberg October 3, 2017 Lecture #13 Program of Computer Graphics, Cornell University General Electric - 167 Cornell in

More information

Physics-based Vision: an Introduction

Physics-based Vision: an Introduction Physics-based Vision: an Introduction Robby Tan ANU/NICTA (Vision Science, Technology and Applications) PhD from The University of Tokyo, 2004 1 What is Physics-based? An approach that is principally concerned

More information

Face Relighting with Radiance Environment Maps

Face Relighting with Radiance Environment Maps Face Relighting with Radiance Environment Maps Zhen Wen Zicheng Liu Thomas S. Huang University of Illinois Microsoft Research University of Illinois Urbana, IL 61801 Redmond, WA 98052 Urbana, IL 61801

More information

The Rendering Equation & Monte Carlo Ray Tracing

The Rendering Equation & Monte Carlo Ray Tracing Last Time? Local Illumination & Monte Carlo Ray Tracing BRDF Ideal Diffuse Reflectance Ideal Specular Reflectance The Phong Model Radiosity Equation/Matrix Calculating the Form Factors Aj Ai Reading for

More information

Light source estimation using feature points from specular highlights and cast shadows

Light source estimation using feature points from specular highlights and cast shadows Vol. 11(13), pp. 168-177, 16 July, 2016 DOI: 10.5897/IJPS2015.4274 Article Number: F492B6D59616 ISSN 1992-1950 Copyright 2016 Author(s) retain the copyright of this article http://www.academicjournals.org/ijps

More information

A Survey of Light Source Detection Methods

A Survey of Light Source Detection Methods A Survey of Light Source Detection Methods Nathan Funk University of Alberta Mini-Project for CMPUT 603 November 30, 2003 Abstract This paper provides an overview of the most prominent techniques for light

More information

Efficient Photometric Stereo on Glossy Surfaces with Wide Specular Lobes

Efficient Photometric Stereo on Glossy Surfaces with Wide Specular Lobes Efficient Photometric Stereo on Glossy Surfaces with Wide Specular Lobes Hin-Shun Chung Jiaya Jia Department of Computer Science and Engineering The Chinese University of Hong Kong {hschung,leojia}@cse.cuhk.edu.hk

More information

Assignment 3: Path tracing

Assignment 3: Path tracing Assignment 3: Path tracing EDAN30 April 2, 2011 In this assignment you will be asked to extend your ray tracer to support path tracing. In order to pass the assignment you need to complete all tasks. Make

More information

Eigen-Texture Method: Appearance Compression and Synthesis Based on a 3D Model

Eigen-Texture Method: Appearance Compression and Synthesis Based on a 3D Model IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 23, NO. 11, NOVEMBER 2001 1257 Eigen-Texture Method: Appearance Compression and Synthesis Based on a 3D Model Ko Nishino, Student Member,

More information

Assignment #2. (Due date: 11/6/2012)

Assignment #2. (Due date: 11/6/2012) Computer Vision I CSE 252a, Fall 2012 David Kriegman Assignment #2 (Due date: 11/6/2012) Name: Student ID: Email: Problem 1 [1 pts] Calculate the number of steradians contained in a spherical wedge with

More information

Understanding Variability

Understanding Variability Understanding Variability Why so different? Light and Optics Pinhole camera model Perspective projection Thin lens model Fundamental equation Distortion: spherical & chromatic aberration, radial distortion

More information

Parallel Lighting and Reflectance Estimation based on Inverse Rendering

Parallel Lighting and Reflectance Estimation based on Inverse Rendering Parallel Lighting and Reflectance Estimation based on Inverse Rendering Tomohiro Mashita Hiroyuki Yasuhara Alexander Plopski Kiyoshi Kiyokawa Haruo Takemura Figure 1: Virtual object overlay examples: The

More information

Recovering illumination and texture using ratio images

Recovering illumination and texture using ratio images Recovering illumination and texture using ratio images Alejandro Troccoli atroccol@cscolumbiaedu Peter K Allen allen@cscolumbiaedu Department of Computer Science Columbia University, New York, NY Abstract

More information

CMSC427 Advanced shading getting global illumination by local methods. Credit: slides Prof. Zwicker

CMSC427 Advanced shading getting global illumination by local methods. Credit: slides Prof. Zwicker CMSC427 Advanced shading getting global illumination by local methods Credit: slides Prof. Zwicker Topics Shadows Environment maps Reflection mapping Irradiance environment maps Ambient occlusion Reflection

More information

Image Based Lighting with Near Light Sources

Image Based Lighting with Near Light Sources Image Based Lighting with Near Light Sources Shiho Furuya, Takayuki Itoh Graduate School of Humanitics and Sciences, Ochanomizu University E-mail: {shiho, itot}@itolab.is.ocha.ac.jp Abstract Recent some

More information

Image Based Lighting with Near Light Sources

Image Based Lighting with Near Light Sources Image Based Lighting with Near Light Sources Shiho Furuya, Takayuki Itoh Graduate School of Humanitics and Sciences, Ochanomizu University E-mail: {shiho, itot}@itolab.is.ocha.ac.jp Abstract Recent some

More information

Mapping textures on 3D geometric model using reflectance image

Mapping textures on 3D geometric model using reflectance image Mapping textures on 3D geometric model using reflectance image Ryo Kurazume M. D. Wheeler Katsushi Ikeuchi The University of Tokyo Cyra Technologies, Inc. The University of Tokyo fkurazume,kig@cvl.iis.u-tokyo.ac.jp

More information

x ~ Hemispheric Lighting

x ~ Hemispheric Lighting Irradiance and Incoming Radiance Imagine a sensor which is a small, flat plane centered at a point ~ x in space and oriented so that its normal points in the direction n. This sensor can compute the total

More information

6. Illumination, Lighting

6. Illumination, Lighting Jorg s Graphics Lecture Notes 6. Illumination, Lighting 1 6. Illumination, Lighting No ray tracing in OpenGL! ray tracing: direct paths COP interreflection: soft shadows, color bleeding. umbra, penumbra,

More information

CENG 477 Introduction to Computer Graphics. Ray Tracing: Shading

CENG 477 Introduction to Computer Graphics. Ray Tracing: Shading CENG 477 Introduction to Computer Graphics Ray Tracing: Shading Last Week Until now we learned: How to create the primary rays from the given camera and image plane parameters How to intersect these rays

More information

Estimation of Surface Spectral Reflectance on 3D. Painted Objects Using a Gonio-Spectral Imaging System

Estimation of Surface Spectral Reflectance on 3D. Painted Objects Using a Gonio-Spectral Imaging System Estimation of Surface Spectral Reflectance on 3D Painted Objects Using a Gonio-Spectral Imaging System Akira Kimachi, Shogo Nishi and Shoji Tominaga Osaka Electro-Communication University, Chiba University

More information

Estimation of Multiple Illuminants from a Single Image of Arbitrary Known Geometry*

Estimation of Multiple Illuminants from a Single Image of Arbitrary Known Geometry* Estimation of Multiple Illuminants from a Single Image of Arbitrary Known Geometry* Yang Wang, Dimitris Samaras Computer Science Department, SUNY-Stony Stony Brook *Support for this research was provided

More information

Shape Reconstruction Based on Similarity in Radiance Changes under Varying Illumination

Shape Reconstruction Based on Similarity in Radiance Changes under Varying Illumination Shape Reconstruction Based on Similarity in Radiance Changes under Varying Illumination Imari Sato National Institute of Informatics imarik@nii.ac.jp Takahiro Okabe Qiong Yu Yoichi Sato The University

More information

Part I The Basic Algorithm. Principles of Photon Mapping. A two-pass global illumination method Pass I Computing the photon map

Part I The Basic Algorithm. Principles of Photon Mapping. A two-pass global illumination method Pass I Computing the photon map Part I The Basic Algorithm 1 Principles of A two-pass global illumination method Pass I Computing the photon map A rough representation of the lighting in the scene Pass II rendering Regular (distributed)

More information

Lecture 4: Reflection Models

Lecture 4: Reflection Models Lecture 4: Reflection Models CS 660, Spring 009 Kavita Bala Computer Science Cornell University Outline Light sources Light source characteristics Types of sources Light reflection Physics-based models

More information

Rendering Algorithms: Real-time indirect illumination. Spring 2010 Matthias Zwicker

Rendering Algorithms: Real-time indirect illumination. Spring 2010 Matthias Zwicker Rendering Algorithms: Real-time indirect illumination Spring 2010 Matthias Zwicker Today Real-time indirect illumination Ray tracing vs. Rasterization Screen space techniques Visibility & shadows Instant

More information

Game Technology. Lecture Physically Based Rendering. Dipl-Inform. Robert Konrad Polona Caserman, M.Sc.

Game Technology. Lecture Physically Based Rendering. Dipl-Inform. Robert Konrad Polona Caserman, M.Sc. Game Technology Lecture 7 4.12.2017 Physically Based Rendering Dipl-Inform. Robert Konrad Polona Caserman, M.Sc. Prof. Dr.-Ing. Ralf Steinmetz KOM - Multimedia Communications Lab PPT-for-all v.3.4_office2010

More information

13 Distribution Ray Tracing

13 Distribution Ray Tracing 13 In (hereafter abbreviated as DRT ), our goal is to render a scene as accurately as possible. Whereas Basic Ray Tracing computed a very crude approximation to radiance at a point, in DRT we will attempt

More information

Local vs. Global Illumination & Radiosity

Local vs. Global Illumination & Radiosity Last Time? Local vs. Global Illumination & Radiosity Ray Casting & Ray-Object Intersection Recursive Ray Tracing Distributed Ray Tracing An early application of radiative heat transfer in stables. Reading

More information

Radiometry. Reflectance & Lighting. Solid Angle. Radiance. Radiance Power is energy per unit time

Radiometry. Reflectance & Lighting. Solid Angle. Radiance. Radiance Power is energy per unit time Radiometry Reflectance & Lighting Computer Vision I CSE5A Lecture 6 Read Chapter 4 of Ponce & Forsyth Homework 1 Assigned Outline Solid Angle Irradiance Radiance BRDF Lambertian/Phong BRDF By analogy with

More information

Color Alignment in Texture Mapping of Images under Point Light Source and General Lighting Condition

Color Alignment in Texture Mapping of Images under Point Light Source and General Lighting Condition Color Alignment in Texture Mapping of Images under Point Light Source and General Lighting Condition Hiroki Unten Graduate School of Information Science and Technology The University of Tokyo unten@cvliisu-tokyoacjp

More information

Virtual Photometric Environment using Projector

Virtual Photometric Environment using Projector Virtual Photometric Environment using Projector Yasuhiro Mukaigawa 1 Masashi Nishiyama 2 Takeshi Shakunaga Okayama University, Tsushima naka 3-1-1, Okayama, 700-8530, Japan mukaigaw@ieee.org Abstract In

More information

Discussion. Smoothness of Indirect Lighting. History and Outline. Irradiance Calculation. Irradiance Caching. Advanced Computer Graphics (Spring 2013)

Discussion. Smoothness of Indirect Lighting. History and Outline. Irradiance Calculation. Irradiance Caching. Advanced Computer Graphics (Spring 2013) Advanced Computer Graphics (Spring 2013 CS 283, Lecture 12: Recent Advances in Monte Carlo Offline Rendering Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs283/sp13 Some slides/ideas courtesy Pat Hanrahan,

More information

CHAPTER 3. From Surface to Image

CHAPTER 3. From Surface to Image CHAPTER 3 From Surface to Image 3.1. Introduction Given a light source, a surface, and an observer, a reflectance model describes the intensity and spectral composition of the reflected light reaching

More information

Interreflection Removal for Photometric Stereo by Using Spectrum-dependent Albedo

Interreflection Removal for Photometric Stereo by Using Spectrum-dependent Albedo Interreflection Removal for Photometric Stereo by Using Spectrum-dependent Albedo Miao Liao 1, Xinyu Huang, and Ruigang Yang 1 1 Department of Computer Science, University of Kentucky Department of Mathematics

More information

Volumetric Scene Reconstruction from Multiple Views

Volumetric Scene Reconstruction from Multiple Views Volumetric Scene Reconstruction from Multiple Views Chuck Dyer University of Wisconsin dyer@cs cs.wisc.edu www.cs cs.wisc.edu/~dyer Image-Based Scene Reconstruction Goal Automatic construction of photo-realistic

More information

The Spherical Harmonics Discrete Ordinate Method for Atmospheric Radiative Transfer

The Spherical Harmonics Discrete Ordinate Method for Atmospheric Radiative Transfer The Spherical Harmonics Discrete Ordinate Method for Atmospheric Radiative Transfer K. Franklin Evans Program in Atmospheric and Oceanic Sciences University of Colorado, Boulder Computational Methods in

More information

MIT Monte-Carlo Ray Tracing. MIT EECS 6.837, Cutler and Durand 1

MIT Monte-Carlo Ray Tracing. MIT EECS 6.837, Cutler and Durand 1 MIT 6.837 Monte-Carlo Ray Tracing MIT EECS 6.837, Cutler and Durand 1 Schedule Review Session: Tuesday November 18 th, 7:30 pm bring lots of questions! Quiz 2: Thursday November 20 th, in class (one weeks

More information

Chapter 7. Conclusions and Future Work

Chapter 7. Conclusions and Future Work Chapter 7 Conclusions and Future Work In this dissertation, we have presented a new way of analyzing a basic building block in computer graphics rendering algorithms the computational interaction between

More information

Lecture 10 Dense 3D Reconstruction

Lecture 10 Dense 3D Reconstruction Institute of Informatics Institute of Neuroinformatics Lecture 10 Dense 3D Reconstruction Davide Scaramuzza 1 REMODE: Probabilistic, Monocular Dense Reconstruction in Real Time M. Pizzoli, C. Forster,

More information

Traditional Image Generation. Reflectance Fields. The Light Field. The Light Field. The Light Field. The Light Field

Traditional Image Generation. Reflectance Fields. The Light Field. The Light Field. The Light Field. The Light Field Traditional Image Generation Course 10 Realistic Materials in Computer Graphics Surfaces + BRDFs Reflectance Fields USC Institute for Creative Technologies Volumetric scattering, density fields, phase

More information

Other approaches to obtaining 3D structure

Other approaches to obtaining 3D structure Other approaches to obtaining 3D structure Active stereo with structured light Project structured light patterns onto the object simplifies the correspondence problem Allows us to use only one camera camera

More information

Illumination and Shading - II

Illumination and Shading - II Illumination and Shading - II Computer Graphics COMP 770 (236) Spring 2007 Instructor: Brandon Lloyd 2/19/07 1 From last time Light Sources Empirical Illumination Shading Local vs Global Illumination 2/19/07

More information

Epipolar geometry contd.

Epipolar geometry contd. Epipolar geometry contd. Estimating F 8-point algorithm The fundamental matrix F is defined by x' T Fx = 0 for any pair of matches x and x in two images. Let x=(u,v,1) T and x =(u,v,1) T, each match gives

More information

Estimation of Reflection Properties of Silk Textile with Multi-band Camera

Estimation of Reflection Properties of Silk Textile with Multi-band Camera Estimation of Reflection Properties of Silk Textile with Multi-band Camera Kosuke MOCHIZUKI*, Norihiro TANAKA**, Hideaki MORIKAWA* *Graduate School of Shinshu University, 12st116a@shinshu-u.ac.jp ** Faculty

More information

Global Illumination. CSCI 420 Computer Graphics Lecture 18. BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Ch

Global Illumination. CSCI 420 Computer Graphics Lecture 18. BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Ch CSCI 420 Computer Graphics Lecture 18 Global Illumination Jernej Barbic University of Southern California BRDFs Raytracing and Radiosity Subsurface Scattering Photon Mapping [Ch. 13.4-13.5] 1 Global Illumination

More information

Local Reflection Models

Local Reflection Models Local Reflection Models Illumination Thus Far Simple Illumination Models Ambient + Diffuse + Attenuation + Specular Additions Texture, Shadows, Used in global algs! (Ray tracing) Problem: Different materials

More information

Simple Lighting/Illumination Models

Simple Lighting/Illumination Models Simple Lighting/Illumination Models Scene rendered using direct lighting only Photograph Scene rendered using a physically-based global illumination model with manual tuning of colors (Frederic Drago and

More information

Raytracing & Epsilon. Today. Last Time? Forward Ray Tracing. Does Ray Tracing Simulate Physics? Local Illumination

Raytracing & Epsilon. Today. Last Time? Forward Ray Tracing. Does Ray Tracing Simulate Physics? Local Illumination Raytracing & Epsilon intersects light @ t = 25.2 intersects sphere1 @ t = -0.01 & Monte Carlo Ray Tracing intersects sphere1 @ t = 10.6 Solution: advance the ray start position epsilon distance along the

More information

Face Re-Lighting from a Single Image under Harsh Lighting Conditions

Face Re-Lighting from a Single Image under Harsh Lighting Conditions Face Re-Lighting from a Single Image under Harsh Lighting Conditions Yang Wang 1, Zicheng Liu 2, Gang Hua 3, Zhen Wen 4, Zhengyou Zhang 2, Dimitris Samaras 5 1 The Robotics Institute, Carnegie Mellon University,

More information

Inverting the Reflectance Map with Binary Search

Inverting the Reflectance Map with Binary Search Inverting the Reflectance Map with Binary Search François Faure To cite this version: François Faure. Inverting the Reflectance Map with Binary Search. Lecture Notes in Computer Science, Springer, 1995,

More information

Lecture 10 Multi-view Stereo (3D Dense Reconstruction) Davide Scaramuzza

Lecture 10 Multi-view Stereo (3D Dense Reconstruction) Davide Scaramuzza Lecture 10 Multi-view Stereo (3D Dense Reconstruction) Davide Scaramuzza REMODE: Probabilistic, Monocular Dense Reconstruction in Real Time, ICRA 14, by Pizzoli, Forster, Scaramuzza [M. Pizzoli, C. Forster,

More information

Georgios Tziritas Computer Science Department

Georgios Tziritas Computer Science Department New Video Coding standards MPEG-4, HEVC Georgios Tziritas Computer Science Department http://www.csd.uoc.gr/~tziritas 1 MPEG-4 : introduction Motion Picture Expert Group Publication 1998 (Intern. Standardization

More information

Improved Radiance Gradient Computation

Improved Radiance Gradient Computation Improved Radiance Gradient Computation Jaroslav Křivánek Pascal Gautron Kadi Bouatouch Sumanta Pattanaik Czech Technical University New gradients Gradients by [Křivánek et al. 2005] Figure 1: Right: The

More information

PHOTOMETRIC stereo recovers surface normals of a

PHOTOMETRIC stereo recovers surface normals of a PREPRINT OF A REGULAR PAPER @PAMI215 1 From Intensity Profile to Surface Normal: Photometric Stereo for Unknown Light Sources and Isotropic Reflectances Feng Lu, Yasuyuki Matsushita, Imari Sato, Takahiro

More information

Using a Raster Display for Photometric Stereo

Using a Raster Display for Photometric Stereo Using a Raster Display for Photometric Stereo Nathan Funk Singular Systems Edmonton, Canada nathan.funk@singularsys.com Yee-Hong Yang Computing Science University of Alberta Edmonton, Canada yang@cs.ualberta.ca

More information

Introduction to Radiosity

Introduction to Radiosity Introduction to Radiosity Produce photorealistic pictures using global illumination Mathematical basis from the theory of heat transfer Enables color bleeding Provides view independent representation Unfortunately,

More information

Hybrid Textons: Modeling Surfaces with Reflectance and Geometry

Hybrid Textons: Modeling Surfaces with Reflectance and Geometry Hybrid Textons: Modeling Surfaces with Reflectance and Geometry Jing Wang and Kristin J. Dana Electrical and Computer Engineering Department Rutgers University Piscataway, NJ, USA {jingwang,kdana}@caip.rutgers.edu

More information

Lecture 7: Monte Carlo Rendering. MC Advantages

Lecture 7: Monte Carlo Rendering. MC Advantages Lecture 7: Monte Carlo Rendering CS 6620, Spring 2009 Kavita Bala Computer Science Cornell University MC Advantages Convergence rate of O( ) Simple Sampling Point evaluation Can use black boxes General

More information

Face Relighting with Radiance Environment Maps

Face Relighting with Radiance Environment Maps Face Relighting with Radiance Environment Maps Zhen Wen University of Illinois Urbana Champaign zhenwen@ifp.uiuc.edu Zicheng Liu Microsoft Research zliu@microsoft.com Tomas Huang University of Illinois

More information

Relighting for an Arbitrary Shape Object Under Unknown Illumination Environment

Relighting for an Arbitrary Shape Object Under Unknown Illumination Environment Relighting for an Arbitrary Shape Object Under Unknown Illumination Environment Yohei Ogura (B) and Hideo Saito Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa 223-8522, Japan {y.ogura,saito}@hvrl.ics.keio.ac.jp

More information

Lambertian model of reflectance I: shape from shading and photometric stereo. Ronen Basri Weizmann Institute of Science

Lambertian model of reflectance I: shape from shading and photometric stereo. Ronen Basri Weizmann Institute of Science Lambertian model of reflectance I: shape from shading and photometric stereo Ronen Basri Weizmann Institute of Science Variations due to lighting (and pose) Relief Dumitru Verdianu Flying Pregnant Woman

More information

Image-Based Rendering of Diffuse, Specular and Glossy Surfaces from a Single Image

Image-Based Rendering of Diffuse, Specular and Glossy Surfaces from a Single Image Image-Based Rendering of Diffuse, Specular and Glossy Surfaces from a Single Image Samuel Boivin André Gagalowicz Mirages Project INRIA-Rocquencourt Abstract In this paper, we present a new method to recover

More information

Ambien Occlusion. Lighting: Ambient Light Sources. Lighting: Ambient Light Sources. Summary

Ambien Occlusion. Lighting: Ambient Light Sources. Lighting: Ambient Light Sources. Summary Summary Ambien Occlusion Kadi Bouatouch IRISA Email: kadi@irisa.fr 1. Lighting 2. Definition 3. Computing the ambient occlusion 4. Ambient occlusion fields 5. Dynamic ambient occlusion 1 2 Lighting: Ambient

More information

2/1/10. Outline. The Radiance Equation. Light: Flux Equilibrium. Light: Radiant Power. Light: Equation. Radiance. Jan Kautz

2/1/10. Outline. The Radiance Equation. Light: Flux Equilibrium. Light: Radiant Power. Light: Equation. Radiance. Jan Kautz Outline Jan Kautz Basic terms in radiometry Radiance Reflectance The operator form of the radiance equation Meaning of the operator form Approximations to the radiance equation 2005 Mel Slater, 2006 Céline

More information

Illumination Under Trees. Nelson Max University of Tokyo, and University of California, Davis

Illumination Under Trees. Nelson Max University of Tokyo, and University of California, Davis Illumination Under Trees Nelson Max University of Tokyo, and University of California, Davis Topics Hierarchical image based rendering for trees Atmospheric illumination and shadows Shadow penumbras with

More information

CS 5625 Lec 2: Shading Models

CS 5625 Lec 2: Shading Models CS 5625 Lec 2: Shading Models Kavita Bala Spring 2013 Shading Models Chapter 7 Next few weeks Textures Graphics Pipeline Light Emission To compute images What are the light sources? Light Propagation Fog/Clear?

More information

A Survey of Modelling and Rendering of the Earth s Atmosphere

A Survey of Modelling and Rendering of the Earth s Atmosphere Spring Conference on Computer Graphics 00 A Survey of Modelling and Rendering of the Earth s Atmosphere Jaroslav Sloup Department of Computer Science and Engineering Czech Technical University in Prague

More information

Outline of Lecture. Real-Time High Quality Rendering. Geometry or Vertex Pipeline. Basic Hardware Pipeline. Pixel or Fragment Pipeline

Outline of Lecture. Real-Time High Quality Rendering. Geometry or Vertex Pipeline. Basic Hardware Pipeline. Pixel or Fragment Pipeline Real-Time High Quality Rendering CSE 274 [Fall 2015], Lecture 2 Graphics Hardware Pipeline, Reflection and Rendering Equations, Taonomy of Methods http://www.cs.ucsd.edu/~ravir Outline of Lecture Taonomy

More information

The Shading Probe: Fast Appearance Acquisition for Mobile AR

The Shading Probe: Fast Appearance Acquisition for Mobile AR The Shading Probe: Fast Appearance Acquisition for Mobile AR Dan Andrei Calian * Kenny Mitchell Derek Nowrouzezahrai Jan Kautz * * University College London Disney Research Zürich University of Montreal

More information

3D and Appearance Modeling from Images

3D and Appearance Modeling from Images 3D and Appearance Modeling from Images Peter Sturm 1,Amaël Delaunoy 1, Pau Gargallo 2, Emmanuel Prados 1, and Kuk-Jin Yoon 3 1 INRIA and Laboratoire Jean Kuntzmann, Grenoble, France 2 Barcelona Media,

More information

Perception of Shape from Shading

Perception of Shape from Shading 1 Percetion of Shae from Shading Continuous image brightness variation due to shae variations is called shading Our ercetion of shae deends on shading Circular region on left is erceived as a flat disk

More information

Tracking system. Danica Kragic. Object Recognition & Model Based Tracking

Tracking system. Danica Kragic. Object Recognition & Model Based Tracking Tracking system Object Recognition & Model Based Tracking Motivation Manipulating objects in domestic environments Localization / Navigation Object Recognition Servoing Tracking Grasping Pose estimation

More information

Surface Reflection Models

Surface Reflection Models Surface Reflection Models Frank Losasso (flosasso@nvidia.com) Introduction One of the fundamental topics in lighting is how the light interacts with the environment. The academic community has researched

More information

We want to put a CG object in this room

We want to put a CG object in this room The Problem Temporally varying lighting What if we rearrange the furniture frequently? Mirror surfaces Diffuse surfaces We want to put a CG object in this room Are we allowed to put light probes on the

More information