Chapter 15: Functions of Several Variables

Size: px
Start display at page:

Download "Chapter 15: Functions of Several Variables"

Transcription

1 Chapter 15: Functions of Several Variables Section 15.1 Elementary Examples a. Notation: Two Variables b. Example c. Notation: Three Variables d. Functions of Several Variables e. Examples from the Sciences Section 15.2 A Brief Catalogue of the Quadric Surfaces a. Quadric Surfaces b. Type of Surfaces c. The Ellipsoid d. The Hyperboloid of One Sheet e. The Hyperboloid of Two Sheets f. The Elliptic Cone g. The Elliptic Paraboloid h. The Hyperbolic Paraboloid i. The Parabolic Cylinder j. The Elliptic Cylinder k. The Hyperbolic Cylinder l. Projections Section 15.3 Graphs; Level Curves and Level Surfaces a. Level Curves b. Computer-Generated Graphs c. Level Surfaces Section 15.4 Partial Derivatives a. Functions of Two Variables b. Partial Derivatives (Two Variables) c. A Geometric Interpretation (y 0 -section) d. A Geometric Interpretation (x 0 -section) e. Partial Derivatives (Three Variables) f. Example Section 15.5 Open and Closed Sets a. Neighborhood of a Point b. The Interior of a Set c. The Boundary of a Set d. Open and Closed Sets e. Two-Dimensional Example f. Three-Dimensional Example Section 15.6 Limits and Continuity a. The Limit of a Function of Several Variables b. Continuity c. Examples of Continuous Functions d. The Continuity of Composite Functions e. Continuity in Each Variable Separately f. Derivatives of Higher Order g. Partial Derivatives and Continuity

2 Elementary Examples Notation Points P(x, y) of the xy-plane will be written (x, y) and points P(x, y, z) of three-space will be written (x, y, z). Let D be a nonempty subset of the xy-plane. A function f that assigns a real number f (x, y) to each point in D is called a real-valued function of two variables. The set D is called the domain of f, and the set of all values f (x, y) is called the range of f.

3 Elementary Examples Example Take D as the open unit disk: D = {(x, y) : x 2 + y 2 < 1}. The set consists of all points which lie inside the unit circle x 2 + y 2 < 1; the circle itself is not part of the set. To each point (x, y) in D assign the number f ( xy, ) = 1 ( x y ) 1 +

4 Elementary Examples Notation for Three-Space Let D be a nonempty subset of three-space. A function f that assigns a real number f (x, y, z) to each point (x, y, z) in D is called a real-valued function of three variables. The set D is called the domain of f, and the set of all values f (x, y, z) is called the range of f.

5 Elementary Examples Functions of several variables arise naturally in very elementary settings. f (x, y) = gives the distance between (x, y) and the origin; f (x, y) = xy gives the area of a rectangle of dimensions x, y; and f (x, y) = 2(x + y) gives the perimeter. f (x, y, z) = x + y 2 x + y + z gives the distance between (x, y, z) and the origin; f (x, y, z) = xyz gives the volume of a rectangular solid of dimensions x, y, z; f (x, y, z) = 2(xy + xz + yz) gives the total surface area.

6 Elementary Examples A mass M exerts a gravitational force on a mass m. According to the law of universal gravitation, if M is located at the origin of our coordinate system and m is located at (x, y, z), then the magnitude of the gravitational force is given by the function (,, ) = 2 F xyz GmM x + y + z where G is the universal gravitational constant. (3 variables: x, y, z) According to the ideal gas law, the pressure P of a gas enclosed in a container varies directly with the temperature T of the gas and varies inversely with the volume V of the container. Thus P is given by a function of the form (, ) PTV T = k V (2 variables: T, V) An investment A 0 is made at continuous compounding at interest rate r. Over time t the investment grows to have value A(t, r ) = A 0 e rt (2 variables: r, t)

7 A Brief Catalogue of the Quadric Surfaces The curves in the xy-plane defined by equations in x and y of the second degree are the conic sections: circle, ellipse, parabola, hyperbola. The surfaces in threedimensional space defined by equations in x, y, z of the second degree, ( ) Ax 2 + By 2 + Cz 2 + Dxy + Exz + Fyz + Hx + I y + Jz + K = 0, are called the quadric surfaces. Equation ( ) contains terms in xy, xz, yz. These terms can be eliminated by a suitable change of coordinates. Thus, for our purposes, the quadric surfaces are given by equations of the form Ax 2 + By 2 + Cz 2 + Dx + Ey + Fz + H = 0 with A, B,C not all zero. (If A, B,C are all zero, we don t have an equation of the second degree.)

8 A Brief Catalogue of the Quadric Surfaces The quadric surfaces can be viewed as the three-space analogs of the conic sections. They fall into nine distinct types. 1. The ellipsoid. 2. The hyperboloid of one sheet. 3. The hyperboloid of two sheets. 4. The elliptic cone. 5. The elliptic paraboloid. 6. The hyperbolic paraboloid. 7. The parabolic cylinder. 8. The elliptic cylinder. 9. The hyperbolic cylinder.

9 A Brief Catalogue of the Quadric Surfaces The Ellipsoid x y z a b c = 1 2 The ellipsoid is centered at the origin and is symmetric about the three coordinate axes. It intersects the coordinate axes at six points: (±a, 0, 0), (0,±b, 0), (0, 0,±c). These points are called the vertices. The surface is bounded, being contained in the ball x 2 + y 2 + z 2 a 2 + b 2 + c 2. All three traces are ellipses; thus, for example, the trace in the xy-plane (the set z = 0) is the ellipse x a y b + = 1

10 A Brief Catalogue of the Quadric Surfaces The Hyperboloid of One Sheet x y z a b c 2 + = 1 2 The surface is unbounded. It is centered at the origin and is symmetric about the three coordinate planes. The surface intersects the coordinate axes at four points: (±a, 0, 0), (0,±b, 0). The trace in the xy-plane (set z = 0) is the ellipse x a y b + = 1

11 A Brief Catalogue of the Quadric Surfaces The Hyperboloid of Two Sheets x y z a b c 2 + = 1 2 The surface intersects the coordinate axes only at the two vertices (0, 0,±c). The surface consists of two parts: one for which z c, another for which z c. We can see this by rewriting the equation as x y z a b c 2 + = 1 2 The equation requires 2 z 1 0, z c, z c 2 c Each of the two parts is unbounded.

12 A Brief Catalogue of the Quadric Surfaces The Elliptic Cone The surface intersects the coordinate axes only at the origin. The surface is unbounded. Once again there is symmetry about the three coordinate planes. The trace in the xz plane is a pair of intersecting lines: z = ±x/a. The trace in the yz-plane is also a pair of intersecting lines: z = ±y/b. The trace in the xy-plane is just the origin. Sections parallel to the xy-plane are ellipses. If a = b, these sections are circles and we have a surface of revolution, what is commonly called a double circular cone or simply a cone. The upper and lower portions of the cone are called nappes. x a y + = z b 2

13 A Brief Catalogue of the Quadric Surfaces The Elliptic Paraboloid The surface does not extend below the xy-plane; it is unbounded above. The origin is called the vertex. Sections parallel to the xy-plane are ellipses; sections parallel to the other coordinate planes are parabolas. Hence the term elliptic paraboloid. The surface is symmetric about the xz-plane and about the yz-plane. It is also symmetric about the z-axis. If a = b, then the surface is a paraboloid of revolution. x a y + = z b

14 A Brief Catalogue of the Quadric Surfaces The Hyperbolic Paraboloid Here there is symmetry about the xz-plane and yz-plane. Sections parallel to the xy plane are hyperbolas; sections parallel to the other coordinate planes are parabolas. Hence the term hyperbolic paraboloid. The origin is a minimum point for the trace in the xz-plane but a maximum point for the trace in the yzplane. The origin is called a minimax or saddle point of the surface. x a y = z b

15 A Brief Catalogue of the Quadric Surfaces Take any plane curve C. All the lines through C that are perpendicular to the plane of C form a surface. Such a surface is called a cylinder, the cylinder with base curve C. The perpendicular lines are known as the generators of the cylinder. The Parabolic Cylinder x 2 = 4cy This surface is formed by all lines that pass through the parabola x 2 = 4cy and are perpendicular to the xy-plane.

16 A Brief Catalogue of the Quadric Surfaces The Elliptic Cylinder x a y b + = 1 The surface is formed by all lines that pass through the ellipse x a + = 1 and are perpendicular to the xy-plane. If a = b, we have the common right circular cylinder. y b

17 A Brief Catalogue of the Quadric Surfaces The Hyperbolic Cylinder x a y = b 1 The surface has two parts, each generated by a branch of the hyperbola x a y b = 1

18 A Brief Catalogue of the Quadric Surfaces Projections Suppose that S 1 : z = f (x, y) and S 2 : z = g(x, y) are surfaces in three-space that intersect in a space curve C. The curve C is the set of all points (x, y, z) with z = f (x, y) and z = g(x, y). The set of all points (x, y, z) with f (x, y) = g(x, y) is the vertical cylinder that passes through C. The set of all points (x, y, 0) with (Here z is unrestricted.) f (x, y) = g(x, y) (Here z = 0.) is called the projection of C onto the xy-plane. In Figure it appears as the curve in the xy-plane that lies directly below C.

19 Graphs; Level Curves and Level Surfaces Level Curves Suppose that f is a nonconstant function defined on some portion of the xy-plane. If c is a value in the range of f, then we can sketch the curve f (x, y) = c. Such a curve is called a level curve for f. It can be obtained by intersecting the graph of f with the horizontal plane z = c and then projecting that intersection onto the xy-plane.

20 Graphs; Level Curves and Level Surfaces Computer-Generated Graphs

21 Graphs; Level Curves and Level Surfaces Level Surfaces One can try to visualize the behavior of a function of three variables, w = f (x, y, z), by examining the level surfaces of f. These are the subsets of the domain of f with equations of the form where c is a value in the range of f. f (x, y, z) = c Example For the function f (x, y, z) = Ax + By + Cz, the level surfaces are parallel planes Ax + By + Cz = c. Example For the function 2 (,, ) = + + g xyz x y z, the level surfaces are concentric spheres x 2 + y 2 + z 2 = c 2.

22 Partial Derivatives Functions of Two Variables Let f be a function of x and y; take for example f (x, y) = 3x 2 y 5x cos πy. The partial derivative of f with respect to x is the function f x obtained by differentiating f with respect to x, keeping y fixed. In this case f x (x, y) = 6xy 5 cos πy. The partial derivative of f with respect to y is the function f y obtained by differentiating f with respect to y, keeping x fixed. In this case f y (x, y) = 3x 2 + 5πx sin πy.

23 Partial Derivatives

24 Partial Derivatives A Geometric Interpretation In Figure we have sketched a surface z = f (x, y) which you can take as everywhere defined. Through the surface we have passed a plane y = y 0 parallel to the xz-plane. The plane y = y 0 intersects the surface in a curve, the y 0 -section of the surface. The number f x (x 0, y 0 ) is thus the slope of the y 0 -section of the surface z = f (x, y) at the point P(x 0, y 0, f (x 0, y 0 )).

25 Partial Derivatives The number f y (x 0, y 0 ) is the slope of the x 0 -section of the surface z = f (x, y) at the point P(x 0, y 0, f (x 0, y 0 )).

26 Partial Derivatives

27 Partial Derivatives The number f x (x 0, y 0, z 0 ) gives the rate of change of f (x, y 0, z 0 ) with respect to x at x = x 0 ; f y (x 0, y 0, z 0 ) gives the rate of change of f (x 0, y, z 0 ) with respect to y at y = y 0 ; f z (x 0, y 0, z 0 ) gives the rate of change of f (x 0, y 0, z) with respect to z at z = z 0. Example The function f (x, y, z) = xy 2 yz 2 has partial derivatives f x (x, y, z) = y 2, f y (x, y, z) = 2xy z 2, f z (x, y, z) = 2yz. The number f x (1, 2, 3) = 4 gives the rate of change with respect to x of the function f (x, 2, 3) = 4x 18 at x = 1; f y (1, 2, 3) = 5 gives the rate of change with respect to y of the function f (1, y, 3) = y 2 9y at y = 2. f z (1, 2, 3) = 12 gives the rate of change with respect to z of the function f (1, 2, z) = 4 2z 2 at z = 3.

28 Open and Closed Sets

29 Open and Closed Sets

30 Open and Closed Sets

31 Open and Closed Sets Thus (1) A set S is open provided that each of its points is an interior point. (2) A set S is open provided that it contains no boundary points.

32 Two-Dimensional Examples The sets Open and Closed Sets S 1 = {(x, y) : 1 < x < 2, 1 < y < 2}, S 2 = {(x, y) : 3 x 4, 1 y 2}, S 3 = {(x, y) : 5 x 6, 1 < y < 2} are displayed in Figure S 1 is the inside of the first square. S 1 is open because it contains a neighborhood of each of its points. S 2 is the inside of the second square together with the four bounding line segments. S 2 is closed because it contains its entire boundary. S 3 is the inside of the last square together with the two vertical bounding line segments. S 3 is not open because it contains part of its boundary, and it is not closed because it does not contain all of its boundary.

33 Open and Closed Sets Three-Dimensional Examples We now examine some three-dimensional sets: {(,, ) : } (,, ) : S= xyz z> x + y { } S = xyz z x + y S = ( xyz,, ) :1 x + z y The boundary of each of these sets is the paraboloid of revolution z = x 2 + y 2. The first set consists of all points above this surface. This set is open because, if a point is above this surface, then all points sufficiently close to it are also above this surface. Thus the set contains a neighborhood of each of its points. The second set is closed because it contains all of its boundary. The third set is neither open nor closed. It is not open because it contains some boundary points; for example, it contains the point (1, 1, 2). It is not closed because it fails to contain the boundary point (0, 0, 0).

34 Limits and Continuity

35 Limits and Continuity Suppose now that x 0 is an interior point of the domain of f. To say that f is continuous at x 0 is to say that Another way to indicate that f is continuous at x 0 is to write To say that f is continuous on an open set S is to say that f is continuous at all points of S.

36 Limits and Continuity Some Examples of Continuous Functions Polynomials in several variables, for example, P(x, y) = x 2 y + 3x 3 y 4 x + 2y and Q(x, y, z) = 6x 3 z yz 3 + 2xyz are everywhere continuous. In the two-variable case, that means continuity at each point of the xy-plane, and in the three-variable case, continuity at each point of threespace. Rational functions (quotients of polynomials) are continuous everywhere except where the denominator is zero. Thus 2x y f( xy, ) = x + y is continuous at each point of the xy-plane other than the origin (0, 0); 4 x g( xy, ) = x y is continuous except on the line y = x; 1 hxy (, ) = 2 x y is continuous except on the parabola y = x 2 ; 2x F( xyz,, ) = 2 x + y + z is continuous at each point of three-space other than the origin (0, 0, 0)

37 Limits and Continuity PROOF We begin with > 0. We must show that there exists a δ > 0 such that if x x 0 < δ, then f (g(x)) f (g(x 0 )) <. From the continuity of f at g(x 0 ), we know that there exists a if u g(x 0 ) <, then f (u) f (g(x 0 )) <. > 0 such that From the continuity of g at x 0, we know that there exists a δ > 0 such that This last δ obviously works; namely, δ 1 δ 1 if x x 0 < δ, then g(x) g(x 0 ) < δ 1. if x x 0 < δ, then g(x) g(x 0 ) < δ 1, and therefore f (g(x)) f (g(x0)) <.

38 Limits and Continuity Continuity in Each Variable Separately A continuous function of several variables is continuous in each of its variables separately. In the two-variable case, this means that, if then 0 ( xy, ) ( x, y) 0 0 ( ) = ( ) lim f x, y f x, y, 0 0 ( 0) = ( 0 0) and lim f ( x, y) = f ( x, y ) lim f x, y f x, y x x y y The converse is false. It is possible for a function to be continuous in each variable separately and yet fail to be continuous as a function of several variables.

39 Limits and Continuity Derivatives of Higher Order; Equality of Mixed Partials Suppose that f is a function of x and y with first partials f x and f y. These are again functions of x and y and may themselves possess partial derivatives: ( f x ) x, ( f x ) y, ( f y ) x, ( f y ) y. These functions are called the second-order partials. If z = f (x, y), we use the following notations for second-order partials f f f f xx x x xy x y yx yy f f z = ( f ) = = = x x x x f f z = ( f ) = = = y x yx yx f f z = ( fy ) = x = = x y xy xy = ( fy ) = y = = y y y y f f z

40 Limits and Continuity

Quadric Surfaces. Philippe B. Laval. Today KSU. Philippe B. Laval (KSU) Quadric Surfaces Today 1 / 24

Quadric Surfaces. Philippe B. Laval. Today KSU. Philippe B. Laval (KSU) Quadric Surfaces Today 1 / 24 Quadric Surfaces Philippe B. Laval KSU Today Philippe B. Laval (KSU) Quadric Surfaces Today 1 / 24 Introduction A quadric surface is the graph of a second degree equation in three variables. The general

More information

Quadric Surfaces. Philippe B. Laval. Spring 2012 KSU. Philippe B. Laval (KSU) Quadric Surfaces Spring /

Quadric Surfaces. Philippe B. Laval. Spring 2012 KSU. Philippe B. Laval (KSU) Quadric Surfaces Spring / .... Quadric Surfaces Philippe B. Laval KSU Spring 2012 Philippe B. Laval (KSU) Quadric Surfaces Spring 2012 1 / 15 Introduction A quadric surface is the graph of a second degree equation in three variables.

More information

Section 12.2: Quadric Surfaces

Section 12.2: Quadric Surfaces Section 12.2: Quadric Surfaces Goals: 1. To recognize and write equations of quadric surfaces 2. To graph quadric surfaces by hand Definitions: 1. A quadric surface is the three-dimensional graph of an

More information

Unit 3 Functions of Several Variables

Unit 3 Functions of Several Variables Unit 3 Functions of Several Variables In this unit, we consider several simple examples of multi-variable functions, quadratic surfaces and projections, level curves and surfaces, partial derivatives of

More information

Section 2.5. Functions and Surfaces

Section 2.5. Functions and Surfaces Section 2.5. Functions and Surfaces ² Brief review for one variable functions and curves: A (one variable) function is rule that assigns to each member x in a subset D in R 1 a unique real number denoted

More information

1.6 Quadric Surfaces Brief review of Conic Sections 74 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. Figure 1.18: Parabola y = 2x 2

1.6 Quadric Surfaces Brief review of Conic Sections 74 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. Figure 1.18: Parabola y = 2x 2 7 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.18: Parabola y = x 1.6 Quadric Surfaces Figure 1.19: Parabola x = y 1.6.1 Brief review of Conic Sections You may need to review conic sections for

More information

4 = 1 which is an ellipse of major axis 2 and minor axis 2. Try the plane z = y2

4 = 1 which is an ellipse of major axis 2 and minor axis 2. Try the plane z = y2 12.6 Quadrics and Cylinder Surfaces: Example: What is y = x? More correctly what is {(x,y,z) R 3 : y = x}? It s a plane. What about y =? Its a cylinder surface. What about y z = Again a cylinder surface

More information

Functions of Several Variables

Functions of Several Variables . Functions of Two Variables Functions of Several Variables Rectangular Coordinate System in -Space The rectangular coordinate system in R is formed by mutually perpendicular axes. It is a right handed

More information

12.6 Cylinders and Quadric Surfaces

12.6 Cylinders and Quadric Surfaces 12 Vectors and the Geometry of Space 12.6 and Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. and We have already looked at two special types of surfaces:

More information

What you will learn today

What you will learn today What you will learn today Conic Sections (in 2D coordinates) Cylinders (3D) Quadric Surfaces (3D) Vectors and the Geometry of Space 1/24 Parabolas ellipses Hyperbolas Shifted Conics Conic sections result

More information

Cylinders and Quadric Surfaces A cylinder is a three dimensional shape that is determined by

Cylinders and Quadric Surfaces A cylinder is a three dimensional shape that is determined by Cylinders and Quadric Surfaces A cylinder is a three dimensional shape that is determined by a two dimensional (plane) curve C in three dimensional space a line L in a plane not parallel to the one in

More information

Key Idea. It is not helpful to plot points to sketch a surface. Mainly we use traces and intercepts to sketch

Key Idea. It is not helpful to plot points to sketch a surface. Mainly we use traces and intercepts to sketch Section 12.7 Quadric surfaces 12.7 1 Learning outcomes After completing this section, you will inshaallah be able to 1. know what are quadric surfaces 2. how to sketch quadric surfaces 3. how to identify

More information

Quadric Surfaces. Six basic types of quadric surfaces: ellipsoid. cone. elliptic paraboloid. hyperboloid of one sheet. hyperboloid of two sheets

Quadric Surfaces. Six basic types of quadric surfaces: ellipsoid. cone. elliptic paraboloid. hyperboloid of one sheet. hyperboloid of two sheets Quadric Surfaces Six basic types of quadric surfaces: ellipsoid cone elliptic paraboloid hyperboloid of one sheet hyperboloid of two sheets hyperbolic paraboloid (A) (B) (C) (D) (E) (F) 1. For each surface,

More information

MATH 2023 Multivariable Calculus

MATH 2023 Multivariable Calculus MATH 2023 Multivariable Calculus Problem Sets Note: Problems with asterisks represent supplementary informations. You may want to read their solutions if you like, but you don t need to work on them. Set

More information

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution 13 Functions of Several Variables 13.1 Introduction to Functions of Several Variables Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Objectives Understand

More information

Vectors and the Geometry of Space

Vectors and the Geometry of Space Vectors and the Geometry of Space In Figure 11.43, consider the line L through the point P(x 1, y 1, z 1 ) and parallel to the vector. The vector v is a direction vector for the line L, and a, b, and c

More information

Quadric surface. Ellipsoid

Quadric surface. Ellipsoid Quadric surface Quadric surfaces are the graphs of any equation that can be put into the general form 11 = a x + a y + a 33z + a1xy + a13xz + a 3yz + a10x + a 0y + a 30z + a 00 where a ij R,i, j = 0,1,,

More information

Multivariate Calculus Review Problems for Examination Two

Multivariate Calculus Review Problems for Examination Two Multivariate Calculus Review Problems for Examination Two Note: Exam Two is on Thursday, February 28, class time. The coverage is multivariate differential calculus and double integration: sections 13.3,

More information

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives In general, if f is a function of two variables x and y, suppose we let only x vary while keeping y fixed, say y = b, where b is a constant. By the definition of a derivative, we have Then we are really

More information

Math 2130 Practice Problems Sec Name. Change the Cartesian integral to an equivalent polar integral, and then evaluate.

Math 2130 Practice Problems Sec Name. Change the Cartesian integral to an equivalent polar integral, and then evaluate. Math 10 Practice Problems Sec 1.-1. Name Change the Cartesian integral to an equivalent polar integral, and then evaluate. 1) 5 5 - x dy dx -5 0 A) 5 B) C) 15 D) 5 ) 0 0-8 - 6 - x (8 + ln 9) A) 1 1 + x

More information

Multivariate Calculus: Review Problems for Examination Two

Multivariate Calculus: Review Problems for Examination Two Multivariate Calculus: Review Problems for Examination Two Note: Exam Two is on Tuesday, August 16. The coverage is multivariate differential calculus and double integration. You should review the double

More information

30. Constrained Optimization

30. Constrained Optimization 30. Constrained Optimization The graph of z = f(x, y) is represented by a surface in R 3. Normally, x and y are chosen independently of one another so that one may roam over the entire surface of f (within

More information

MAT175 Overview and Sample Problems

MAT175 Overview and Sample Problems MAT175 Overview and Sample Problems The course begins with a quick review/overview of one-variable integration including the Fundamental Theorem of Calculus, u-substitutions, integration by parts, and

More information

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 covers essentially the same material as MAT201, but is more in depth and theoretical. Exam problems are often more sophisticated in scope and difficulty

More information

2. Give an example of a non-constant function f(x, y) such that the average value of f over is 0.

2. Give an example of a non-constant function f(x, y) such that the average value of f over is 0. Midterm 3 Review Short Answer 2. Give an example of a non-constant function f(x, y) such that the average value of f over is 0. 3. Compute the Riemann sum for the double integral where for the given grid

More information

6. Find the equation of the plane that passes through the point (-1,2,1) and contains the line x = y = z.

6. Find the equation of the plane that passes through the point (-1,2,1) and contains the line x = y = z. Week 1 Worksheet Sections from Thomas 13 th edition: 12.4, 12.5, 12.6, 13.1 1. A plane is a set of points that satisfies an equation of the form c 1 x + c 2 y + c 3 z = c 4. (a) Find any three distinct

More information

Dr. Allen Back. Aug. 27, 2014

Dr. Allen Back. Aug. 27, 2014 Dr. Allen Back Aug. 27, 2014 Math 2220 Preliminaries (2+ classes) Differentiation (12 classes) Multiple Integrals (9 classes) Vector Integrals (15 classes) Math 2220 Preliminaries (2+ classes) Differentiation

More information

UNIVERSITI TEKNOLOGI MALAYSIA SSE 1893 ENGINEERING MATHEMATICS TUTORIAL 5

UNIVERSITI TEKNOLOGI MALAYSIA SSE 1893 ENGINEERING MATHEMATICS TUTORIAL 5 UNIVERSITI TEKNOLOGI MALAYSIA SSE 189 ENGINEERING MATHEMATIS TUTORIAL 5 1. Evaluate the following surface integrals (i) (x + y) ds, : part of the surface 2x+y+z = 6 in the first octant. (ii) (iii) (iv)

More information

Chapter 6 Some Applications of the Integral

Chapter 6 Some Applications of the Integral Chapter 6 Some Applications of the Integral More on Area More on Area Integrating the vertical separation gives Riemann Sums of the form More on Area Example Find the area A of the set shaded in Figure

More information

= f (a, b) + (hf x + kf y ) (a,b) +

= f (a, b) + (hf x + kf y ) (a,b) + Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

f (Pijk ) V. may form the Riemann sum: . Definition. The triple integral of f over the rectangular box B is defined to f (x, y, z) dv = lim

f (Pijk ) V. may form the Riemann sum: . Definition. The triple integral of f over the rectangular box B is defined to f (x, y, z) dv = lim Chapter 14 Multiple Integrals..1 Double Integrals, Iterated Integrals, Cross-sections.2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals.3

More information

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals)

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals) MA 43 Calculus III Fall 8 Dr. E. Jacobs Assignments Reading assignments are found in James Stewart s Calculus (Early Transcendentals) Assignment. Spheres and Other Surfaces Read. -. and.6 Section./Problems

More information

Chapter 10. Exploring Conic Sections

Chapter 10. Exploring Conic Sections Chapter 10 Exploring Conic Sections Conics A conic section is a curve formed by the intersection of a plane and a hollow cone. Each of these shapes are made by slicing the cone and observing the shape

More information

Math 126C: Week 3 Review

Math 126C: Week 3 Review Math 126C: Week 3 Review Note: These are in no way meant to be comprehensive reviews; they re meant to highlight the main topics and formulas for the week. Doing homework and extra problems is always the

More information

Conic Sections. College Algebra

Conic Sections. College Algebra Conic Sections College Algebra Conic Sections A conic section, or conic, is a shape resulting from intersecting a right circular cone with a plane. The angle at which the plane intersects the cone determines

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Homework - Solutions 3 2 Homework 2 - Solutions 3 3 Homework 3 - Solutions 9 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus

More information

Functions of Several Variables

Functions of Several Variables Chapter 3 Functions of Several Variables 3.1 Definitions and Examples of Functions of two or More Variables In this section, we extend the definition of a function of one variable to functions of two or

More information

38. Triple Integration over Rectangular Regions

38. Triple Integration over Rectangular Regions 8. Triple Integration over Rectangular Regions A rectangular solid region S in R can be defined by three compound inequalities, a 1 x a, b 1 y b, c 1 z c, where a 1, a, b 1, b, c 1 and c are constants.

More information

Chapter 5 Partial Differentiation

Chapter 5 Partial Differentiation Chapter 5 Partial Differentiation For functions of one variable, y = f (x), the rate of change of the dependent variable can dy be found unambiguously by differentiation: f x. In this chapter we explore

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculus III-Final review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the corresponding position vector. 1) Define the points P = (-,

More information

Math 253, Section 102, Fall 2006 Practice Final Solutions

Math 253, Section 102, Fall 2006 Practice Final Solutions Math 253, Section 102, Fall 2006 Practice Final Solutions 1 2 1. Determine whether the two lines L 1 and L 2 described below intersect. If yes, find the point of intersection. If not, say whether they

More information

Chapter 8.1 Conic Sections/Parabolas. Honors Pre-Calculus Rogers High School

Chapter 8.1 Conic Sections/Parabolas. Honors Pre-Calculus Rogers High School Chapter 8.1 Conic Sections/Parabolas Honors Pre-Calculus Rogers High School Introduction to Conic Sections Conic sections are defined geometrically as the result of the intersection of a plane with a right

More information

Projective spaces and Bézout s theorem

Projective spaces and Bézout s theorem Projective spaces and Bézout s theorem êaû{0 Mijia Lai 5 \ laimijia@sjtu.edu.cn Outline 1. History 2. Projective spaces 3. Conics and cubics 4. Bézout s theorem and the resultant 5. Cayley-Bacharach theorem

More information

QUIZ 4 (CHAPTER 17) SOLUTIONS MATH 252 FALL 2008 KUNIYUKI SCORED OUT OF 125 POINTS MULTIPLIED BY % POSSIBLE

QUIZ 4 (CHAPTER 17) SOLUTIONS MATH 252 FALL 2008 KUNIYUKI SCORED OUT OF 125 POINTS MULTIPLIED BY % POSSIBLE QUIZ 4 (CHAPTER 17) SOLUTIONS MATH 5 FALL 8 KUNIYUKI SCORED OUT OF 15 POINTS MULTIPLIED BY.84 15% POSSIBLE 1) Reverse the order of integration, and evaluate the resulting double integral: 16 y dx dy. Give

More information

ü 12.1 Vectors Students should read Sections of Rogawski's Calculus [1] for a detailed discussion of the material presented in this section.

ü 12.1 Vectors Students should read Sections of Rogawski's Calculus [1] for a detailed discussion of the material presented in this section. Chapter 12 Vector Geometry Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible to view 3-D plots generated by Mathematica

More information

14.5 Directional Derivatives and the Gradient Vector

14.5 Directional Derivatives and the Gradient Vector 14.5 Directional Derivatives and the Gradient Vector 1. Directional Derivatives. Recall z = f (x, y) and the partial derivatives f x and f y are defined as f (x 0 + h, y 0 ) f (x 0, y 0 ) f x (x 0, y 0

More information

Find the specific function values. Complete parts (a) through (d) below. f (x,y,z) = x y y 2 + z = (Simplify your answer.) ID: 14.1.

Find the specific function values. Complete parts (a) through (d) below. f (x,y,z) = x y y 2 + z = (Simplify your answer.) ID: 14.1. . Find the specific function values. Complete parts (a) through (d) below. f (x,y,z) = x y y 2 + z 2 (a) f(2, 4,5) = (b) f 2,, 3 9 = (c) f 0,,0 2 (d) f(4,4,00) = = ID: 4..3 2. Given the function f(x,y)

More information

Chapter 15 Vector Calculus

Chapter 15 Vector Calculus Chapter 15 Vector Calculus 151 Vector Fields 152 Line Integrals 153 Fundamental Theorem and Independence of Path 153 Conservative Fields and Potential Functions 154 Green s Theorem 155 urface Integrals

More information

Pre-Calculus Guided Notes: Chapter 10 Conics. A circle is

Pre-Calculus Guided Notes: Chapter 10 Conics. A circle is Name: Pre-Calculus Guided Notes: Chapter 10 Conics Section Circles A circle is _ Example 1 Write an equation for the circle with center (3, ) and radius 5. To do this, we ll need the x1 y y1 distance formula:

More information

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;...

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;... Tutorial Class V 3-10/10/2012 1 First Order Partial Derivatives; Tutorial Class V 3-10/10/2012 1 First Order Partial Derivatives; 2 Application of Gradient; Tutorial Class V 3-10/10/2012 1 First Order

More information

Hw 4 Due Feb 22. D(fg) x y z (

Hw 4 Due Feb 22. D(fg) x y z ( Hw 4 Due Feb 22 2.2 Exercise 7,8,10,12,15,18,28,35,36,46 2.3 Exercise 3,11,39,40,47(b) 2.4 Exercise 6,7 Use both the direct method and product rule to calculate where f(x, y, z) = 3x, g(x, y, z) = ( 1

More information

MA 114 Worksheet #17: Average value of a function

MA 114 Worksheet #17: Average value of a function Spring 2019 MA 114 Worksheet 17 Thursday, 7 March 2019 MA 114 Worksheet #17: Average value of a function 1. Write down the equation for the average value of an integrable function f(x) on [a, b]. 2. Find

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

Dr. Allen Back. Nov. 21, 2014

Dr. Allen Back. Nov. 21, 2014 Dr. Allen Back of Nov. 21, 2014 The most important thing you should know (e.g. for exams and homework) is how to setup (and perhaps compute if not too hard) surface integrals, triple integrals, etc. But

More information

Math 113 Calculus III Final Exam Practice Problems Spring 2003

Math 113 Calculus III Final Exam Practice Problems Spring 2003 Math 113 Calculus III Final Exam Practice Problems Spring 23 1. Let g(x, y, z) = 2x 2 + y 2 + 4z 2. (a) Describe the shapes of the level surfaces of g. (b) In three different graphs, sketch the three cross

More information

MATH 261 FALL 2000 FINAL EXAM INSTRUCTIONS. 1. This test booklet has 14 pages including this one. There are 25 questions, each worth 8 points.

MATH 261 FALL 2000 FINAL EXAM INSTRUCTIONS. 1. This test booklet has 14 pages including this one. There are 25 questions, each worth 8 points. MATH 261 FALL 2 FINAL EXAM STUDENT NAME - STUDENT ID - RECITATION HOUR - RECITATION INSTRUCTOR INSTRUCTOR - INSTRUCTIONS 1. This test booklet has 14 pages including this one. There are 25 questions, each

More information

Functions of Several Variables

Functions of Several Variables Chapter 3 Functions of Several Variables 3.1 Definitions and Examples of Functions of two or More Variables In this section, we extend the definition of a function of one variable to functions of two or

More information

You may know these...

You may know these... You may know these... Chapter 1: Multivariables Functions 1.1 Functions of Two Variables 1.1.1 Function representations 1.1. 3-D Coordinate System 1.1.3 Graph of two variable functions 1.1.4 Sketching

More information

Math 265 Exam 3 Solutions

Math 265 Exam 3 Solutions C Roettger, Fall 16 Math 265 Exam 3 Solutions Problem 1 Let D be the region inside the circle r 5 sin θ but outside the cardioid r 2 + sin θ. Find the area of D. Note that r and θ denote polar coordinates.

More information

3. The domain of a function of 2 or 3 variables is a set of pts in the plane or space respectively.

3. The domain of a function of 2 or 3 variables is a set of pts in the plane or space respectively. Math 2204 Multivariable Calculus Chapter 14: Partial Derivatives Sec. 14.1: Functions of Several Variables I. Functions and Variables A. Def n : Suppose D is a set of n-tuples of real numbers (x 1, x 2,

More information

Name. Center axis. Introduction to Conic Sections

Name. Center axis. Introduction to Conic Sections Name Introduction to Conic Sections Center axis This introduction to conic sections is going to focus on what they some of the skills needed to work with their equations and graphs. year, we will only

More information

5. y 2 + z 2 + 4z = 0 correct. 6. z 2 + x 2 + 2x = a b = 4 π

5. y 2 + z 2 + 4z = 0 correct. 6. z 2 + x 2 + 2x = a b = 4 π M408D (54690/95/00), Midterm #2 Solutions Multiple choice questions (20 points) See last two pages. Question #1 (25 points) Dene the vector-valued function r(t) = he t ; 2; 3e t i: a) At what point P (x

More information

Curvilinear Coordinates

Curvilinear Coordinates Curvilinear Coordinates Cylindrical Coordinates A 3-dimensional coordinate transformation is a mapping of the form T (u; v; w) = hx (u; v; w) ; y (u; v; w) ; z (u; v; w)i Correspondingly, a 3-dimensional

More information

Triple Integrals in Rectangular Coordinates

Triple Integrals in Rectangular Coordinates Triple Integrals in Rectangular Coordinates P. Sam Johnson April 10, 2017 P. Sam Johnson (NIT Karnataka) Triple Integrals in Rectangular Coordinates April 10, 2017 1 / 28 Overview We use triple integrals

More information

Lecture 6: Chain rule, Mean Value Theorem, Tangent Plane

Lecture 6: Chain rule, Mean Value Theorem, Tangent Plane Lecture 6: Chain rule, Mean Value Theorem, Tangent Plane Rafikul Alam Department of Mathematics IIT Guwahati Chain rule Theorem-A: Let x : R R n be differentiable at t 0 and f : R n R be differentiable

More information

The Three Dimensional Coordinate System

The Three Dimensional Coordinate System The Three-Dimensional Coordinate System The Three Dimensional Coordinate System You can construct a three-dimensional coordinate system by passing a z-axis perpendicular to both the x- and y-axes at the

More information

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures Grad operator, triple and line integrals Notice: this material must not be used as a substitute for attending the lectures 1 .1 The grad operator Let f(x 1, x,..., x n ) be a function of the n variables

More information

Demo of some simple cylinders and quadratic surfaces

Demo of some simple cylinders and quadratic surfaces Demo of some simple cylinders and quadratic surfaces Yunkai Zhou Department of Mathematics Southern Methodist University (Prepared for Calculus-III, Math 2339) Acknowledgement: The very nice free software

More information

Introduction to PDEs: Notation, Terminology and Key Concepts

Introduction to PDEs: Notation, Terminology and Key Concepts Chapter 1 Introduction to PDEs: Notation, Terminology and Key Concepts 1.1 Review 1.1.1 Goal The purpose of this section is to briefly review notation as well as basic concepts from calculus. We will also

More information

CHAPTER 8 QUADRATIC RELATIONS AND CONIC SECTIONS

CHAPTER 8 QUADRATIC RELATIONS AND CONIC SECTIONS CHAPTER 8 QUADRATIC RELATIONS AND CONIC SECTIONS Big IDEAS: 1) Writing equations of conic sections ) Graphing equations of conic sections 3) Solving quadratic systems Section: Essential Question 8-1 Apply

More information

MATH 116 REVIEW PROBLEMS for the FINAL EXAM

MATH 116 REVIEW PROBLEMS for the FINAL EXAM MATH 116 REVIEW PROBLEMS for the FINAL EXAM The following questions are taken from old final exams of various calculus courses taught in Bilkent University 1. onsider the line integral (2xy 2 z + y)dx

More information

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002 Math 13 Calculus III Practice Exam Solutions Fall 00 1. Let g(x, y, z) = e (x+y) + z (x + y). (a) What is the instantaneous rate of change of g at the point (,, 1) in the direction of the origin? We want

More information

18.02 Final Exam. y = 0

18.02 Final Exam. y = 0 No books, notes or calculators. 5 problems, 50 points. 8.0 Final Exam Useful formula: cos (θ) = ( + cos(θ)) Problem. (0 points) a) (5 pts.) Find the equation in the form Ax + By + z = D of the plane P

More information

ALGEBRA II UNIT X: Conic Sections Unit Notes Packet

ALGEBRA II UNIT X: Conic Sections Unit Notes Packet Name: Period: ALGEBRA II UNIT X: Conic Sections Unit Notes Packet Algebra II Unit 10 Plan: This plan is subject to change at the teacher s discretion. Section Topic Formative Work Due Date 10.3 Circles

More information

Math 155, Lecture Notes- Bonds

Math 155, Lecture Notes- Bonds Math 155, Lecture Notes- Bonds Name Section 10.1 Conics and Calculus In this section, we will study conic sections from a few different perspectives. We will consider the geometry-based idea that conics

More information

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers 3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers Prof. Tesler Math 20C Fall 2018 Prof. Tesler 3.3 3.4 Optimization Math 20C / Fall 2018 1 / 56 Optimizing y = f (x) In Math 20A, we

More information

Multivariable Calculus

Multivariable Calculus Multivariable Calculus Chapter 10 Topics in Analytic Geometry (Optional) 1. Inclination of a line p. 5. Circles p. 4 9. Determining Conic Type p. 13. Angle between lines p. 6. Parabolas p. 5 10. Rotation

More information

Ray Tracer I: Ray Casting Due date: 12:00pm December 3, 2001

Ray Tracer I: Ray Casting Due date: 12:00pm December 3, 2001 Computer graphics Assignment 5 1 Overview Ray Tracer I: Ray Casting Due date: 12:00pm December 3, 2001 In this assignment you will implement the camera and several primitive objects for a ray tracer. We

More information

volume & surface area of a right circular cone cut by a plane parallel to symmetrical axis (Hyperbolic section)

volume & surface area of a right circular cone cut by a plane parallel to symmetrical axis (Hyperbolic section) From the SelectedWorks of Harish Chandra Rajpoot H.C. Rajpoot Winter December 25, 2016 volume & surface area of a right circular cone cut by a plane parallel to symmetrical axis (Hyperbolic section) Harish

More information

(Section 6.2: Volumes of Solids of Revolution: Disk / Washer Methods)

(Section 6.2: Volumes of Solids of Revolution: Disk / Washer Methods) (Section 6.: Volumes of Solids of Revolution: Disk / Washer Methods) 6.. PART E: DISK METHOD vs. WASHER METHOD When using the Disk or Washer Method, we need to use toothpicks that are perpendicular to

More information

Math 21a Tangent Lines and Planes Fall, What do we know about the gradient f? Tangent Lines to Curves in the Plane.

Math 21a Tangent Lines and Planes Fall, What do we know about the gradient f? Tangent Lines to Curves in the Plane. Math 21a Tangent Lines and Planes Fall, 2016 What do we know about the gradient f? Tangent Lines to Curves in the Plane. 1. For each of the following curves, find the tangent line to the curve at the point

More information

VOLUME OF A REGION CALCULATOR EBOOK

VOLUME OF A REGION CALCULATOR EBOOK 19 March, 2018 VOLUME OF A REGION CALCULATOR EBOOK Document Filetype: PDF 390.92 KB 0 VOLUME OF A REGION CALCULATOR EBOOK How do you calculate volume. A solid of revolution is a solid formed by revolving

More information

Substituting a 2 b 2 for c 2 and using a little algebra, we can then derive the standard equation for an ellipse centred at the origin,

Substituting a 2 b 2 for c 2 and using a little algebra, we can then derive the standard equation for an ellipse centred at the origin, Conics onic sections are the curves which result from the intersection of a plane with a cone. These curves were studied and revered by the ancient Greeks, and were written about extensively by both Euclid

More information

Chapter 15 Notes, Stewart 7e

Chapter 15 Notes, Stewart 7e Contents 15.2 Iterated Integrals..................................... 2 15.3 Double Integrals over General Regions......................... 5 15.4 Double Integrals in Polar Coordinates..........................

More information

Math 209 (Fall 2007) Calculus III. Solution #5. 1. Find the minimum and maximum values of the following functions f under the given constraints:

Math 209 (Fall 2007) Calculus III. Solution #5. 1. Find the minimum and maximum values of the following functions f under the given constraints: Math 9 (Fall 7) Calculus III Solution #5. Find the minimum and maximum values of the following functions f under the given constraints: (a) f(x, y) 4x + 6y, x + y ; (b) f(x, y) x y, x + y 6. Solution:

More information

13.1 2/20/2018. Conic Sections. Conic Sections: Parabolas and Circles

13.1 2/20/2018. Conic Sections. Conic Sections: Parabolas and Circles 13 Conic Sections 13.1 Conic Sections: Parabolas and Circles 13.2 Conic Sections: Ellipses 13.3 Conic Sections: Hyperbolas 13.4 Nonlinear Systems of Equations 13.1 Conic Sections: Parabolas and Circles

More information

Unit 12 Topics in Analytic Geometry - Classwork

Unit 12 Topics in Analytic Geometry - Classwork Unit 1 Topics in Analytic Geometry - Classwork Back in Unit 7, we delved into the algebra and geometry of lines. We showed that lines can be written in several forms: a) the general form: Ax + By + C =

More information

Standard Equation of a Circle

Standard Equation of a Circle Math 335 Trigonometry Conics We will study all 4 types of conic sections, which are curves that result from the intersection of a right circular cone and a plane that does not contain the vertex. (If the

More information

TNM079 Modeling & Animation Lecture 6 (Implicit surfaces)

TNM079 Modeling & Animation Lecture 6 (Implicit surfaces) TNM079 Modeling & Animation Lecture 6 (Implicit surfaces) Mark Eric Dieckmann, Media and Information Technology, ITN Linköpings universitet Campus Norrköping SE-60174 Norrköping May 4, 2016 Content of

More information

Graphing Techniques. Domain (, ) Range (, ) Squaring Function f(x) = x 2 Domain (, ) Range [, ) f( x) = x 2

Graphing Techniques. Domain (, ) Range (, ) Squaring Function f(x) = x 2 Domain (, ) Range [, ) f( x) = x 2 Graphing Techniques In this chapter, we will take our knowledge of graphs of basic functions and expand our ability to graph polynomial and rational functions using common sense, zeros, y-intercepts, stretching

More information

Sphere-geometric aspects of bisector surfaces

Sphere-geometric aspects of bisector surfaces Sphere-geometric aspects of bisector surfaces Martin eternell Vienna University of Technology, AGGM 2006, arcelona, September 2006 1 Definition Smooth oriented objects and

More information

Ray casting. Ray casting/ray tracing

Ray casting. Ray casting/ray tracing Ray casting Ray casting/ray tracing Iterate over pixels, not objects Effects that are difficult with Z-buffer, are easy with ray tracing: shadows, reflections, transparency, procedural textures and objects

More information

Final Exam Review Algebra Semester 1

Final Exam Review Algebra Semester 1 Final Exam Review Algebra 015-016 Semester 1 Name: Module 1 Find the inverse of each function. 1. f x 10 4x. g x 15x 10 Use compositions to check if the two functions are inverses. 3. s x 7 x and t(x)

More information

Surfaces. U (x; y; z) = k. Indeed, many of the most familiar surfaces are level surfaces of functions of 3 variables.

Surfaces. U (x; y; z) = k. Indeed, many of the most familiar surfaces are level surfaces of functions of 3 variables. Surfaces Level Surfaces One of the goals of this chapter is to use di erential calculus to explore surfaces, in much the same way that we used di erential calculus to study curves in the rst chapter. In

More information

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections REVIEW I MATH 254 Calculus IV Exam I (Friday, April 29 will cover sections 14.1-8. 1. Functions of multivariables The definition of multivariable functions is similar to that of functions of one variable.

More information

Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers

Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers In this section we present Lagrange s method for maximizing or minimizing a general function f(x, y, z) subject to a constraint (or side condition) of the form g(x, y, z) = k. Figure 1 shows this curve

More information

WHAT YOU SHOULD LEARN

WHAT YOU SHOULD LEARN GRAPHS OF EQUATIONS WHAT YOU SHOULD LEARN Sketch graphs of equations. Find x- and y-intercepts of graphs of equations. Use symmetry to sketch graphs of equations. Find equations of and sketch graphs of

More information

Module 3: Stand Up Conics

Module 3: Stand Up Conics MATH55 Module 3: Stand Up Conics Main Math concepts: Conic Sections (i.e. Parabolas, Ellipses, Hyperbolas), nd degree equations Auxilliary ideas: Analytic vs. Co-ordinate-free Geometry, Parameters, Calculus.

More information

Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives

Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives Recall that if z = f(x, y), then the partial derivatives f x and f y are defined as and represent the rates of change of z in the x- and y-directions, that is, in the directions of the unit vectors i and

More information