ALGORITHMS FOR DECISION SUPPORT

Size: px
Start display at page:

Download "ALGORITHMS FOR DECISION SUPPORT"

Transcription

1 GORIHM FOR IION UOR ayesian networks Guest ecturer: ilja Renooij hanks to hor Whalen or kindly contributing to these slides

2 robabilistic Independence

3 onditional Independence

4 onditional Independence

5 hain rule & independence

6 Independence & space/time complexity

7 icient representation o independence

8 ayesian network N

9 ayesian network queries e e e e = = = = = = = = h H h H h H arg max max arg e H e H = = = = = h h h h

10 omplexity o queries decision versions all N-hard

11 xact inerence Inerence algorithms ariable elimination Message passing earl Junction tree propagation aka join tree/hugin prop. pproximate inerence oopy belie propagation tochastic sampling various Monte arlo methods! in general approximation within a guaranteed margin o error does not reduce complexity o inerence

12 Idea behind the Junction tree algorithm ome clever algorithm Many problems that are hard on arbitrary graphs are easy on tree-like structures.

13 Or more speciically. lique or bag G H G F separator G F GH ayesian Network one-dim. stochastic variables conditional probabilities econdary tructure: Junction ree multi-dim. stochastic variables cluster potentials

14 et s take a couple o steps back

15 We are interested in - Need to sum out eliminate: Initial actors: rute orce: ut let s try something more elegant = v s x t l a b b a a x l t a s b s l v t s v example in sia network

16 liminate variables in order: ombine all initial actors using : = v v v [ Note: although = in general the result o elimination is not necessarily a probability term] example continued more or less joins and

17 liminate variables in order: ombine initial actors or this iteration: = s s s s example cntnd [ Note: result o elimination may be a unction o several variables; and thus become connected ]

18 liminate variables in order: ombine actors or this iteration: = x x [ Note: a = 1 or all values a o ] example cntnd

19 liminate variables in order: ombine actors or this iteration: = t t t example cntnd [ Note: actors can include other s; this actor joins and ]

20 liminate variables in order: ombine actors or this iteration: = l l l example cntnd [ Note: joins and ]

21 liminate variables in order: ombine actors or this iteration: = a a a a example cntnd

22 liminate variables in order: ombine actors or this iteration: example cntnd = b b

23 g g g g g g g In our previous example: With a dierent ordering: omplexity is exponential in the size o these actors! intermediate actors

24 Notes about ctual computation is done in the elimination steps omputation depends on the order o elimination For each query we need to compute everything again! Many redundant calculations

25 Junction rees Redundant calculations can be avoided by generalising to the junction tree J algorithm introduced by auritzen & piegelhalter 1988 he J algorithm compiles a class o elimination orders into a data structure that supports the computation o all possible queries.

26 uilding a Junction ree G Moral Graph riangulated Graph Identiying liques Junction ree

27 F G H F G H F G H 1. For all Z : For all Y parz add an edge Y. 2. Undirect all edges. G M G = tep 1: Moralization

28 tep 2: riangulation G M G G G H H F F dd edges to G M such that there is no cycle with length 4 that does not contain a chord. NO Y

29 tep 3: Identiying liques G G G G H H F F ll maximal cliques complete subgraphs o G

30 tep 4-I: Junction Graph liques rom G incomplete Junction graph G J G G G H separators G F e.g. F = F GH junction graph or an undirected graph G is an undirected labeled graph. he nodes are the cliques in G. I two cliques intersect they are joined in the junction graph by an edge labeled with their intersection.

31 tep 4-II: Junction ree junction tree is a sub-graph o the junction graph that Is a tree ontains all the cliques spanning tree atisies the running intersection property: or each pair o nodes Y all nodes on the path between and Y contain Y

32 Junction graph G J incomplete Junction tree G J F G G GH G G F GH

33 Running intersection? ll cliques Z and separators along the path between any two nodes and Y contain the intersection Y. x: ={} Y={} Y={} ={} {} 1 ={} {} 2 ={} {} Y 1 2 Z G G F GH

34 Using a Junction ree or inerence G Junction ree Initialization Inconsistent Junction ree onsistent Junction ree = v = e ropagation message passing Marginalization summing out

35 tep 1: Initialization For each conditional distribution rom the N create a node potential: ssign each node potential to a single clique or which he clique potential or is the product o its assigned node potentials

36 Marginalisation and Inconsistency otentials in the junction tree can be inconsistent i.e. computing a marginal i rom dierent cliques can give dierent results: = Σ φ ce = = Σ φ de = G G F GH

37 ropagating potentials: idea Message assing rom clique to clique 1. roject the potential o into separator 2. bsorb the potential o separator into rojection bsorption

38 Global propagation: idea 1. hoose a root 2. O-IN messages 1-5: leas to root. N corresponds with a perect elimination order! Root 7 G 3. IRIU-IN messages 6-10: root to leas G F GH ter global propagation potentials are consistent and marginalisation gives correct results.

39 Message passing Message passing in the junction tree resembles earl s λ-π -message passing algorithm or singly connected graphs. o you want to know how and why that works? sk those doing the robabilistic Reasoning course!

40 ack to complexity omputing probabilities rom a N with graph G with n nodes and tree-width w requires On expw time. tree-width o G = minimum width over all possible junction trees o G width o a junction tree = size o the largest clique minus 1 inerence and M can be solved in polynomial time on networks o bounded tree-width! Only M remains N-complete even on graphs with w 2

41 We ve seen that: ummary & More ayesian networks eiciently represent a joint probability distribution. he junction tree propagation algorithm elegantly combines elimination orders rom and message passing alike earl. We haven t discussed how to: triangulate a graph construct a Junction ree rom a junction graph exactly compute probabilities rom it urious? bit more can be ound in the bonus slides Finally: Junction tree algorithms are also useul or other purposes! here s so much more to Ns!

42 onus slides

43 ach elimination ordering triangulates the graph not necessarily in the same way: H F G H F G H F G H F G H F G H F G H F G H F G H F G riangulation G G M G

44 riangulation with Min-Fill Intuitively triangulations with as ew ill-ins as possible are preerred eaves us with small cliques small potentials common heuristic Min-ill : Repeat until no nodes remain: Find the node whose elimination would require the least number o ill-ins may be zero. liminate that node and note the need or a ill-in edge between any two non-adjacent neighbors. dd the ill-in edges to the original graph.

45 riangulation example G H G liminate the vertex that requires least number o edges to be added. F G M F G H F G vertex induced added removed clique edges 1 H GH - 2 G G - 3 F F vertex induced added removed clique edges

46 ew useul theorems n undirected graph is triangulated i and only i its junction graph has a junction tree sub-tree o the junction graph o a triangulated graph is a junction tree i and only i it is a spanning o maximal weight M.

47 Finding a Minimal panning ree Kruskal s algorithm: choose successively a link o maximal weight unless it creates a cycle. Junction graph G J incomplete Junction tree G J G G G G F GH F GH

48 mall propagation example xample N: hase 1: create a Junction ree:

49 mall propagation example hase 2-step 1: initialization ariable ssociated luster lique otentials φ = φ = φ = φ =

50 hase 2: ollect evidence hoose arbitrary clique e.g. {} where all potential unctions will be collected. Recursively call neighbouring cliques or messages: 1. all {}: 1. rojection onto separator : φ φ mall propagation example 2. bsorption into {}: = = = φ φ φ = = old φ No old value in irst pass 1

51 2. all {}: mall propagation example hase 2: ollect evidence cntd 1. rojection onto separator : φ 2. bsorption into {}: = = = φ 1 φ φ φ = old φ Result rom absorption in irst call

52 mall propagation example hase 2: istribute evidence ass messages recursively to neighboring nodes ass message rom {} to {}: 1. rojection onto separator : φ 2. bsorption into {}: φ = = = φ old φ φ φ = From phase 1

53 ass message rom {} to {}: 1. rojection onto separator : φ 2. bsorption into {}: φ mall propagation example hase 2: istribute evidence cntd old φ = = = φ φ φ = = 1 From phase 1 Now the junction tree is consistent and marginalisation in any clique is okay.

Markov Random Fields

Markov Random Fields 3750 Machine earning ecture 4 Markov Random ields Milos auskrecht milos@cs.pitt.edu 5329 ennott quare 3750 dvanced Machine earning Markov random fields Probabilistic models with symmetric dependences.

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Algorithms For Inference Fall 2014 Suggested Reading: Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 Probabilistic Modelling and Reasoning: The Junction

More information

Machine Learning Lecture 16

Machine Learning Lecture 16 ourse Outline Machine Learning Lecture 16 undamentals (2 weeks) ayes ecision Theory Probability ensity stimation Undirected raphical Models & Inference 28.06.2016 iscriminative pproaches (5 weeks) Linear

More information

Lecture 5: Exact inference. Queries. Complexity of inference. Queries (continued) Bayesian networks can answer questions about the underlying

Lecture 5: Exact inference. Queries. Complexity of inference. Queries (continued) Bayesian networks can answer questions about the underlying given that Maximum a posteriori (MAP query: given evidence 2 which has the highest probability: instantiation of all other variables in the network,, Most probable evidence (MPE: given evidence, find an

More information

Acyclic Network. Tree Based Clustering. Tree Decomposition Methods

Acyclic Network. Tree Based Clustering. Tree Decomposition Methods Summary s Join Tree Importance of s Solving Topological structure defines key features for a wide class of problems CSP: Inference in acyclic network is extremely efficient (polynomial) Idea: remove cycles

More information

Maximal Prime Subgraph Decomposition of Bayesian Networks: A Relational Database Perspective

Maximal Prime Subgraph Decomposition of Bayesian Networks: A Relational Database Perspective Maximal Prime ubgraph ecomposition of ayesian Networks: Relational atabase Perspective an Wu chool of omputer cience University of Windsor Windsor Ontario anada N9 3P4 Michael Wong epartment of omputer

More information

Acyclic Network. Tree Based Clustering. Tree Decomposition Methods

Acyclic Network. Tree Based Clustering. Tree Decomposition Methods Summary s Cluster Tree Elimination Importance of s Solving Topological structure dene key features for a wide class of problems CSP: Inference in acyclic network is extremely ecient (polynomial) Idea:

More information

Lecture 5: Exact inference

Lecture 5: Exact inference Lecture 5: Exact inference Queries Inference in chains Variable elimination Without evidence With evidence Complexity of variable elimination which has the highest probability: instantiation of all other

More information

Summary. Acyclic Networks Join Tree Clustering. Tree Decomposition Methods. Acyclic Network. Tree Based Clustering. Tree Decomposition.

Summary. Acyclic Networks Join Tree Clustering. Tree Decomposition Methods. Acyclic Network. Tree Based Clustering. Tree Decomposition. Summary s Join Tree Importance of s Solving Topological structure denes key features for a wide class of problems CSP: Inference in acyclic network is extremely ecient (polynomial) Idea: remove cycles

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Raquel Urtasun and Tamir Hazan TTI Chicago April 22, 2011 Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 22, 2011 1 / 22 If the graph is non-chordal, then

More information

Part I: Sum Product Algorithm and (Loopy) Belief Propagation. What s wrong with VarElim. Forwards algorithm (filtering) Forwards-backwards algorithm

Part I: Sum Product Algorithm and (Loopy) Belief Propagation. What s wrong with VarElim. Forwards algorithm (filtering) Forwards-backwards algorithm OU 56 Probabilistic Graphical Models Loopy Belief Propagation and lique Trees / Join Trees lides from Kevin Murphy s Graphical Model Tutorial (with minor changes) eading: Koller and Friedman h 0 Part I:

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 8 Junction Trees CS/CNS/EE 155 Andreas Krause Announcements Homework 2 due next Wednesday (Nov 4) in class Start early!!! Project milestones due Monday (Nov 9) 4

More information

Ch9: Exact Inference: Variable Elimination. Shimi Salant, Barak Sternberg

Ch9: Exact Inference: Variable Elimination. Shimi Salant, Barak Sternberg Ch9: Exact Inference: Variable Elimination Shimi Salant Barak Sternberg Part 1 Reminder introduction (1/3) We saw two ways to represent (finite discrete) distributions via graphical data structures: Bayesian

More information

Part II. C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS

Part II. C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS Part II C. M. Bishop PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 8: GRAPHICAL MODELS Converting Directed to Undirected Graphs (1) Converting Directed to Undirected Graphs (2) Add extra links between

More information

Computer Vision Group Prof. Daniel Cremers. 4a. Inference in Graphical Models

Computer Vision Group Prof. Daniel Cremers. 4a. Inference in Graphical Models Group Prof. Daniel Cremers 4a. Inference in Graphical Models Inference on a Chain (Rep.) The first values of µ α and µ β are: The partition function can be computed at any node: Overall, we have O(NK 2

More information

Graph Algorithms (part 3 of CSC 282),

Graph Algorithms (part 3 of CSC 282), Graph Algorithms (part of CSC 8), http://www.cs.rochester.edu/~stefanko/teaching/10cs8 1 Schedule Homework is due Thursday, Oct 1. The QUIZ will be on Tuesday, Oct. 6. List of algorithms covered in the

More information

Recitation 4: Elimination algorithm, reconstituted graph, triangulation

Recitation 4: Elimination algorithm, reconstituted graph, triangulation Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 Recitation 4: Elimination algorithm, reconstituted graph, triangulation

More information

Junction tree propagation - BNDG 4-4.6

Junction tree propagation - BNDG 4-4.6 Junction tree propagation - BNDG 4-4. Finn V. Jensen and Thomas D. Nielsen Junction tree propagation p. 1/2 Exact Inference Message Passing in Join Trees More sophisticated inference technique; used in

More information

Finding Non-overlapping Clusters for Generalized Inference Over Graphical Models

Finding Non-overlapping Clusters for Generalized Inference Over Graphical Models 1 Finding Non-overlapping Clusters for Generalized Inference Over Graphical Models Divyanshu Vats and José M. F. Moura arxiv:1107.4067v2 [stat.ml] 18 Mar 2012 Abstract Graphical models use graphs to compactly

More information

Belief propagation in a bucket-tree. Handouts, 275B Fall Rina Dechter. November 1, 2000

Belief propagation in a bucket-tree. Handouts, 275B Fall Rina Dechter. November 1, 2000 Belief propagation in a bucket-tree Handouts, 275B Fall-2000 Rina Dechter November 1, 2000 1 From bucket-elimination to tree-propagation The bucket-elimination algorithm, elim-bel, for belief updating

More information

Lecture 9: Undirected Graphical Models Machine Learning

Lecture 9: Undirected Graphical Models Machine Learning Lecture 9: Undirected Graphical Models Machine Learning Andrew Rosenberg March 5, 2010 1/1 Today Graphical Models Probabilities in Undirected Graphs 2/1 Undirected Graphs What if we allow undirected graphs?

More information

Factor Graphs and Inference

Factor Graphs and Inference Factor Graph and Inerence Sargur Srihari rihari@cedar.bualo.edu 1 Topic 1. Factor Graph 1. Factor in probability ditribution. Deriving them rom graphical model. Eact Inerence Algorithm or Tree graph 1.

More information

6 : Factor Graphs, Message Passing and Junction Trees

6 : Factor Graphs, Message Passing and Junction Trees 10-708: Probabilistic Graphical Models 10-708, Spring 2018 6 : Factor Graphs, Message Passing and Junction Trees Lecturer: Kayhan Batmanghelich Scribes: Sarthak Garg 1 Factor Graphs Factor Graphs are graphical

More information

These notes present some properties of chordal graphs, a set of undirected graphs that are important for undirected graphical models.

These notes present some properties of chordal graphs, a set of undirected graphs that are important for undirected graphical models. Undirected Graphical Models: Chordal Graphs, Decomposable Graphs, Junction Trees, and Factorizations Peter Bartlett. October 2003. These notes present some properties of chordal graphs, a set of undirected

More information

V,T C3: S,L,B T C4: A,L,T A,L C5: A,L,B A,B C6: C2: X,A A

V,T C3: S,L,B T C4: A,L,T A,L C5: A,L,B A,B C6: C2: X,A A Inference II Daphne Koller Stanford University CS228 Handout #13 In the previous chapter, we showed how efficient inference can be done in a BN using an algorithm called Variable Elimination, that sums

More information

CS649 Sensor Networks IP Track Lecture 6: Graphical Models

CS649 Sensor Networks IP Track Lecture 6: Graphical Models CS649 Sensor Networks IP Track Lecture 6: Grahical Models I-Jeng Wang htt://hinrg.cs.jhu.edu/wsn06/ Sring 2006 CS 649 1 Sring 2006 CS 649 2 Grahical Models Grahical Model: grahical reresentation of joint

More information

Minimum spanning trees

Minimum spanning trees Carlos Moreno cmoreno @ uwaterloo.ca EI-3 https://ece.uwaterloo.ca/~cmoreno/ece5 Standard reminder to set phones to silent/vibrate mode, please! During today's lesson: Introduce the notion of spanning

More information

Let G = (V, E) be a graph. If u, v V, then u is adjacent to v if {u, v} E. We also use the notation u v to denote that u is adjacent to v.

Let G = (V, E) be a graph. If u, v V, then u is adjacent to v if {u, v} E. We also use the notation u v to denote that u is adjacent to v. Graph Adjacent Endpoint of an edge Incident Neighbors of a vertex Degree of a vertex Theorem Graph relation Order of a graph Size of a graph Maximum and minimum degree Let G = (V, E) be a graph. If u,

More information

CS242: Probabilistic Graphical Models Lecture 3: Factor Graphs & Variable Elimination

CS242: Probabilistic Graphical Models Lecture 3: Factor Graphs & Variable Elimination CS242: Probabilistic Graphical Models Lecture 3: Factor Graphs & Variable Elimination Instructor: Erik Sudderth Brown University Computer Science September 11, 2014 Some figures and materials courtesy

More information

STAT 598L Probabilistic Graphical Models. Instructor: Sergey Kirshner. Exact Inference

STAT 598L Probabilistic Graphical Models. Instructor: Sergey Kirshner. Exact Inference STAT 598L Probabilistic Graphical Models Instructor: Sergey Kirshner Exact Inference What To Do With Bayesian/Markov Network? Compact representation of a complex model, but Goal: efficient extraction of

More information

CS242: Probabilistic Graphical Models Lecture 2B: Loopy Belief Propagation & Junction Trees

CS242: Probabilistic Graphical Models Lecture 2B: Loopy Belief Propagation & Junction Trees CS242: Probabilistic Graphical Models Lecture 2B: Loopy Belief Propagation & Junction Trees Professor Erik Sudderth Brown University Computer Science September 22, 2016 Some figures and materials courtesy

More information

TCOM 501: Networking Theory & Fundamentals. Lecture 11 April 16, 2003 Prof. Yannis A. Korilis

TCOM 501: Networking Theory & Fundamentals. Lecture 11 April 16, 2003 Prof. Yannis A. Korilis TOM 50: Networking Theory & undamentals Lecture pril 6, 2003 Prof. Yannis. Korilis 2 Topics Routing in ata Network Graph Representation of a Network Undirected Graphs Spanning Trees and Minimum Weight

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Raquel Urtasun and Tamir Hazan TTI Chicago April 25, 2011 Raquel Urtasun and Tamir Hazan (TTI-C) Graphical Models April 25, 2011 1 / 17 Clique Trees Today we are going to

More information

Bayesian Networks, Winter Yoav Haimovitch & Ariel Raviv

Bayesian Networks, Winter Yoav Haimovitch & Ariel Raviv Bayesian Networks, Winter 2009-2010 Yoav Haimovitch & Ariel Raviv 1 Chordal Graph Warm up Theorem 7 Perfect Vertex Elimination Scheme Maximal cliques Tree Bibliography M.C.Golumbic Algorithmic Graph Theory

More information

Global Constraints. Combinatorial Problem Solving (CPS) Enric Rodríguez-Carbonell (based on materials by Javier Larrosa) February 22, 2019

Global Constraints. Combinatorial Problem Solving (CPS) Enric Rodríguez-Carbonell (based on materials by Javier Larrosa) February 22, 2019 Global Constraints Combinatorial Problem Solving (CPS) Enric Rodríguez-Carbonell (based on materials by Javier Larrosa) February 22, 2019 Global Constraints Global constraints are classes o constraints

More information

EE512 Graphical Models Fall 2009

EE512 Graphical Models Fall 2009 EE512 Graphical Models Fall 2009 Prof. Jeff Bilmes University of Washington, Seattle Department of Electrical Engineering Fall Quarter, 2009 http://ssli.ee.washington.edu/~bilmes/ee512fa09 Lecture 11 -

More information

IP Forwarding Computer Networking. Routes from Node A. Graph Model. Lecture 10: Intra-Domain Routing

IP Forwarding Computer Networking. Routes from Node A. Graph Model. Lecture 10: Intra-Domain Routing IP orwarding - omputer Networking Lecture : Intra-omain Routing RIP (Routing Information Protocol) & OSP (Open Shortest Path irst) The Story So ar IP addresses are structure to reflect Internet structure

More information

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning

ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning ECE 6504: Advanced Topics in Machine Learning Probabilistic Graphical Models and Large-Scale Learning Topics Bayes Nets: Inference (Finish) Variable Elimination Graph-view of VE: Fill-edges, induced width

More information

Search Algorithms for Solving Queries on Graphical Models & the Importance of Pseudo-trees in their Complexity.

Search Algorithms for Solving Queries on Graphical Models & the Importance of Pseudo-trees in their Complexity. Search Algorithms for Solving Queries on Graphical Models & the Importance of Pseudo-trees in their Complexity. University of California, Irvine CS199: Individual Study with Rina Dechter Héctor Otero Mediero

More information

Solving NP-hard Problems on Special Instances

Solving NP-hard Problems on Special Instances Solving NP-hard Problems on Special Instances Solve it in poly- time I can t You can assume the input is xxxxx No Problem, here is a poly-time algorithm 1 Solving NP-hard Problems on Special Instances

More information

OSU CS 536 Probabilistic Graphical Models. Loopy Belief Propagation and Clique Trees / Join Trees

OSU CS 536 Probabilistic Graphical Models. Loopy Belief Propagation and Clique Trees / Join Trees OSU CS 536 Probabilistic Graphical Models Loopy Belief Propagation and Clique Trees / Join Trees Slides from Kevin Murphy s Graphical Model Tutorial (with minor changes) Reading: Koller and Friedman Ch

More information

CAD Algorithms. Shortest Path

CAD Algorithms. Shortest Path lgorithms Shortest Path lgorithms Mohammad Tehranipoor epartment September 00 Shortest Path Problem: ind the best way of getting from s to t where s and t are vertices in a graph. est: Min (sum of the

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 5 Inference

More information

1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1

1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1 Asymptotics, Recurrence and Basic Algorithms 1. [1 pt] What is the solution to the recurrence T(n) = 2T(n-1) + 1, T(1) = 1 1. O(logn) 2. O(n) 3. O(nlogn) 4. O(n 2 ) 5. O(2 n ) 2. [1 pt] What is the solution

More information

Junction Trees and Chordal Graphs

Junction Trees and Chordal Graphs Graphical Models, Lecture 6, Michaelmas Term 2011 October 24, 2011 Decomposability Factorization of Markov distributions Explicit formula for MLE Consider an undirected graph G = (V, E). A partitioning

More information

Bayesian Networks and Decision Graphs

Bayesian Networks and Decision Graphs ayesian Networks and ecision raphs hapter 7 hapter 7 p. 1/27 Learning the structure of a ayesian network We have: complete database of cases over a set of variables. We want: ayesian network structure

More information

AND/OR Cutset Conditioning

AND/OR Cutset Conditioning ND/OR utset onditioning Robert Mateescu and Rina Dechter School of Information and omputer Science University of alifornia, Irvine, 92697 {mateescu, dechter}@ics.uci.edu bstract utset conditioning is one

More information

Minimum Spanning Trees and Shortest Paths

Minimum Spanning Trees and Shortest Paths Minimum Spanning Trees and Shortest Paths Kruskal's lgorithm Prim's lgorithm Shortest Paths pril 04, 018 inda eeren / eoffrey Tien 1 Kruskal's algorithm ata types for implementation Kruskalslgorithm()

More information

D-Separation. b) the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set C.

D-Separation. b) the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set C. D-Separation Say: A, B, and C are non-intersecting subsets of nodes in a directed graph. A path from A to B is blocked by C if it contains a node such that either a) the arrows on the path meet either

More information

Analysis of Algorithms Prof. Karen Daniels

Analysis of Algorithms Prof. Karen Daniels UMass Lowell omputer Science 91.404 nalysis of lgorithms Prof. Karen aniels Spring, 2013 hapter 22: raph lgorithms & rief Introduction to Shortest Paths [Source: ormen et al. textbook except where noted]

More information

Faster parameterized algorithms for Minimum Fill-In

Faster parameterized algorithms for Minimum Fill-In Faster parameterized algorithms for Minimum Fill-In Hans L. Bodlaender Pinar Heggernes Yngve Villanger Technical Report UU-CS-2008-042 December 2008 Department of Information and Computing Sciences Utrecht

More information

Computational Geometry

Computational Geometry Orthogonal Range Searching omputational Geometry hapter 5 Range Searching Problem: Given a set of n points in R d, preprocess them such that reporting or counting the k points inside a d-dimensional axis-parallel

More information

An Effective Upperbound on Treewidth Using Partial Fill-in of Separators

An Effective Upperbound on Treewidth Using Partial Fill-in of Separators An Effective Upperbound on Treewidth Using Partial Fill-in of Separators Boi Faltings Martin Charles Golumbic June 28, 2009 Abstract Partitioning a graph using graph separators, and particularly clique

More information

Junction Trees and Chordal Graphs

Junction Trees and Chordal Graphs Graphical Models, Lecture 6, Michaelmas Term 2009 October 30, 2009 Decomposability Factorization of Markov distributions Explicit formula for MLE Consider an undirected graph G = (V, E). A partitioning

More information

Graph Algorithms (part 3 of CSC 282),

Graph Algorithms (part 3 of CSC 282), Graph Algorithms (part of CSC 8), http://www.cs.rochester.edu/~stefanko/teaching/11cs8 Homework problem sessions are in CSB 601, 6:1-7:1pm on Oct. (Wednesday), Oct. 1 (Wednesday), and on Oct. 19 (Wednesday);

More information

Minimum Spanning Trees and Shortest Paths

Minimum Spanning Trees and Shortest Paths Minimum Spanning Trees and Shortest Paths Prim's algorithm ijkstra's algorithm November, 017 inda eeren / eoffrey Tien 1 Recall: S spanning tree Starting from vertex 16 9 1 6 10 13 4 3 17 5 11 7 16 13

More information

Minimum-Spanning-Tree problem. Minimum Spanning Trees (Forests) Minimum-Spanning-Tree problem

Minimum-Spanning-Tree problem. Minimum Spanning Trees (Forests) Minimum-Spanning-Tree problem Minimum Spanning Trees (Forests) Given an undirected graph G=(V,E) with each edge e having a weight w(e) : Find a subgraph T of G of minimum total weight s.t. every pair of vertices connected in G are

More information

Execution Tracing and Profiling

Execution Tracing and Profiling lass 8 Questions/comments iscussion of academic honesty, GT Honor ode fficient path profiling inal project presentations: ec, 3; 4:35-6:45 ssign (see Schedule for links) Problem Set 7 discuss Readings

More information

Spanning Tree. Lecture19: Graph III. Minimum Spanning Tree (MSP)

Spanning Tree. Lecture19: Graph III. Minimum Spanning Tree (MSP) Spanning Tree (015) Lecture1: Graph III ohyung Han S, POSTH bhhan@postech.ac.kr efinition and property Subgraph that contains all vertices of the original graph and is a tree Often, a graph has many different

More information

Partha Sarathi Mandal

Partha Sarathi Mandal MA 515: Introduction to Algorithms & MA353 : Design and Analysis of Algorithms [3-0-0-6] Lecture 39 http://www.iitg.ernet.in/psm/indexing_ma353/y09/index.html Partha Sarathi Mandal psm@iitg.ernet.in Dept.

More information

NP Completeness. Andreas Klappenecker [partially based on slides by Jennifer Welch]

NP Completeness. Andreas Klappenecker [partially based on slides by Jennifer Welch] NP Completeness Andreas Klappenecker [partially based on slides by Jennifer Welch] Dealing with NP-Complete Problems Dealing with NP-Completeness Suppose the problem you need to solve is NP-complete. What

More information

Constraint Satisfaction Problems (CSPs) Lecture 4 - Features and Constraints. CSPs as Graph searching problems. Example Domains. Dual Representations

Constraint Satisfaction Problems (CSPs) Lecture 4 - Features and Constraints. CSPs as Graph searching problems. Example Domains. Dual Representations Constraint Satisfaction Problems (CSPs) Lecture 4 - Features and Constraints Jesse Hoey School of Computer Science University of Waterloo January 22, 2018 Readings: Poole & Mackworth (2nd d.) Chapt. 4.1-4.8

More information

Decomposition of log-linear models

Decomposition of log-linear models Graphical Models, Lecture 5, Michaelmas Term 2009 October 27, 2009 Generating class Dependence graph of log-linear model Conformal graphical models Factor graphs A density f factorizes w.r.t. A if there

More information

Max-Sum Inference Algorithm

Max-Sum Inference Algorithm Ma-Sum Inference Algorithm Sargur Srihari srihari@cedar.buffalo.edu 1 The ma-sum algorithm Sum-product algorithm Takes joint distribution epressed as a factor graph Efficiently finds marginals over component

More information

An iteration of Branch and Bound One iteration of Branch and Bound consists of the following four steps: Some definitions. Branch and Bound.

An iteration of Branch and Bound One iteration of Branch and Bound consists of the following four steps: Some definitions. Branch and Bound. ranch and ound xamples and xtensions jesla@man.dtu.dk epartment of Management ngineering Technical University of enmark ounding ow do we get ourselves a bounding function? Relaxation. Leave out some constraints.

More information

The 3-Steiner Root Problem

The 3-Steiner Root Problem The 3-Steiner Root Problem Maw-Shang Chang 1 and Ming-Tat Ko 2 1 Department of Computer Science and Information Engineering National Chung Cheng University, Chiayi 621, Taiwan, R.O.C. mschang@cs.ccu.edu.tw

More information

Computer Vision Group Prof. Daniel Cremers. 4. Probabilistic Graphical Models Directed Models

Computer Vision Group Prof. Daniel Cremers. 4. Probabilistic Graphical Models Directed Models Prof. Daniel Cremers 4. Probabilistic Graphical Models Directed Models The Bayes Filter (Rep.) (Bayes) (Markov) (Tot. prob.) (Markov) (Markov) 2 Graphical Representation (Rep.) We can describe the overall

More information

Warm-up as you walk in

Warm-up as you walk in arm-up as you walk in Given these N=10 observations of the world: hat is the approximate value for P c a, +b? A. 1/10 B. 5/10. 1/4 D. 1/5 E. I m not sure a, b, +c +a, b, +c a, b, +c a, +b, +c +a, b, +c

More information

Belief Updating in Bayes Networks (1)

Belief Updating in Bayes Networks (1) Belief Updating in Bayes Networks (1) Mark Fishel, Mihkel Pajusalu, Roland Pihlakas Bayes Networks p. 1 Some Concepts Belief: probability Belief updating: probability calculating based on a BN (model,

More information

7.3 Spanning trees Spanning trees [ ] 61

7.3 Spanning trees Spanning trees [ ] 61 7.3. Spanning trees [161211-1348 ] 61 7.3 Spanning trees We know that trees are connected graphs with the minimal number of edges. Hence trees become very useful in applications where our goal is to connect

More information

CS 4407 Algorithms. Lecture 8: Circumventing Intractability, using Approximation and other Techniques

CS 4407 Algorithms. Lecture 8: Circumventing Intractability, using Approximation and other Techniques CS 4407 Algorithms Lecture 8: Circumventing Intractability, using Approximation and other Techniques Prof. Gregory Provan Department of Computer Science University College Cork CS 4010 1 Lecture Outline

More information

The Simplex Algorithm for LP, and an Open Problem

The Simplex Algorithm for LP, and an Open Problem The Simplex Algorithm for LP, and an Open Problem Linear Programming: General Formulation Inputs: real-valued m x n matrix A, and vectors c in R n and b in R m Output: n-dimensional vector x There is one

More information

CS302 - Data Structures using C++

CS302 - Data Structures using C++ CS302 - Data Structures using C++ Topic: Minimum Spanning Tree Kostas Alexis The Minimum Spanning Tree Algorithm A telecommunication company wants to connect all the blocks in a new neighborhood. However,

More information

Conflict Graphs for Combinatorial Optimization Problems

Conflict Graphs for Combinatorial Optimization Problems Conflict Graphs for Combinatorial Optimization Problems Ulrich Pferschy joint work with Andreas Darmann and Joachim Schauer University of Graz, Austria Introduction Combinatorial Optimization Problem CO

More information

EE512 Graphical Models Fall 2009

EE512 Graphical Models Fall 2009 EE512 Graphical Models Fall 2009 Prof. Jeff Bilmes University of Washington, Seattle Department of Electrical Engineering Fall Quarter, 2009 http://ssli.ee.washington.edu/~bilmes/ee512fa09 Lecture 13 -

More information

Lecture 13: May 10, 2002

Lecture 13: May 10, 2002 EE96 Pat. Recog. II: Introduction to Graphical Models University of Washington Spring 00 Dept. of Electrical Engineering Lecture : May 0, 00 Lecturer: Jeff Bilmes Scribe: Arindam Mandal, David Palmer(000).

More information

Chapter 9. Greedy Algorithms: Spanning Trees and Minimum Spanning Trees

Chapter 9. Greedy Algorithms: Spanning Trees and Minimum Spanning Trees msc20 Intro to lgorithms hapter. Greedy lgorithms: Spanning Trees and Minimum Spanning Trees The concept is relevant to connected undirected graphs. Problem: Here is a diagram of a prison for political

More information

Clustering Using Graph Connectivity

Clustering Using Graph Connectivity Clustering Using Graph Connectivity Patrick Williams June 3, 010 1 Introduction It is often desirable to group elements of a set into disjoint subsets, based on the similarity between the elements in the

More information

Honour Thy Neighbour Clique Maintenance in Dynamic Graphs

Honour Thy Neighbour Clique Maintenance in Dynamic Graphs Honour Thy Neighbour Clique Maintenance in Dynamic Graphs Thorsten J. Ottosen Department of Computer Science, Aalborg University, Denmark nesotto@cs.aau.dk Jiří Vomlel Institute of Information Theory and

More information

P and NP (Millenium problem)

P and NP (Millenium problem) CMPS 2200 Fall 2017 P and NP (Millenium problem) Carola Wenk Slides courtesy of Piotr Indyk with additions by Carola Wenk CMPS 2200 Introduction to Algorithms 1 We have seen so far Algorithms for various

More information

Coloring 3-Colorable Graphs

Coloring 3-Colorable Graphs Coloring -Colorable Graphs Charles Jin April, 015 1 Introduction Graph coloring in general is an etremely easy-to-understand yet powerful tool. It has wide-ranging applications from register allocation

More information

CHAPTER 14 GRAPH ALGORITHMS ORD SFO LAX DFW

CHAPTER 14 GRAPH ALGORITHMS ORD SFO LAX DFW SO OR HPTR 1 GRPH LGORITHMS LX W KNOWLGMNT: THS SLIS R PT ROM SLIS PROVI WITH T STRUTURS N LGORITHMS IN JV, GOORIH, TMSSI N GOLWSSR (WILY 16) 6 OS MINIMUM SPNNING TRS SO 16 PV OR 1 1 16 61 JK 1 1 11 WI

More information

Faster parameterized algorithms for Minimum Fill-In

Faster parameterized algorithms for Minimum Fill-In Faster parameterized algorithms for Minimum Fill-In Hans L. Bodlaender Pinar Heggernes Yngve Villanger Abstract We present two parameterized algorithms for the Minimum Fill-In problem, also known as Chordal

More information

3 : Representation of Undirected GMs

3 : Representation of Undirected GMs 0-708: Probabilistic Graphical Models 0-708, Spring 202 3 : Representation of Undirected GMs Lecturer: Eric P. Xing Scribes: Nicole Rafidi, Kirstin Early Last Time In the last lecture, we discussed directed

More information

Representations of Weighted Graphs (as Matrices) Algorithms and Data Structures: Minimum Spanning Trees. Weighted Graphs

Representations of Weighted Graphs (as Matrices) Algorithms and Data Structures: Minimum Spanning Trees. Weighted Graphs Representations of Weighted Graphs (as Matrices) A B Algorithms and Data Structures: Minimum Spanning Trees 9.0 F 1.0 6.0 5.0 6.0 G 5.0 I H 3.0 1.0 C 5.0 E 1.0 D 28th Oct, 1st & 4th Nov, 2011 ADS: lects

More information

CS1800: Graph Algorithms (2nd Part) Professor Kevin Gold

CS1800: Graph Algorithms (2nd Part) Professor Kevin Gold S1800: raph lgorithms (2nd Part) Professor Kevin old Summary So ar readth-irst Search (S) and epth-irst Search (S) are two efficient algorithms for finding paths on graphs. S also finds the shortest path.

More information

with Dana Richards December 1, 2017 George Mason University New Results On Routing Via Matchings Indranil Banerjee The Routing Model

with Dana Richards December 1, 2017 George Mason University New Results On Routing Via Matchings Indranil Banerjee The Routing Model New New with Dana Richards George Mason University richards@gmu.edu December 1, 2017 GMU December 1, 2017 1 / 40 New Definitions G(V, E) is an undirected graph. V = {1, 2, 3,..., n}. A pebble at vertex

More information

On Graph Query Optimization in Large Networks

On Graph Query Optimization in Large Networks On Graph Query Optimization in Large Networks Peixiang Zhao, Jiawei Han Department of omputer Science University of Illinois at Urbana-hampaign pzhao4@illinois.edu, hanj@cs.uiuc.edu September 14th, 2010

More information

CS 161: Design and Analysis of Algorithms

CS 161: Design and Analysis of Algorithms CS 161: Design and Analysis o Algorithms Announcements Homework 3, problem 3 removed Greedy Algorithms 4: Human Encoding/Set Cover Human Encoding Set Cover Alphabets and Strings Alphabet = inite set o

More information

CS2210 Data Structures and Algorithms

CS2210 Data Structures and Algorithms S1 ata Structures and Algorithms Lecture 1 : Shortest Paths A 4 1 5 5 3 4 Goodrich, Tamassia Outline Weighted Graphs Shortest Paths Algorithm (ijkstra s) Weighted Graphs ach edge has an associated numerical

More information

Graphical Models as Block-Tree Graphs

Graphical Models as Block-Tree Graphs Graphical Models as Block-Tree Graphs 1 Divyanshu Vats and José M. F. Moura arxiv:1007.0563v2 [stat.ml] 13 Nov 2010 Abstract We introduce block-tree graphs as a framework for deriving efficient algorithms

More information

Copyright 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin Introduction to the Design & Analysis of Algorithms, 2 nd ed., Ch.

Copyright 2007 Pearson Addison-Wesley. All rights reserved. A. Levitin Introduction to the Design & Analysis of Algorithms, 2 nd ed., Ch. Iterative Improvement Algorithm design technique for solving optimization problems Start with a feasible solution Repeat the following step until no improvement can be found: change the current feasible

More information

Information Processing Letters

Information Processing Letters Information Processing Letters 112 (2012) 449 456 Contents lists available at SciVerse ScienceDirect Information Processing Letters www.elsevier.com/locate/ipl Recursive sum product algorithm for generalized

More information

Learning Bounded Treewidth Bayesian Networks

Learning Bounded Treewidth Bayesian Networks Journal of Machine Learning Research 9 (2008) 2287-2319 Submitted 5/08; Published 10/08 Learning Bounded Treewidth Bayesian Networks Gal Elidan Department of Statistics Hebrew University Jerusalem, 91905,

More information

Voronoi Diagrams and Delaunay Triangulations. O Rourke, Chapter 5

Voronoi Diagrams and Delaunay Triangulations. O Rourke, Chapter 5 Voronoi Diagrams and Delaunay Triangulations O Rourke, Chapter 5 Outline Preliminaries Properties and Applications Computing the Delaunay Triangulation Preliminaries Given a function f: R 2 R, the tangent

More information

Mean Field and Variational Methods finishing off

Mean Field and Variational Methods finishing off Readings: K&F: 10.1, 10.5 Mean Field and Variational Methods finishing off Graphical Models 10708 Carlos Guestrin Carnegie Mellon University November 5 th, 2008 10-708 Carlos Guestrin 2006-2008 1 10-708

More information

The Relationship Between AND/OR Search and Variable Elimination

The Relationship Between AND/OR Search and Variable Elimination The Relationship etween N/OR Search and Variable limination Robert Mateescu and Rina echter School of Information and omputer Science University of alifornia, Irvine, 92697-3425 {mateescu,dechter}@ics.uci.edu

More information

EE512A Advanced Inference in Graphical Models

EE512A Advanced Inference in Graphical Models EE512A Advanced Inference in Graphical Models Fall Quarter, Lecture 6 http://j.ee.washington.edu/~bilmes/classes/ee512a_fall_2014/ Prof. Jeff Bilmes University of Washington, Seattle Department of Electrical

More information

Notation Index. Probability notation. (there exists) (such that) Fn-4 B n (Bell numbers) CL-27 s t (equivalence relation) GT-5.

Notation Index. Probability notation. (there exists) (such that) Fn-4 B n (Bell numbers) CL-27 s t (equivalence relation) GT-5. Notation Index (there exists) (for all) Fn-4 Fn-4 (such that) Fn-4 B n (Bell numbers) CL-27 s t (equivalence relation) GT-5 ( n ) k (binomial coefficient) CL-15 ( n m 1,m 2,...) (multinomial coefficient)

More information

Constraint Satisfaction Problems

Constraint Satisfaction Problems Constraint Satisfaction Problems Search and Lookahead Bernhard Nebel, Julien Hué, and Stefan Wölfl Albert-Ludwigs-Universität Freiburg June 4/6, 2012 Nebel, Hué and Wölfl (Universität Freiburg) Constraint

More information