Targil 12 : Image Segmentation. Image segmentation. Why do we need it? Image segmentation

Size: px
Start display at page:

Download "Targil 12 : Image Segmentation. Image segmentation. Why do we need it? Image segmentation"

Transcription

1 Targil : Image Segmentation Image segmentation Many slides from Steve Seitz Segment region of the image which: elongs to a single object. Looks uniform (gray levels, color ) Have the same attributes (texture ). Moves in a similar way (motion segmentation) Why do we need it? Image Segmentation The first step towards higher level vision (object recognition ) Treat differently different segments. (compression, histogram manipulations ) Use it to find regions which are related to a single model (motion computations, texture analysis ) Many more applications. 3 4 Image segmentation Correct segmentation How do you pick the right segmentation? There may not be a single correct answer. Gestalt Laws seek to formalize what is an object proximity, similarity, continuation, closure, common fate ottom up segmentation: - Tokens belong together because they are locally coherent. Top down segmentation: - Tokens grouped because they lie on the same object. 5 Segmentation can be thought of a partition problem Many approaches proposed cues: color, regions, contours, texture, motions automatic vs. user-guided no clear winner 6

2 Main pproaches Histogram-based segmentation Region-based segmentation Edge detection Region growing Region splitting and merging. Clustering K-means Graph ased Clustering Example: Splitting text and background Thresholding: define a threshold T such that each pixel x,y is text iff I(x,y)<T. Our visual system is proof that automatic methods are possible classical image segmentation methods are automatic How do we determine the threshold? Just choose 8 as a threshold (problematic for dark images) Use the median/mean (both are not good, as most of the paper is white) 7 8 Histogram-based segmentation Goal reak the image into K regions (segments) Solve this by reducing the number of gray levels / colors to K and mapping each pixel to the closest gray level / color Histogram-based segmentation Goal reak the image into K regions (segments) Solve this by reducing the number of gray levels / colors to K and mapping each pixel to the closest gray level / color Possible threshold minimum on histogram (between larger values) 9 Here s what it looks like if we use two gray levels Problems with that approach Noise is considered as text. Holes and discontinuities in the resulting text. Changes in the illumination Solutions:. Enhance the result using morphological operations. daptive threshold. 3. Use spatial information! daptive Threshold Use a running window.. ssume a constant illumination in each window. For each window: compute a threshold and use it to segment the pixel in the middle of the window. Problem: This scheme will find text in blank areas! Possible Solution: we can try to recognize that these regions are unimodal.

3 Segmentation as clustering Consider the image as a set of points in the N-dimensional space: Color Histograms: p=(r(x,y),g(x,y),(x,y)) in R 3. ( ignores the spatial information.) Gray level images: p=(x,y,i(x,y)) in R 3 Color images: p =(x,y,r(x,y),g(x,y),(x,y)) in R 5 Texture: p= (x,y,vector_of_fetures) From this stage, we forget the meaning of each coordinate. We deal with arbitrary set of points. Important: We need to find the appropriate space in which the distance between points is meaningful! 3 Segmentation using simple clustering model Two natural algorithms Clustering by splitting the entire data set is one cluster and we split it to get a good clustering Clustering by merging each point is a different cluster and we merge similar clusters Usually the simple methods use greedy algorithms Important issues : Define a proper distance between data points Define a proper distance between clusters How many clusters are there? Main difficulty Defining threshold : when should we stop the algorithm Very large number of pixels : hard to look for best split / merge 4 Segmentation as Clustering How to choose the representative colors? This is a clustering problem! G G reak it down into subproblems Suppose I tell you the cluster centers c i Q: how to determine which points to associate with each c i? : for each point p, choose closest c i R R Objective Each point should be as close as possible to a cluster center Minimize sum squared distance of each point to closest center Suppose I tell you the points in each cluster Q: how to determine the cluster centers? : choose c i to be the mean of all points in the cluster 5 6 K-means clustering K-means clustering algorithm. Randomly initialize the cluster centers, c,..., c K. Given cluster centers, determine points in each cluster For each point p, find the closest c i. Put p into cluster i 3. Given points in each cluster, solve for c i Set c i to be the mean of points in cluster i 4. If c i have changed, repeat Step Example: Segmentation using Color + Texture Java demo: Properties Will always converge to some solution Can be a local minimum does not always find the global minimum of objective function: 7 8 3

4 Real segmentation example Ideas? Steps in solving specific problem. Make the assumptions appropriate for this case Size of the warm is relatively constant Warm does not move much between successive frames Lighting is changing between frames and within the frame, but can be considered as constans on small window Warm is not the only dark area in the picture. Use your assumption to tailor a specific solution 9 Real segmentation example Real segmentation example Examples Using the same thresh for different frames How to remove wrong areas? Put additional condition on the selected area to be next to large gradient pixel Remove noise by using morphological operations Using adaptive thresh based on gradient values 3 4 4

5 Possible Solution Segmentation by min (s-t) cut [oykov ] Find the warm location in the first frame Use gradient value to determine threshold Remove from the selection pixels that are selected according to the threshold but do not have large gradient in their area Use morphological operation to remove noise min cut Using the warm location in the previous frame, search in the current frame using a simple threshold on window around the warm Update window location based on the new position of warm nd still in practice can know if this works only after trying. 5 t Graph node for each pixel, link between pixels specify a few pixels as foreground and background create an infinite cost link from each bg pixel to the t node create an infinite cost link from each fg pixel to the s node compute min cut that separates s from t how to define link cost between neighboring pixels? s 6 Segmentation by min (s-t) cut [oykov ] how to define link cost between neighboring pixels? Cuts in a graph ssign large weight on edges of pixels that you expect to be in the same group (body / background) F( i ) F( j ) σ I (, j) = e w i F(i)- gray level value in pixel I - normalization factor σ 7 Link Cut set of links whose removal makes a graph disconnected cost of a cut:, ) = w( i, j) Find minimum cut gives you a segmentation mincut (, ) = min i, j, u v, w( u, v) 8 Examples for user assistance Min-cut segmentation (example from Micusik. and Hanbury ) Minimum cut Criterion for partition: mincut (, ) = min What is the problem with the min cut?, u v, w( u, v) Problem! Weight of cut is directly proportional to the number of edges in the cut. 9 Ideal Cut Cuts with lesser weight than the ideal cut First proposed by Wu and Leahy 3 5

6 utomatic graph cut [Shi & Malik] i j w(i,j) Fully-connected graph node for every pixel link between every pair of pixels, i,j cost w(i,j) for each link w(i,j) measures similarity» similarity is inversely proportional to difference in color and position w 3 utomatic graph cut [Shi & Malik] Construct a weighted graph from the image pixels G = (V,E) by taking each pixel and connecting each pair of pixels in an edge w( i, j) = e F e X ( i ) X ( j ) F ( i ) ( j ) * σ X σ if X i X I ( ) ( j ) F(i)- gray level value in pixel i X(i)- pixel I position else < r 3 Segmentation by Graph Cuts C reak Graph into Segments Delete links that cross between segments Easiest to break links that have low cost (similarity) similar pixels should be in the same segments dissimilar pixels should be in different segments w 33 Normalized Cut Normalized cut or balanced cut: a cut penalizes large segments fix by normalizing for size of segments N, ) =, ) + ) ) vol () = sum of costs of all edges that touch Finds better cut 34 Normalized Cut Observations(I) Volume of set (or association): ) =, V ) = u, t V w( u, t) Define normalized cut: a fraction of the total edge connections to all the nodes in the graph :, ), ) Ncut (, ) = +, V ), V ) Define normalized association: how tightly on average nodes within the cluster are connected to each other, ), ) Nassoc (, ) = +, V ), V ) Maximizing Nassoc is the same as minimizing Ncut, since they are related: N, ) = N, ) How to minimize Ncut? Transform Ncut equation to a matricial form. Solve an eigen vector problem on appropriate matrix:

7 Graph-based Image Segmentation Graph-based Image Segmentation Image (I) Image (I) Intensity Color Edges Texture Graph ffinities (W) Intensity Color Edges Texture Graph ffinities (W) N, ) =, ) + ) ) Slide from Timothee Cour ( 37 Slide from Timothee Cour ( 38 Graph-based Image Segmentation Graph-based Image Segmentation Image (I) Eigenvector X(W) Image (I) Eigenvector X(W) Discretization Intensity Color Edges Texture Graph ffinities (W) N, ) =, ) + ) ) ( D W) X = λdx if X ( i) = if i i Intensity Color Edges Texture Graph ffinities (W) N, ) =, ) + ) ) ( D W) X = λdx if X ( i) = if i i Slide from Timothee Cour ( 39 Slide from Timothee Cour ( 4 Graph-based Image Segmentation Graph terminology Similarity matrix: [ ] W = w i, j w i = e, j X( i ) X ( j ) σ X G = {V,E} V: graph nodes E: edges connection nodes Pixels Pixel similarity Slides from Jianbo Shi Slides from Jianbo Shi 4 4 7

8 ffinity matrix Graph terminology N pixels M pixels Warning the size of W is quadratic with the number of parameters! Reshape Similarity of image pixels to selected pixel righter means more similar Degree of node: = d i w i, j j N*M pixels N*M pixels Slides from Jianbo Shi Graph terminology Graph terminology Volume of set: Cuts in a graph: vol ( ) = d, V i i, ) = w i, j i, j Slides from Jianbo Shi Slides from Jianbo Shi Normalized Cut Volume of set (or association): ) =, V ) = u, t V w( u, t) Define normalized cut: a fraction of the total edge connections to all the nodes in the graph :, ), ) Ncut (, ) = +, V ), V ) Define normalized association: how tightly on average nodes within the cluster are connected to each other, ), ) Nassoc (, ) = +, V ), V ) Representation Partition matrix X: Degree matrix D: Laplacian matrix L: [ X ] X =,..., X K Pair-wise similarity matrix W: W ( i, j) = aff ( i, j) = D ( i, i) w j i, j L= D W segments pixels

9 Observations(I) Observations(II) Maximizing Nassoc is the same as minimizing Ncut, since they are related: How to minimize Ncut? Transform Ncut equation to a matricial form. fter simplifying: min N x) = min x Subject to: y T D= y T y ( D W) y T y Dy N, ) = N, ) Rayleigh quotient = D ( i, i) W ( i, j) j NP-Hard! y s values are quantized Instead, relax into the continuous domain by solving generalized eigenvalue system: ( ) subject to ( y T Dy= ) min max y y T ( D W)y Which gives: ( D W ) y= λdy Note that ( D W )= so, the first eigenvector is y = with eigenvalue. The second smallest eigenvector is the real valued solution to this problem!! y= f (x) 49 5 lgorithm Example (I) Define a similarity function between nodes. i.e.: F( i ) F( σ I σ X w i, j = e Compute affinity matrix (W) and degree matrix (D). Solve ( D W ) y= λdy Use the eigenvector with the second smallest eigenvalue to bipartition the graph. Decide if re-partition current partitions. j ) + X ( i ) X( j ) Eigenvectors Segments Note: W is very sparse and only few eigenvectors are required, the eigenvectors can be extracted very fast using Lanczos algorithm. 5 5 Example (II) More Slides spectral clustering Original Segments * Slide from Khurram Hassan-Shafique CP545 Computer Vision 3 9

10 Definitions Methods that use the spectrum of the affinity matrix to cluster are known as spectral clustering. Normalized cuts, verage cuts, verage association make use of the eigenvectors of the affinity matrix. Why these methods work? Spectral Clustering Data Similarities * Slides from Dan Klein, Sep Kamvar, Chris Manning, Natural Language Group Stanford University Eigenvectors and blocks Spectral Space lock matrices have block eigenvectors: λ = λ = λ 3 = Can put items into blocks by eigenvectors: e.7 λ 4 =..7 eigensolver e Near-block matrices have near-block eigenvectors:. -. eigensolver. -. λ =. λ =. λ 3 = -..7 λ 4 = e e Clusters clear regardless of row ordering: e e 57 e e 58 * Slides from Dan Klein, Sep Kamvar, Chris Manning, Natural Language Group Stanford University * Slides from Dan Klein, Sep Kamvar, Chris Manning, Natural Language Group Stanford University How do we extract a good cluster? Simplest idea: we want a vector x giving the association between each element and a cluster We want elements within this cluster to, on the whole, have strong affinity with one another We could maximize x T Wx ut need the constraint x T x= This is an eigenvalue problem - choose the eigenvector of W with largest eigenvalue. 59

Normalized cuts and image segmentation

Normalized cuts and image segmentation Normalized cuts and image segmentation Department of EE University of Washington Yeping Su Xiaodan Song Normalized Cuts and Image Segmentation, IEEE Trans. PAMI, August 2000 5/20/2003 1 Outline 1. Image

More information

CS 534: Computer Vision Segmentation II Graph Cuts and Image Segmentation

CS 534: Computer Vision Segmentation II Graph Cuts and Image Segmentation CS 534: Computer Vision Segmentation II Graph Cuts and Image Segmentation Spring 2005 Ahmed Elgammal Dept of Computer Science CS 534 Segmentation II - 1 Outlines What is Graph cuts Graph-based clustering

More information

The goals of segmentation

The goals of segmentation Image segmentation The goals of segmentation Group together similar-looking pixels for efficiency of further processing Bottom-up process Unsupervised superpixels X. Ren and J. Malik. Learning a classification

More information

Announcements. Image Segmentation. From images to objects. Extracting objects. Status reports next Thursday ~5min presentations in class

Announcements. Image Segmentation. From images to objects. Extracting objects. Status reports next Thursday ~5min presentations in class Image Segmentation Announcements Status reports next Thursday ~5min presentations in class Project voting From Sandlot Science Today s Readings Forsyth & Ponce, Chapter 1 (plus lots of optional references

More information

CS 534: Computer Vision Segmentation and Perceptual Grouping

CS 534: Computer Vision Segmentation and Perceptual Grouping CS 534: Computer Vision Segmentation and Perceptual Grouping Ahmed Elgammal Dept of Computer Science CS 534 Segmentation - 1 Outlines Mid-level vision What is segmentation Perceptual Grouping Segmentation

More information

Image Segmentation. Selim Aksoy. Bilkent University

Image Segmentation. Selim Aksoy. Bilkent University Image Segmentation Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr Examples of grouping in vision [http://poseidon.csd.auth.gr/lab_research/latest/imgs/s peakdepvidindex_img2.jpg]

More information

Image Segmentation. Selim Aksoy. Bilkent University

Image Segmentation. Selim Aksoy. Bilkent University Image Segmentation Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr Examples of grouping in vision [http://poseidon.csd.auth.gr/lab_research/latest/imgs/s peakdepvidindex_img2.jpg]

More information

Segmentation. Bottom Up Segmentation

Segmentation. Bottom Up Segmentation Segmentation Bottom up Segmentation Semantic Segmentation Bottom Up Segmentation 1 Segmentation as clustering Depending on what we choose as the feature space, we can group pixels in different ways. Grouping

More information

Segmentation and low-level grouping.

Segmentation and low-level grouping. Segmentation and low-level grouping. Bill Freeman, MIT 6.869 April 14, 2005 Readings: Mean shift paper and background segmentation paper. Mean shift IEEE PAMI paper by Comanici and Meer, http://www.caip.rutgers.edu/~comanici/papers/msrobustapproach.pdf

More information

6.801/866. Segmentation and Line Fitting. T. Darrell

6.801/866. Segmentation and Line Fitting. T. Darrell 6.801/866 Segmentation and Line Fitting T. Darrell Segmentation and Line Fitting Gestalt grouping Background subtraction K-Means Graph cuts Hough transform Iterative fitting (Next time: Probabilistic segmentation)

More information

From Pixels to Blobs

From Pixels to Blobs From Pixels to Blobs 15-463: Rendering and Image Processing Alexei Efros Today Blobs Need for blobs Extracting blobs Image Segmentation Working with binary images Mathematical Morphology Blob properties

More information

Applications. Foreground / background segmentation Finding skin-colored regions. Finding the moving objects. Intelligent scissors

Applications. Foreground / background segmentation Finding skin-colored regions. Finding the moving objects. Intelligent scissors Segmentation I Goal Separate image into coherent regions Berkeley segmentation database: http://www.eecs.berkeley.edu/research/projects/cs/vision/grouping/segbench/ Slide by L. Lazebnik Applications Intelligent

More information

Clustering appearance and shape by learning jigsaws Anitha Kannan, John Winn, Carsten Rother

Clustering appearance and shape by learning jigsaws Anitha Kannan, John Winn, Carsten Rother Clustering appearance and shape by learning jigsaws Anitha Kannan, John Winn, Carsten Rother Models for Appearance and Shape Histograms Templates discard spatial info articulation, deformation, variation

More information

Outline. Segmentation & Grouping. Examples of grouping in vision. Grouping in vision. Grouping in vision 2/9/2011. CS 376 Lecture 7 Segmentation 1

Outline. Segmentation & Grouping. Examples of grouping in vision. Grouping in vision. Grouping in vision 2/9/2011. CS 376 Lecture 7 Segmentation 1 Outline What are grouping problems in vision? Segmentation & Grouping Wed, Feb 9 Prof. UT-Austin Inspiration from human perception Gestalt properties Bottom-up segmentation via clustering Algorithms: Mode

More information

EE 701 ROBOT VISION. Segmentation

EE 701 ROBOT VISION. Segmentation EE 701 ROBOT VISION Regions and Image Segmentation Histogram-based Segmentation Automatic Thresholding K-means Clustering Spatial Coherence Merging and Splitting Graph Theoretic Segmentation Region Growing

More information

Lecture 7: Segmentation. Thursday, Sept 20

Lecture 7: Segmentation. Thursday, Sept 20 Lecture 7: Segmentation Thursday, Sept 20 Outline Why segmentation? Gestalt properties, fun illusions and/or revealing examples Clustering Hierarchical K-means Mean Shift Graph-theoretic Normalized cuts

More information

Segmentation (continued)

Segmentation (continued) Segmentation (continued) Lecture 05 Computer Vision Material Citations Dr George Stockman Professor Emeritus, Michigan State University Dr Mubarak Shah Professor, University of Central Florida The Robotics

More information

CS4670: Computer Vision

CS4670: Computer Vision CS4670: Computer Vision Noah Snavely Lecture 34: Segmentation From Sandlot Science Announcements In-class exam this Friday, December 3 Review session in class on Wednesday Final projects: Slides due: Sunday,

More information

Image Segmentation continued Graph Based Methods. Some slides: courtesy of O. Capms, Penn State, J.Ponce and D. Fortsyth, Computer Vision Book

Image Segmentation continued Graph Based Methods. Some slides: courtesy of O. Capms, Penn State, J.Ponce and D. Fortsyth, Computer Vision Book Image Segmentation continued Graph Based Methods Some slides: courtesy of O. Capms, Penn State, J.Ponce and D. Fortsyth, Computer Vision Book Previously Binary segmentation Segmentation by thresholding

More information

Content-based Image and Video Retrieval. Image Segmentation

Content-based Image and Video Retrieval. Image Segmentation Content-based Image and Video Retrieval Vorlesung, SS 2011 Image Segmentation 2.5.2011 / 9.5.2011 Image Segmentation One of the key problem in computer vision Identification of homogenous region in the

More information

Segmentation and Grouping April 19 th, 2018

Segmentation and Grouping April 19 th, 2018 Segmentation and Grouping April 19 th, 2018 Yong Jae Lee UC Davis Features and filters Transforming and describing images; textures, edges 2 Grouping and fitting [fig from Shi et al] Clustering, segmentation,

More information

Image Segmentation continued Graph Based Methods

Image Segmentation continued Graph Based Methods Image Segmentation continued Graph Based Methods Previously Images as graphs Fully-connected graph node (vertex) for every pixel link between every pair of pixels, p,q affinity weight w pq for each link

More information

human vision: grouping k-means clustering graph-theoretic clustering Hough transform line fitting RANSAC

human vision: grouping k-means clustering graph-theoretic clustering Hough transform line fitting RANSAC COS 429: COMPUTER VISON Segmentation human vision: grouping k-means clustering graph-theoretic clustering Hough transform line fitting RANSAC Reading: Chapters 14, 15 Some of the slides are credited to:

More information

Clustering Lecture 8. David Sontag New York University. Slides adapted from Luke Zettlemoyer, Vibhav Gogate, Carlos Guestrin, Andrew Moore, Dan Klein

Clustering Lecture 8. David Sontag New York University. Slides adapted from Luke Zettlemoyer, Vibhav Gogate, Carlos Guestrin, Andrew Moore, Dan Klein Clustering Lecture 8 David Sontag New York University Slides adapted from Luke Zettlemoyer, Vibhav Gogate, Carlos Guestrin, Andrew Moore, Dan Klein Clustering: Unsupervised learning Clustering Requires

More information

Segmentation and Grouping April 21 st, 2015

Segmentation and Grouping April 21 st, 2015 Segmentation and Grouping April 21 st, 2015 Yong Jae Lee UC Davis Announcements PS0 grades are up on SmartSite Please put name on answer sheet 2 Features and filters Transforming and describing images;

More information

Grouping and Segmentation

Grouping and Segmentation Grouping and Segmentation CS 554 Computer Vision Pinar Duygulu Bilkent University (Source:Kristen Grauman ) Goals: Grouping in vision Gather features that belong together Obtain an intermediate representation

More information

Segmentation and Grouping

Segmentation and Grouping CS 1699: Intro to Computer Vision Segmentation and Grouping Prof. Adriana Kovashka University of Pittsburgh September 24, 2015 Goals: Grouping in vision Gather features that belong together Obtain an intermediate

More information

Lecture 16 Segmentation and Scene understanding

Lecture 16 Segmentation and Scene understanding Lecture 16 Segmentation and Scene understanding Introduction! Mean-shift! Graph-based segmentation! Top-down segmentation! Silvio Savarese Lecture 15 -! 3-Mar-14 Segmentation Silvio Savarese Lecture 15

More information

Normalized Graph cuts. by Gopalkrishna Veni School of Computing University of Utah

Normalized Graph cuts. by Gopalkrishna Veni School of Computing University of Utah Normalized Graph cuts by Gopalkrishna Veni School of Computing University of Utah Image segmentation Image segmentation is a grouping technique used for image. It is a way of dividing an image into different

More information

Visual Representations for Machine Learning

Visual Representations for Machine Learning Visual Representations for Machine Learning Spectral Clustering and Channel Representations Lecture 1 Spectral Clustering: introduction and confusion Michael Felsberg Klas Nordberg The Spectral Clustering

More information

CS4670 / 5670: Computer Vision Noah Snavely

CS4670 / 5670: Computer Vision Noah Snavely { { 11/26/2013 CS4670 / 5670: Computer Vision Noah Snavely Graph-Based Image Segmentation Stereo as a minimization problem match cost Want each pixel to find a good match in the other image smoothness

More information

CS 4495 Computer Vision. Segmentation. Aaron Bobick (slides by Tucker Hermans) School of Interactive Computing. Segmentation

CS 4495 Computer Vision. Segmentation. Aaron Bobick (slides by Tucker Hermans) School of Interactive Computing. Segmentation CS 4495 Computer Vision Aaron Bobick (slides by Tucker Hermans) School of Interactive Computing Administrivia PS 4: Out but I was a bit late so due date pushed back to Oct 29. OpenCV now has real SIFT

More information

Feature Tracking and Optical Flow

Feature Tracking and Optical Flow Feature Tracking and Optical Flow Prof. D. Stricker Doz. G. Bleser Many slides adapted from James Hays, Derek Hoeim, Lana Lazebnik, Silvio Saverse, who 1 in turn adapted slides from Steve Seitz, Rick Szeliski,

More information

CS 664 Segmentation. Daniel Huttenlocher

CS 664 Segmentation. Daniel Huttenlocher CS 664 Segmentation Daniel Huttenlocher Grouping Perceptual Organization Structural relationships between tokens Parallelism, symmetry, alignment Similarity of token properties Often strong psychophysical

More information

Segmentation & Grouping Kristen Grauman UT Austin. Announcements

Segmentation & Grouping Kristen Grauman UT Austin. Announcements Segmentation & Grouping Kristen Grauman UT Austin Tues Feb 7 A0 on Canvas Announcements No office hours today TA office hours this week as usual Guest lecture Thursday by Suyog Jain Interactive segmentation

More information

Lecture 11: E-M and MeanShift. CAP 5415 Fall 2007

Lecture 11: E-M and MeanShift. CAP 5415 Fall 2007 Lecture 11: E-M and MeanShift CAP 5415 Fall 2007 Review on Segmentation by Clustering Each Pixel Data Vector Example (From Comanciu and Meer) Review of k-means Let's find three clusters in this data These

More information

CS 2770: Computer Vision. Edges and Segments. Prof. Adriana Kovashka University of Pittsburgh February 21, 2017

CS 2770: Computer Vision. Edges and Segments. Prof. Adriana Kovashka University of Pittsburgh February 21, 2017 CS 2770: Computer Vision Edges and Segments Prof. Adriana Kovashka University of Pittsburgh February 21, 2017 Edges vs Segments Figure adapted from J. Hays Edges vs Segments Edges More low-level Don t

More information

Segmentation by Clustering. Segmentation by Clustering Reading: Chapter 14 (skip 14.5) General ideas

Segmentation by Clustering. Segmentation by Clustering Reading: Chapter 14 (skip 14.5) General ideas Reading: Chapter 14 (skip 14.5) Data reduction - obtain a compact representation for interesting image data in terms of a set of components Find components that belong together (form clusters) Frame differencing

More information

Segmentation by Clustering Reading: Chapter 14 (skip 14.5)

Segmentation by Clustering Reading: Chapter 14 (skip 14.5) Segmentation by Clustering Reading: Chapter 14 (skip 14.5) Data reduction - obtain a compact representation for interesting image data in terms of a set of components Find components that belong together

More information

CS 664 Slides #11 Image Segmentation. Prof. Dan Huttenlocher Fall 2003

CS 664 Slides #11 Image Segmentation. Prof. Dan Huttenlocher Fall 2003 CS 664 Slides #11 Image Segmentation Prof. Dan Huttenlocher Fall 2003 Image Segmentation Find regions of image that are coherent Dual of edge detection Regions vs. boundaries Related to clustering problems

More information

Lecture 8: Fitting. Tuesday, Sept 25

Lecture 8: Fitting. Tuesday, Sept 25 Lecture 8: Fitting Tuesday, Sept 25 Announcements, schedule Grad student extensions Due end of term Data sets, suggestions Reminder: Midterm Tuesday 10/9 Problem set 2 out Thursday, due 10/11 Outline Review

More information

Feature Tracking and Optical Flow

Feature Tracking and Optical Flow Feature Tracking and Optical Flow Prof. D. Stricker Doz. G. Bleser Many slides adapted from James Hays, Derek Hoeim, Lana Lazebnik, Silvio Saverse, who in turn adapted slides from Steve Seitz, Rick Szeliski,

More information

CSCI-B609: A Theorist s Toolkit, Fall 2016 Sept. 6, Firstly let s consider a real world problem: community detection.

CSCI-B609: A Theorist s Toolkit, Fall 2016 Sept. 6, Firstly let s consider a real world problem: community detection. CSCI-B609: A Theorist s Toolkit, Fall 016 Sept. 6, 016 Lecture 03: The Sparsest Cut Problem and Cheeger s Inequality Lecturer: Yuan Zhou Scribe: Xuan Dong We will continue studying the spectral graph theory

More information

Segmentation (Part 2)

Segmentation (Part 2) Segmentation (Part 2) Today s Readings Chapters 6., 6.2, 6.4, 7., 7.2 http://www.dai.ed.ac.uk/hipr2/morops.htm Dilation, erosion, opening, closing From images to objects What Defines an Object? Subjective

More information

Image Segmentation. Srikumar Ramalingam School of Computing University of Utah. Slides borrowed from Ross Whitaker

Image Segmentation. Srikumar Ramalingam School of Computing University of Utah. Slides borrowed from Ross Whitaker Image Segmentation Srikumar Ramalingam School of Computing University of Utah Slides borrowed from Ross Whitaker Segmentation Semantic Segmentation Indoor layout estimation What is Segmentation? Partitioning

More information

Segmentation: Clustering, Graph Cut and EM

Segmentation: Clustering, Graph Cut and EM Segmentation: Clustering, Graph Cut and EM Ying Wu Electrical Engineering and Computer Science Northwestern University, Evanston, IL 60208 yingwu@northwestern.edu http://www.eecs.northwestern.edu/~yingwu

More information

CSE 473/573 Computer Vision and Image Processing (CVIP) Ifeoma Nwogu. Lectures 21 & 22 Segmentation and clustering

CSE 473/573 Computer Vision and Image Processing (CVIP) Ifeoma Nwogu. Lectures 21 & 22 Segmentation and clustering CSE 473/573 Computer Vision and Image Processing (CVIP) Ifeoma Nwogu Lectures 21 & 22 Segmentation and clustering 1 Schedule Last class We started on segmentation Today Segmentation continued Readings

More information

Fitting: Voting and the Hough Transform April 23 rd, Yong Jae Lee UC Davis

Fitting: Voting and the Hough Transform April 23 rd, Yong Jae Lee UC Davis Fitting: Voting and the Hough Transform April 23 rd, 2015 Yong Jae Lee UC Davis Last time: Grouping Bottom-up segmentation via clustering To find mid-level regions, tokens General choices -- features,

More information

Segmentation & Clustering

Segmentation & Clustering EECS 442 Computer vision Segmentation & Clustering Segmentation in human vision K-mean clustering Mean-shift Graph-cut Reading: Chapters 14 [FP] Some slides of this lectures are courtesy of prof F. Li,

More information

Segmentation Computer Vision Spring 2018, Lecture 27

Segmentation Computer Vision Spring 2018, Lecture 27 Segmentation http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 218, Lecture 27 Course announcements Homework 7 is due on Sunday 6 th. - Any questions about homework 7? - How many of you have

More information

Region-based Segmentation

Region-based Segmentation Region-based Segmentation Image Segmentation Group similar components (such as, pixels in an image, image frames in a video) to obtain a compact representation. Applications: Finding tumors, veins, etc.

More information

Segmentation and Grouping

Segmentation and Grouping Segmentation and Grouping How and what do we see? Fundamental Problems ' Focus of attention, or grouping ' What subsets of pixels do we consider as possible objects? ' All connected subsets? ' Representation

More information

Big Data Analytics. Special Topics for Computer Science CSE CSE Feb 11

Big Data Analytics. Special Topics for Computer Science CSE CSE Feb 11 Big Data Analytics Special Topics for Computer Science CSE 4095-001 CSE 5095-005 Feb 11 Fei Wang Associate Professor Department of Computer Science and Engineering fei_wang@uconn.edu Clustering II Spectral

More information

Processing of binary images

Processing of binary images Binary Image Processing Tuesday, 14/02/2017 ntonis rgyros e-mail: argyros@csd.uoc.gr 1 Today From gray level to binary images Processing of binary images Mathematical morphology 2 Computer Vision, Spring

More information

Announcements. Segmentation (Part 2) Image Segmentation. From images to objects. Image histograms. What do histograms look like?

Announcements. Segmentation (Part 2) Image Segmentation. From images to objects. Image histograms. What do histograms look like? Announcements Segmentation (Part 2) Questions on the project? Updates to project page and lecture slides from /8 Midterm (take home) out next Friday covers material up through next Friday s lecture have

More information

Clustering. So far in the course. Clustering. Clustering. Subhransu Maji. CMPSCI 689: Machine Learning. dist(x, y) = x y 2 2

Clustering. So far in the course. Clustering. Clustering. Subhransu Maji. CMPSCI 689: Machine Learning. dist(x, y) = x y 2 2 So far in the course Clustering Subhransu Maji : Machine Learning 2 April 2015 7 April 2015 Supervised learning: learning with a teacher You had training data which was (feature, label) pairs and the goal

More information

Unit 3 : Image Segmentation

Unit 3 : Image Segmentation Unit 3 : Image Segmentation K-means Clustering Mean Shift Segmentation Active Contour Models Snakes Normalized Cut Segmentation CS 6550 0 Histogram-based segmentation Goal Break the image into K regions

More information

CS 2750: Machine Learning. Clustering. Prof. Adriana Kovashka University of Pittsburgh January 17, 2017

CS 2750: Machine Learning. Clustering. Prof. Adriana Kovashka University of Pittsburgh January 17, 2017 CS 2750: Machine Learning Clustering Prof. Adriana Kovashka University of Pittsburgh January 17, 2017 What is clustering? Grouping items that belong together (i.e. have similar features) Unsupervised:

More information

Clustering. Subhransu Maji. CMPSCI 689: Machine Learning. 2 April April 2015

Clustering. Subhransu Maji. CMPSCI 689: Machine Learning. 2 April April 2015 Clustering Subhransu Maji CMPSCI 689: Machine Learning 2 April 2015 7 April 2015 So far in the course Supervised learning: learning with a teacher You had training data which was (feature, label) pairs

More information

Image Segmentation. April 24, Stanford University. Philipp Krähenbühl (Stanford University) Segmentation April 24, / 63

Image Segmentation. April 24, Stanford University. Philipp Krähenbühl (Stanford University) Segmentation April 24, / 63 Image Segmentation Philipp Krähenbühl Stanford University April 24, 2013 Philipp Krähenbühl (Stanford University) Segmentation April 24, 2013 1 / 63 Image Segmentation Goal: identify groups of pixels that

More information

Improved image segmentation for tracking salt boundaries

Improved image segmentation for tracking salt boundaries Stanford Exploration Project, Report 115, May 22, 2004, pages 357 366 Improved image segmentation for tracking salt boundaries Jesse Lomask, Biondo Biondi and Jeff Shragge 1 ABSTRACT Normalized cut image

More information

Image Analysis - Lecture 5

Image Analysis - Lecture 5 Texture Segmentation Clustering Review Image Analysis - Lecture 5 Texture and Segmentation Magnus Oskarsson Lecture 5 Texture Segmentation Clustering Review Contents Texture Textons Filter Banks Gabor

More information

Aarti Singh. Machine Learning / Slides Courtesy: Eric Xing, M. Hein & U.V. Luxburg

Aarti Singh. Machine Learning / Slides Courtesy: Eric Xing, M. Hein & U.V. Luxburg Spectral Clustering Aarti Singh Machine Learning 10-701/15-781 Apr 7, 2010 Slides Courtesy: Eric Xing, M. Hein & U.V. Luxburg 1 Data Clustering Graph Clustering Goal: Given data points X1,, Xn and similarities

More information

Introduction to spectral clustering

Introduction to spectral clustering Introduction to spectral clustering Denis Hamad LASL ULCO Denis.Hamad@lasl.univ-littoral.fr Philippe Biela HEI LAGIS Philippe.Biela@hei.fr Data Clustering Data clustering Data clustering is an important

More information

Segmentation by Clustering

Segmentation by Clustering KECE471 Computer Vision Segmentation by Clustering Chang-Su Kim Chapter 14, Computer Vision by Forsyth and Ponce Note: Dr. Forsyth s notes are partly used. Jae-Kyun Ahn in Korea University made the first

More information

Recognition: Face Recognition. Linda Shapiro EE/CSE 576

Recognition: Face Recognition. Linda Shapiro EE/CSE 576 Recognition: Face Recognition Linda Shapiro EE/CSE 576 1 Face recognition: once you ve detected and cropped a face, try to recognize it Detection Recognition Sally 2 Face recognition: overview Typical

More information

Spectral Clustering X I AO ZE N G + E L HA M TA BA S SI CS E CL A S S P R ESENTATION MA RCH 1 6,

Spectral Clustering X I AO ZE N G + E L HA M TA BA S SI CS E CL A S S P R ESENTATION MA RCH 1 6, Spectral Clustering XIAO ZENG + ELHAM TABASSI CSE 902 CLASS PRESENTATION MARCH 16, 2017 1 Presentation based on 1. Von Luxburg, Ulrike. "A tutorial on spectral clustering." Statistics and computing 17.4

More information

SGN (4 cr) Chapter 11

SGN (4 cr) Chapter 11 SGN-41006 (4 cr) Chapter 11 Clustering Jussi Tohka & Jari Niemi Department of Signal Processing Tampere University of Technology February 25, 2014 J. Tohka & J. Niemi (TUT-SGN) SGN-41006 (4 cr) Chapter

More information

Announcements, schedule. Lecture 8: Fitting. Weighted graph representation. Outline. Segmentation by Graph Cuts. Images as graphs

Announcements, schedule. Lecture 8: Fitting. Weighted graph representation. Outline. Segmentation by Graph Cuts. Images as graphs Announcements, schedule Lecture 8: Fitting Tuesday, Sept 25 Grad student etensions Due of term Data sets, suggestions Reminder: Midterm Tuesday 10/9 Problem set 2 out Thursday, due 10/11 Outline Review

More information

CMPSCI 670: Computer Vision! Grouping

CMPSCI 670: Computer Vision! Grouping CMPSCI 670: Computer Vision! Grouping University of Massachusetts, Amherst October 14, 2014 Instructor: Subhransu Maji Slides credit: Kristen Grauman and others Final project guidelines posted Milestones

More information

identified and grouped together.

identified and grouped together. Segmentation ti of Images SEGMENTATION If an image has been preprocessed appropriately to remove noise and artifacts, segmentation is often the key step in interpreting the image. Image segmentation is

More information

How and what do we see? Segmentation and Grouping. Fundamental Problems. Polyhedral objects. Reducing the combinatorics of pose estimation

How and what do we see? Segmentation and Grouping. Fundamental Problems. Polyhedral objects. Reducing the combinatorics of pose estimation Segmentation and Grouping Fundamental Problems ' Focus of attention, or grouping ' What subsets of piels do we consider as possible objects? ' All connected subsets? ' Representation ' How do we model

More information

Clustering: Classic Methods and Modern Views

Clustering: Classic Methods and Modern Views Clustering: Classic Methods and Modern Views Marina Meilă University of Washington mmp@stat.washington.edu June 22, 2015 Lorentz Center Workshop on Clusters, Games and Axioms Outline Paradigms for clustering

More information

Lecture 16: Computer Vision

Lecture 16: Computer Vision CS4442/9542b: Artificial Intelligence II Prof. Olga Veksler Lecture 16: Computer Vision Motion Slides are from Steve Seitz (UW), David Jacobs (UMD) Outline Motion Estimation Motion Field Optical Flow Field

More information

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Cluster Analysis Mu-Chun Su Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Introduction Cluster analysis is the formal study of algorithms and methods

More information

Dense Image-based Motion Estimation Algorithms & Optical Flow

Dense Image-based Motion Estimation Algorithms & Optical Flow Dense mage-based Motion Estimation Algorithms & Optical Flow Video A video is a sequence of frames captured at different times The video data is a function of v time (t) v space (x,y) ntroduction to motion

More information

EXAM SOLUTIONS. Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006,

EXAM SOLUTIONS. Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006, School of Computer Science and Communication, KTH Danica Kragic EXAM SOLUTIONS Image Processing and Computer Vision Course 2D1421 Monday, 13 th of March 2006, 14.00 19.00 Grade table 0-25 U 26-35 3 36-45

More information

Example 2: Straight Lines. Image Segmentation. Example 3: Lines and Circular Arcs. Example 1: Regions

Example 2: Straight Lines. Image Segmentation. Example 3: Lines and Circular Arcs. Example 1: Regions Image Segmentation Image segmentation is the operation of partitioning an image into a collection of connected sets of pixels. 1. into regions, which usually cover the image Example : Straight Lines. into

More information

Example 1: Regions. Image Segmentation. Example 3: Lines and Circular Arcs. Example 2: Straight Lines. Region Segmentation: Segmentation Criteria

Example 1: Regions. Image Segmentation. Example 3: Lines and Circular Arcs. Example 2: Straight Lines. Region Segmentation: Segmentation Criteria Image Segmentation Image segmentation is the operation of partitioning an image into a collection of connected sets of pixels. 1. into regions, which usually cover the image Example 1: Regions. into linear

More information

NOVEL GRAPH BASED METHOD FOR IMAGE SEGMENTATION

NOVEL GRAPH BASED METHOD FOR IMAGE SEGMENTATION NOVEL GRAPH BASED METHOD FOR IMAGE SEGMENTATION 1 Dr. S. V.KASMIR RAJA, 2 A. SHAIK ABDUL KHADIR, 3 Dr. S. S. RIAZ AHAMED 1 Dean (Research), SRM University, Chennai, TamilNadu, India 2 Lecturer (SG), Dept

More information

Mining Social Network Graphs

Mining Social Network Graphs Mining Social Network Graphs Analysis of Large Graphs: Community Detection Rafael Ferreira da Silva rafsilva@isi.edu http://rafaelsilva.com Note to other teachers and users of these slides: We would be

More information

Optical flow and tracking

Optical flow and tracking EECS 442 Computer vision Optical flow and tracking Intro Optical flow and feature tracking Lucas-Kanade algorithm Motion segmentation Segments of this lectures are courtesy of Profs S. Lazebnik S. Seitz,

More information

Spectral Clustering. Presented by Eldad Rubinstein Based on a Tutorial by Ulrike von Luxburg TAU Big Data Processing Seminar December 14, 2014

Spectral Clustering. Presented by Eldad Rubinstein Based on a Tutorial by Ulrike von Luxburg TAU Big Data Processing Seminar December 14, 2014 Spectral Clustering Presented by Eldad Rubinstein Based on a Tutorial by Ulrike von Luxburg TAU Big Data Processing Seminar December 14, 2014 What are we going to talk about? Introduction Clustering and

More information

Lecture 16: Computer Vision

Lecture 16: Computer Vision CS442/542b: Artificial ntelligence Prof. Olga Veksler Lecture 16: Computer Vision Motion Slides are from Steve Seitz (UW), David Jacobs (UMD) Outline Motion Estimation Motion Field Optical Flow Field Methods

More information

Hierarchical Clustering

Hierarchical Clustering Hierarchical Clustering Hierarchical Clustering Produces a set of nested clusters organized as a hierarchical tree Can be visualized as a dendrogram A tree-like diagram that records the sequences of merges

More information

Computer Vision 5 Segmentation by Clustering

Computer Vision 5 Segmentation by Clustering Computer Vision 5 Segmentation by Clustering MAP-I Doctoral Programme Miguel Tavares Coimbra Outline Introduction Applications Simple clustering K-means clustering Graph-theoretic clustering Acknowledgements:

More information

Norbert Schuff VA Medical Center and UCSF

Norbert Schuff VA Medical Center and UCSF Norbert Schuff Medical Center and UCSF Norbert.schuff@ucsf.edu Medical Imaging Informatics N.Schuff Course # 170.03 Slide 1/67 Objective Learn the principle segmentation techniques Understand the role

More information

Robotics Programming Laboratory

Robotics Programming Laboratory Chair of Software Engineering Robotics Programming Laboratory Bertrand Meyer Jiwon Shin Lecture 8: Robot Perception Perception http://pascallin.ecs.soton.ac.uk/challenges/voc/databases.html#caltech car

More information

Image Segmentation With Maximum Cuts

Image Segmentation With Maximum Cuts Image Segmentation With Maximum Cuts Slav Petrov University of California at Berkeley slav@petrovi.de Spring 2005 Abstract This paper presents an alternative approach to the image segmentation problem.

More information

CS 534: Computer Vision Segmentation and Perceptual Grouping

CS 534: Computer Vision Segmentation and Perceptual Grouping CS 534: Computer Vision Segmentation and Perceptual Grouping Spring 2005 Ahmed Elgammal Dept of Computer Science CS 534 Segmentation - 1 Where are we? Image Formation Human vision Cameras Geometric Camera

More information

Perception. Autonomous Mobile Robots. Sensors Vision Uncertainties, Line extraction from laser scans. Autonomous Systems Lab. Zürich.

Perception. Autonomous Mobile Robots. Sensors Vision Uncertainties, Line extraction from laser scans. Autonomous Systems Lab. Zürich. Autonomous Mobile Robots Localization "Position" Global Map Cognition Environment Model Local Map Path Perception Real World Environment Motion Control Perception Sensors Vision Uncertainties, Line extraction

More information

Recognition, SVD, and PCA

Recognition, SVD, and PCA Recognition, SVD, and PCA Recognition Suppose you want to find a face in an image One possibility: look for something that looks sort of like a face (oval, dark band near top, dark band near bottom) Another

More information

Spectral Clustering on Handwritten Digits Database

Spectral Clustering on Handwritten Digits Database October 6, 2015 Spectral Clustering on Handwritten Digits Database Danielle dmiddle1@math.umd.edu Advisor: Kasso Okoudjou kasso@umd.edu Department of Mathematics University of Maryland- College Park Advance

More information

Outline. Advanced Digital Image Processing and Others. Importance of Segmentation (Cont.) Importance of Segmentation

Outline. Advanced Digital Image Processing and Others. Importance of Segmentation (Cont.) Importance of Segmentation Advanced Digital Image Processing and Others Xiaojun Qi -- REU Site Program in CVIP (7 Summer) Outline Segmentation Strategies and Data Structures Algorithms Overview K-Means Algorithm Hidden Markov Model

More information

Machine Learning for Data Science (CS4786) Lecture 11

Machine Learning for Data Science (CS4786) Lecture 11 Machine Learning for Data Science (CS4786) Lecture 11 Spectral Clustering Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016fa/ Survey Survey Survey Competition I Out! Preliminary report of

More information

Machine learning - HT Clustering

Machine learning - HT Clustering Machine learning - HT 2016 10. Clustering Varun Kanade University of Oxford March 4, 2016 Announcements Practical Next Week - No submission Final Exam: Pick up on Monday Material covered next week is not

More information

Supervised texture detection in images

Supervised texture detection in images Supervised texture detection in images Branislav Mičušík and Allan Hanbury Pattern Recognition and Image Processing Group, Institute of Computer Aided Automation, Vienna University of Technology Favoritenstraße

More information

Clustering Algorithms for general similarity measures

Clustering Algorithms for general similarity measures Types of general clustering methods Clustering Algorithms for general similarity measures general similarity measure: specified by object X object similarity matrix 1 constructive algorithms agglomerative

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 21 Nov 16 th, 2017 Pranav Mantini Ack: Shah. M Image Processing Geometric Transformation Point Operations Filtering (spatial, Frequency) Input Restoration/

More information

CHAPTER 4. ANALYSIS of GRAPH THEORETICAL IMAGE SEGMENTATION METHODS

CHAPTER 4. ANALYSIS of GRAPH THEORETICAL IMAGE SEGMENTATION METHODS CHAPTER 4 ANALYSIS of GRAPH THEORETICAL IMAGE SEGMENTATION METHODS 4.1 Introduction In Graph based methods image is represented by undirected weighted graph where the nodes are pixels or pixel regions.

More information