Form follows func-on. Which one of them can fly? And why? Why would anyone bother about brain structure, when we can do func5onal imaging?

Size: px
Start display at page:

Download "Form follows func-on. Which one of them can fly? And why? Why would anyone bother about brain structure, when we can do func5onal imaging?"

Transcription

1

2 Why would anyone bother about brain structure, when we can do func5onal imaging? Form follows func-on Which one of them can fly? And why? h;p://animals.na5onalgeographic.com

3 Why would anyone bother about brain structure, when we can do func5onal imaging? h;p://orthoinfo.aaos.org Similarly: Func5on follows form Imaging can help assess differences and track changes

4 The brain: Fixed or ever- changing? Aplysia Brain Plas-city: Kempermann (1997), Nature The brain s ability to adapt in structure and func5on to external demands. From Brooks, online publication (

5 The ever adap5ng brain Brain Plas-city: Func5onal demand Stronger connec5on: - synap5c increase - glial increase - neurogenesis Func5onal demand [ ] [ ] Pruning: - synap5c decrease - glial decrease - neural pruning Func5onal demand [ ] [ ]

6 Example (brain plas5city in taxi drivers) Taxi drivers in London - serve ~ 30,000 streets - are trained for several years - need to pass difficult test Compare licensed London Taxi drivers to controls Are there significant differences in brain structure?

7 Example (brain plas5city in taxi drivers) Correla5on between 5me as taxi driver and hippocampal size Taxi drivers > controls Maguire et al. (2000), PNAS

8 Morphometric Analyses - Differences in brain structure between groups - Correla5ons of brain structure with variables of interest - Sta5s5cal analysis is like group analysis in fmri ( so we already know a lot about it)

9 Morphometry methods: what can we measure? White ma;er volume Grey ma;er volume Cor5cal thickness Bias correc5on Vertex Curvature Segmenta5on ROI Callosal thickness Radial distance Voxel- based morphometry Template Total intracranial volume Mesh Modula5on CSF Tensor- based morphometry Deforma5ons Jacobian determinant Gray ma;er density Whole- brain volume

10 Morphometry methods: what can we measure? Volumes: Region of Interest (ROI) Whole- brain volume Local volume (VBM / TBM) Distances: Callosal thickness Cor5cal thickness Radial distance Shapes: Curvature

11 Morphometry methods: what can we measure? Volumes: Region of Interest (ROI) Whole- brain volume Local volume (VBM / TBM) Distances: Callosal thickness Cor5cal thickness Radial distance Shapes: Curvature

12 Volumes

13 Morphometry methods: what can we measure? Volumes: Region of Interest (ROI) Whole- brain volume Local volume (VBM / TBM) Distances: Callosal thickness Cor5cal thickness Radial distance Shapes: Curvature

14 Volume ROI analysis ROIs: - Allow a direct comparison of a region s metrics - Are extremely specific at least in theory - Manual or automated genera5on Freesurfer Tutorial Quality of result depends on quality of ROI Manual tracing: - Requires extremely detailed rules - Time consuming h;p:// - S5ll considered to be a gold standard

15 ROIs Benefits: - Focus on structure you are interested in - Measurement of different a;ributes (size, shape, length, volume ) Rendering of right hippocampus (lateral view)

16 ROIs PiJalls: - Misclassifica5on - Missing rules and unclear / incomplete protocols - Func5onal relevance Kurth et al. (2010), Brain Structure and Func5on Kurth et al. (2010), Cerebral Cortex Brodmann K (1909). Vergleichende Lokalisa5on der Grosshirnrinde

17 Morphometry methods: what can we measure? Volumes: Region of Interest (ROI) Whole- brain volume Local volume (VBM / TBM) Distances: Callosal thickness Cor5cal thickness Radial distance Shapes: Curvature

18 Whole- brain volume Whole brain volume: - Global measurement Differences / changes can be observed in: - Neurodevelopment - Sex differences - Normal ageing - Neurodegenera5ve diseases - Different psychiatric disorders - [ ]

19 Whole- brain volume? Why does that maler? - Hippocampal volume scales with total brain volume Assume hippocampal volume loss in Alzheimer s: A big brain may have decreased hippocampal volume However, compared to smaller brains, the absolute hippocampal volume would s5ll be in the normal range

20 Whole- brain volume Whole- brain volume: - Frequently approximated by calcula5ng the total intracranial volume (TIV) - TIV can be calculated as GM+WM+CSF used to covary for different brain sizes

21 Morphometry methods: what can we measure? Volumes: Region of Interest (ROI) Whole- brain volume Local volume (VBM / TBM) Distances: Callosal thickness Cor5cal thickness Radial distance Shapes: Curvature

22 Local volume - Where in the brain is the difference? - Is this specific to a certain 5ssue type? Voxelwise comparison

23 Local volume Voxelwise comparisons: - Not limited to a predefined structure - High spa5al resolu5on Kurth et al. (2012), Human Brain Mapping We need to - Segment our brain into GM, WM, and CSF - Get the segments into a common space

24 Tissue segmenta5on Frequency Background CSF Gray Matter White Matter Brightness Tissue segmenta5on works on brightness informa5on in the image

25 Tissue segmenta5on

26 Morphometry methods: Local volume Kurth et al. (2012), Human Brain Mapping Voxelwise comparisons: - We now have successfully segmented the brains - Get segments into common space?

27 Spa5al transforma5on II Linear (same for every voxel): - rigid body: 6 parameter (3 x transla5on and 3 x rota5on) - affine: 12 parameter (rigid body + 3 x scaling + 3 x shearing) Na5ve space GM segments Affine registered GM segments

28 Spa5al transforma5on II Linear (same for every voxel): - rigid body: 6 parameter (3 x transla5on and 3 x rota5on) - affine: 12 parameter (rigid body + 3 x scaling + 3 x shearing) Non- linear (different for every voxel): Source Target Deforma5on Field From: Ashburner and Friston (2007), In: Sta5s5cal Parametric Mapping. The Methods

29 Spa5al transforma5on II What if spa5al registra5on is not 100% exact? - Spa5al uncertainty remains - This introduces noise (less sensi5ve) - Smoothing can account for small spa5al uncertain5es - Smoothing is required for sta5s5cal analysis anyway Smoothed voxel

30 VBM na5ve affine + non- linear + smoothed Voxel- based Morphometry (VBM) - The smoothed image is the input for classic VBM analyses Gray Ma;er Concentra5on or Gray Ma;er Density

31 Morphometry methods: Local volume Example: Does learning / training to juggle change brain structure? 12 subjects: - Learning and training for 3 months - Then no training for 3 months 12 Controls: - No juggling - Segment brains - Warp GM segments to MNI space (linearly + non- linearly) - Check if preprocessing worked - Smooth the warped segments - Enter them in a sta5s5cal model Grey ma;er increase in hmt / V5 Draganski et al. (2004), Nature Tissue increases with training, decreases in absence of training

32 Morphometry methods: Local volume How to interpret differences? Folding Thickness Misclassifica5on Quality Control Misregistra5on Less GM More GM From: Ashburner and Friston (2007), In: Sta5s5cal Parametric Mapping. The Methods

33 Morphometry methods: Volume changes Mapping local deforma5ons encodes volume and shape differences ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( x p h x p h x p h x p h x p h x p h x p h x p h x p h p J = Jacobian Determinant

34 Morphometry methods: Volume changes Voxel volume increased to match template Voxel volume decreased to match template

35 Morphometry methods: TBM Alzheimer s Hua et al. (2008) Neuroimage Fragile X Lee et al. (2007) Neuroimage FTO gene Ho et al. (2010) PNAS

36 Preserving the volume -ssue- specific - Tissue segments render rela5ve volume - Jacobians encode volume changes Morphometry methods: VBM Mul5ply segments with volume change modula5on Voxel- based Morphometry (VBM) (part 2) - Warped Tissues are modulated with their Jacobians - Frequently described as Gray Ma;er Volume (Volume is preserved)

37 Morphometry methods: what can we measure? Volumes: Region of Interest (ROI) Whole- brain volume Local volume (VBM / TBM) Distances: Callosal thickness Cor5cal thickness Radial distance Shapes: Curvature

38 Distances

39 Distance A B A B A B Resolu5on Distance between any two points - in any dimension Distance between two lines - length of lines does not ma;er Callosal Thickness

40 Morphometry methods: what can we measure? Volumes: Region of Interest (ROI) Whole- brain volume Local volume (VBM / TBM) Distances: Callosal thickness Cor5cal thickness Radial distance Shapes: Curvature

41 Cor5cal Thickness Thompson et al. (2005) J.Neurosci. Distance between WM / GM boundary and pial surface

42 Vertex Cor5cal Thickness

43 Cor5cal Thickness White Ma;er Surface Pial Surface Freesurfer Tutorial 2010 Ver5ces

44 Cor5cal Thickness How to interpret differences? Folding Thickness Misclassifica5on Quality Control Misregistra5on Thinner Cortex Thicker Cortex Modified awer: Ashburner and Friston (2007), In: Sta5s5cal Parametric Mapping. The Methods

45 Morphometry methods: what can we measure? Volumes: Region of Interest (ROI) Whole- brain volume Local volume (VBM / TBM) Distances: Callosal thickness Cor5cal thickness Radial distance Shapes: Curvature

46 Radial Thickness x Measure distance from core Hippocampus: shape with core

47 Morphometry methods: what can we measure? Volumes: Region of Interest (ROI) Whole- brain volume Local volume (VBM / TBM) Distances: Callosal thickness Cor5cal thickness Radial distance Shapes: Curvature

48 Shape

49 Gyrifica5on Gyrifica-on Index = Inner Contour Length (following the sulci / gyri) Outer Countour Length (connec5ng the tops of the gyri) Zilles et al. (1988), Anat Embryol (Berl) Fractal Dimension The rate at which the measured contour increases as the spa5al detail is increased. Thompson et al. (1996), J Neurosci

50 Curvature Mean Curvature Gaser C

51 Summary White ma;er volume Grey ma;er volume Cor5cal thickness Bias correc5on Vertex Curvature Segmenta5on ROI Callosal thickness Radial distance Voxel- based morphometry Template Total intracranial volume Mesh Modula5on CSF Tensor- based morphometry Deforma5ons Jacobian determinant Gray ma;er density Whole- brain volume

52 Thank you Eileen Luders Chris5an Gaser Katherine Narr Paul Thompson

Methods for data preprocessing

Methods for data preprocessing Methods for data preprocessing John Ashburner Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK. Overview Voxel-Based Morphometry Morphometry in general Volumetrics VBM preprocessing

More information

Neuroimaging and mathematical modelling Lesson 2: Voxel Based Morphometry

Neuroimaging and mathematical modelling Lesson 2: Voxel Based Morphometry Neuroimaging and mathematical modelling Lesson 2: Voxel Based Morphometry Nivedita Agarwal, MD Nivedita.agarwal@apss.tn.it Nivedita.agarwal@unitn.it Volume and surface morphometry Brain volume White matter

More information

Structural MRI analysis

Structural MRI analysis Structural MRI analysis volumetry and voxel-based morphometry cortical thickness measurements structural covariance network mapping Boris Bernhardt, PhD Department of Social Neuroscience, MPI-CBS bernhardt@cbs.mpg.de

More information

Voxel-Based Morphometry & DARTEL. Ged Ridgway, London With thanks to John Ashburner and the FIL Methods Group

Voxel-Based Morphometry & DARTEL. Ged Ridgway, London With thanks to John Ashburner and the FIL Methods Group Zurich SPM Course 2012 Voxel-Based Morphometry & DARTEL Ged Ridgway, London With thanks to John Ashburner and the FIL Methods Group Aims of computational neuroanatomy * Many interesting and clinically

More information

Neuroimage Processing

Neuroimage Processing Neuroimage Processing Instructor: Moo K. Chung mkchung@wisc.edu Lecture 2-3. General Linear Models (GLM) Voxel-based Morphometry (VBM) September 11, 2009 What is GLM The general linear model (GLM) is a

More information

Structural Segmentation

Structural Segmentation Structural Segmentation FAST tissue-type segmentation FIRST sub-cortical structure segmentation FSL-VBM voxelwise grey-matter density analysis SIENA atrophy analysis FAST FMRIB s Automated Segmentation

More information

Structural Segmentation

Structural Segmentation Structural Segmentation FAST tissue-type segmentation FIRST sub-cortical structure segmentation FSL-VBM voxelwise grey-matter density analysis SIENA atrophy analysis FAST FMRIB s Automated Segmentation

More information

Zurich SPM Course Voxel-Based Morphometry. Ged Ridgway (Oxford & UCL) With thanks to John Ashburner and the FIL Methods Group

Zurich SPM Course Voxel-Based Morphometry. Ged Ridgway (Oxford & UCL) With thanks to John Ashburner and the FIL Methods Group Zurich SPM Course 2015 Voxel-Based Morphometry Ged Ridgway (Oxford & UCL) With thanks to John Ashburner and the FIL Methods Group Examples applications of VBM Many scientifically or clinically interesting

More information

CHAPTER 2. Morphometry on rodent brains. A.E.H. Scheenstra J. Dijkstra L. van der Weerd

CHAPTER 2. Morphometry on rodent brains. A.E.H. Scheenstra J. Dijkstra L. van der Weerd CHAPTER 2 Morphometry on rodent brains A.E.H. Scheenstra J. Dijkstra L. van der Weerd This chapter was adapted from: Volumetry and other quantitative measurements to assess the rodent brain, In vivo NMR

More information

Introduc)on to fmri. Natalia Zaretskaya

Introduc)on to fmri. Natalia Zaretskaya Introduc)on to fmri Natalia Zaretskaya Content fmri signal fmri versus neural ac)vity A classical experiment: flickering checkerboard Preprocessing Univariate analysis Single- subject analysis Group analysis

More information

Automated MR Image Analysis Pipelines

Automated MR Image Analysis Pipelines Automated MR Image Analysis Pipelines Andy Simmons Centre for Neuroimaging Sciences, Kings College London Institute of Psychiatry. NIHR Biomedical Research Centre for Mental Health at IoP & SLAM. Neuroimaging

More information

Supplementary methods

Supplementary methods Supplementary methods This section provides additional technical details on the sample, the applied imaging and analysis steps and methods. Structural imaging Trained radiographers placed all participants

More information

腦部結構影像 標準化 組織分割 體素型態 本週課程內容. Analysis Softwares. A Course of MRI

腦部結構影像 標準化 組織分割 體素型態 本週課程內容. Analysis Softwares. A Course of MRI 本週課程內容 腦部結構影像 A Course of MRI 盧家鋒助理教授國立陽明大學物理治療暨輔助科技學系 alvin4016@ym.edu.tw 腦部結構影像 空間標準化 (Spatial normalization) 均勻度校正 (Bias correction) 組織分割 (Segmentation) 體素形態學分析 (Voxel-based morphometry, VBM) 影像平滑化

More information

Quantitative MRI of the Brain: Investigation of Cerebral Gray and White Matter Diseases

Quantitative MRI of the Brain: Investigation of Cerebral Gray and White Matter Diseases Quantities Measured by MR - Quantitative MRI of the Brain: Investigation of Cerebral Gray and White Matter Diseases Static parameters (influenced by molecular environment): T, T* (transverse relaxation)

More information

UBC SPM Course Voxel-Based Morphometry & DARTEL. Ged Ridgway

UBC SPM Course Voxel-Based Morphometry & DARTEL. Ged Ridgway UBC SPM Course 2010 Voxel-Based Morphometry & DARTEL Ged Ridgway Aims of computational neuroanatomy * Many interesting and clinically important questions might relate to the shape or local size of regions

More information

1 Introduction Motivation and Aims Functional Imaging Computational Neuroanatomy... 12

1 Introduction Motivation and Aims Functional Imaging Computational Neuroanatomy... 12 Contents 1 Introduction 10 1.1 Motivation and Aims....... 10 1.1.1 Functional Imaging.... 10 1.1.2 Computational Neuroanatomy... 12 1.2 Overview of Chapters... 14 2 Rigid Body Registration 18 2.1 Introduction.....

More information

Alignment and Image Comparison

Alignment and Image Comparison Alignment and Image Comparison Erik Learned- Miller University of Massachuse>s, Amherst Alignment and Image Comparison Erik Learned- Miller University of Massachuse>s, Amherst Alignment and Image Comparison

More information

Preprocessing II: Between Subjects John Ashburner

Preprocessing II: Between Subjects John Ashburner Preprocessing II: Between Subjects John Ashburner Pre-processing Overview Statistics or whatever fmri time-series Anatomical MRI Template Smoothed Estimate Spatial Norm Motion Correct Smooth Coregister

More information

Computational Neuroanatomy

Computational Neuroanatomy Computational Neuroanatomy John Ashburner john@fil.ion.ucl.ac.uk Smoothing Motion Correction Between Modality Co-registration Spatial Normalisation Segmentation Morphometry Overview fmri time-series kernel

More information

Evaluation of multiple voxel-based morphometry approaches and applications in the analysis of white matter changes in temporal lobe epilepsy

Evaluation of multiple voxel-based morphometry approaches and applications in the analysis of white matter changes in temporal lobe epilepsy Evaluation of multiple voxel-based morphometry approaches and applications in the analysis of white matter changes in temporal lobe epilepsy Wenjing Li a, Huiguang He a, Jingjing Lu b, Bin Lv a, Meng Li

More information

Surface-based Analysis: Inter-subject Registration and Smoothing

Surface-based Analysis: Inter-subject Registration and Smoothing Surface-based Analysis: Inter-subject Registration and Smoothing Outline Exploratory Spatial Analysis Coordinate Systems 3D (Volumetric) 2D (Surface-based) Inter-subject registration Volume-based Surface-based

More information

Appendix E1. Supplementary Methods. MR Image Acquisition. MR Image Analysis

Appendix E1. Supplementary Methods. MR Image Acquisition. MR Image Analysis RSNA, 2015 10.1148/radiol.2015150532 Appendix E1 Supplementary Methods MR Image Acquisition By using a 1.5-T system (Avanto, Siemens Medical, Erlangen, Germany) under a program of regular maintenance (no

More information

Functional MRI data preprocessing. Cyril Pernet, PhD

Functional MRI data preprocessing. Cyril Pernet, PhD Functional MRI data preprocessing Cyril Pernet, PhD Data have been acquired, what s s next? time No matter the design, multiple volumes (made from multiple slices) have been acquired in time. Before getting

More information

Alignment and Image Comparison. Erik Learned- Miller University of Massachuse>s, Amherst

Alignment and Image Comparison. Erik Learned- Miller University of Massachuse>s, Amherst Alignment and Image Comparison Erik Learned- Miller University of Massachuse>s, Amherst Alignment and Image Comparison Erik Learned- Miller University of Massachuse>s, Amherst Alignment and Image Comparison

More information

COMPUTATIONAL (NEURO)ANATOMY

COMPUTATIONAL (NEURO)ANATOMY COMPUTATIONAL (NEURO)ANATOMY Duygu Tosun-Turgut, Ph.D. Center for Imaging of Neurodegenerative Diseases Department of Radiology and Biomedical Imaging duygu.tosun@ucsf.edu Computational anatomy Computational

More information

Image Registration + Other Stuff

Image Registration + Other Stuff Image Registration + Other Stuff John Ashburner Pre-processing Overview fmri time-series Motion Correct Anatomical MRI Coregister m11 m 21 m 31 m12 m13 m14 m 22 m 23 m 24 m 32 m 33 m 34 1 Template Estimate

More information

Introduc)on to FreeSurfer h0p://surfer.nmr.mgh.harvard.edu. Jenni Pacheco.

Introduc)on to FreeSurfer h0p://surfer.nmr.mgh.harvard.edu. Jenni Pacheco. Introduc)on to FreeSurfer h0p://surfer.nmr.mgh.harvard.edu Jenni Pacheco jpacheco@mail.utexas.edu Outline FreeSurfer ROI Terminology ROI Sta)s)cs Files ROI Studies Volumetric/Area Intensity FreeSurfer

More information

Chapter 21 Structural MRI: Morphometry

Chapter 21 Structural MRI: Morphometry Chapter 21 Structural MRI: Morphometry Christian Gaser Abstract Human brains are characterised by considerable intersubject anatomical variability, which is of interest in both clinical practice and research.

More information

GLM for fmri data analysis Lab Exercise 1

GLM for fmri data analysis Lab Exercise 1 GLM for fmri data analysis Lab Exercise 1 March 15, 2013 Medical Image Processing Lab Medical Image Processing Lab GLM for fmri data analysis Outline 1 Getting Started 2 AUDIO 1 st level Preprocessing

More information

Lilla Zöllei A.A. Martinos Center, MGH; Boston, MA

Lilla Zöllei A.A. Martinos Center, MGH; Boston, MA Lilla Zöllei lzollei@nmr.mgh.harvard.edu A.A. Martinos Center, MGH; Boston, MA Bruce Fischl Gheorghe Postelnicu Jean Augustinack Anastasia Yendiki Allison Stevens Kristen Huber Sita Kakonoori + the FreeSurfer

More information

Computational anatomy with the SPM software

Computational anatomy with the SPM software Available online at www.sciencedirect.com Magnetic Resonance Imaging 27 (2009) 1163 1174 Computational anatomy with the SPM software John Ashburner Wellcome Trust Centre for Neuroimaging, WC1N 3BG London,

More information

Measuring longitudinal brain changes in humans and small animal models. Christos Davatzikos

Measuring longitudinal brain changes in humans and small animal models. Christos Davatzikos Measuring longitudinal brain changes in humans and small animal models Christos Davatzikos Section of Biomedical Image Analysis University of Pennsylvania (Radiology) http://www.rad.upenn.edu/sbia Computational

More information

fmri Analysis Sackler Ins2tute 2011

fmri Analysis Sackler Ins2tute 2011 fmri Analysis Sackler Ins2tute 2011 How do we get from this to this? How do we get from this to this? And what are those colored blobs we re all trying to see, anyway? Raw fmri data straight from the scanner

More information

An Introduction To Automatic Tissue Classification Of Brain MRI. Colm Elliott Mar 2014

An Introduction To Automatic Tissue Classification Of Brain MRI. Colm Elliott Mar 2014 An Introduction To Automatic Tissue Classification Of Brain MRI Colm Elliott Mar 2014 Tissue Classification Tissue classification is part of many processing pipelines. We often want to classify each voxel

More information

Math in image processing

Math in image processing Math in image processing Math in image processing Nyquist theorem Math in image processing Discrete Fourier Transformation Math in image processing Image enhancement: scaling Math in image processing Image

More information

Multivariate Tensor-based Brain Anatomical Surface Morphometry via Holomorphic One-Forms

Multivariate Tensor-based Brain Anatomical Surface Morphometry via Holomorphic One-Forms Multivariate Tensor-based Brain Anatomical Surface Morphometry via Holomorphic One-Forms Yalin Wang 1,2, Tony F. Chan 2, Arthur W. Toga 1, and Paul M. Thompson 1 1 Lab. of Neuro Imaging, UCLA School of

More information

Multi-scale Voxel-based Morphometry via Weighted Spherical Harmonic Representation

Multi-scale Voxel-based Morphometry via Weighted Spherical Harmonic Representation Multi-scale Voxel-based Morphometry via Weighted Spherical Harmonic Representation Moo K. Chung 1,2, Li Shen 4, Kim M. Dalton 2, and Richard J. Davidson 2,3 1 Department of Statistics, Biostatistics and

More information

Cocozza S., et al. : ALTERATIONS OF FUNCTIONAL CONNECTIVITY OF THE MOTOR CORTEX IN FABRY'S DISEASE: AN RS-FMRI STUDY

Cocozza S., et al. : ALTERATIONS OF FUNCTIONAL CONNECTIVITY OF THE MOTOR CORTEX IN FABRY'S DISEASE: AN RS-FMRI STUDY ALTERATIONS OF FUNCTIONAL CONNECTIVITY OF THE MOTOR CORTEX IN FABRY'S DISEASE: AN RS-FMRI STUDY SUPPLEMENTARY MATERIALS Sirio Cocozza, MD 1*, Antonio Pisani, MD, PhD 2, Gaia Olivo, MD 1, Francesco Saccà,

More information

Subvoxel Segmentation and Representation of Brain Cortex Using Fuzzy Clustering and Gradient Vector Diffusion

Subvoxel Segmentation and Representation of Brain Cortex Using Fuzzy Clustering and Gradient Vector Diffusion Subvoxel Segmentation and Representation of Brain Cortex Using Fuzzy Clustering and Gradient Vector Diffusion Ming-Ching Chang Xiaodong Tao GE Global Research Center {changm, taox} @ research.ge.com SPIE

More information

Introductory Concepts for Voxel-Based Statistical Analysis

Introductory Concepts for Voxel-Based Statistical Analysis Introductory Concepts for Voxel-Based Statistical Analysis John Kornak University of California, San Francisco Department of Radiology and Biomedical Imaging Department of Epidemiology and Biostatistics

More information

better images mean better results

better images mean better results better images mean better results A better way for YOU and YOUR patient brought to you by Advanced Neuro analysis with access to studies wherever you need it Advanced Neuro from Invivo Advancements in

More information

VBM Tutorial. 1 Getting Started. John Ashburner. March 12, 2015

VBM Tutorial. 1 Getting Started. John Ashburner. March 12, 2015 VBM Tutorial John Ashburner March 12, 2015 1 Getting Started The data provided are a selection of T1-weighted scans from the freely available IXI dataset 1. The overall plan will be to Start up SPM. Check

More information

Transformation Model and Constraints Cause Bias in Statistics on Deformation Fields

Transformation Model and Constraints Cause Bias in Statistics on Deformation Fields Transformation Model and Constraints Cause Bias in Statistics on Deformation Fields Torsten Rohlfing Neuroscience Program, SRI International, Menlo Park, CA, USA torsten@synapse.sri.com http://www.stanford.edu/

More information

Spatial normalization of injured brains for neuroimaging research: An illustrative introduction of available options

Spatial normalization of injured brains for neuroimaging research: An illustrative introduction of available options Spatial normalization of injured brains for neuroimaging research: An illustrative introduction of available options Junghoon Kim, PhD, Brian Avants, PhD, Sunil Patel, MS, and John Whyte, MD, PhD 1 Recent

More information

Electrical Engineering, Vanderbilt University, Nashville, TN, USA b. Computer Science, Vanderbilt University, Nashville, TN, USA c

Electrical Engineering, Vanderbilt University, Nashville, TN, USA b. Computer Science, Vanderbilt University, Nashville, TN, USA c Improved Stability of Whole Brain Surface Parcellation with Multi-Atlas Segmentation Yuankai Huo* a, Shunxing Bao b, Prasanna Parvathaneni a, Bennett A. Landman a,b,c a Electrical Engineering, Vanderbilt

More information

Data mining for neuroimaging data. John Ashburner

Data mining for neuroimaging data. John Ashburner Data mining for neuroimaging data John Ashburner MODELLING The Scientific Process MacKay, David JC. Bayesian interpolation. Neural computation 4, no. 3 (1992): 415-447. Model Selection Search for the best

More information

Automatic Registration-Based Segmentation for Neonatal Brains Using ANTs and Atropos

Automatic Registration-Based Segmentation for Neonatal Brains Using ANTs and Atropos Automatic Registration-Based Segmentation for Neonatal Brains Using ANTs and Atropos Jue Wu and Brian Avants Penn Image Computing and Science Lab, University of Pennsylvania, Philadelphia, USA Abstract.

More information

The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy

The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy The Anatomical Equivalence Class Formulation and its Application to Shape-based Computational Neuroanatomy Sokratis K. Makrogiannis, PhD From post-doctoral research at SBIA lab, Department of Radiology,

More information

Deriving statistical significance maps for SVM based image classification and group comparisons

Deriving statistical significance maps for SVM based image classification and group comparisons Deriving statistical significance maps for SVM based image classification and group comparisons Bilwaj Gaonkar, Christos Davatzikos Section for Biomedical Image Analysis, University of Pennsylvania, Philadelphia,

More information

ARTICLE IN PRESS YNIMG-03151; No. of pages: 12; 4C: 2, 5, 6, 10, 11

ARTICLE IN PRESS YNIMG-03151; No. of pages: 12; 4C: 2, 5, 6, 10, 11 YNIMG-03151; No. of pages: 12; 4C: 2, 5, 6, 10, 11 DTD 5 Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification

More information

Automatic Generation of Training Data for Brain Tissue Classification from MRI

Automatic Generation of Training Data for Brain Tissue Classification from MRI Automatic Generation of Training Data for Brain Tissue Classification from MRI Chris A. COCOSCO, Alex P. ZIJDENBOS, and Alan C. EVANS http://www.bic.mni.mcgill.ca/users/crisco/ McConnell Brain Imaging

More information

Introduc)on to FreeSurfer h0p://surfer.nmr.mgh.harvard.edu. Jenni Pacheco.

Introduc)on to FreeSurfer h0p://surfer.nmr.mgh.harvard.edu. Jenni Pacheco. Introduc)on to FreeSurfer h0p://surfer.nmr.mgh.harvard.edu Jenni Pacheco jpacheco@mail.utexas.edu fmri Integra)on Visualize individual fmri results on surface volume ROI Volume Study: Count number of voxels

More information

The organization of the human cerebral cortex estimated by intrinsic functional connectivity

The organization of the human cerebral cortex estimated by intrinsic functional connectivity 1 The organization of the human cerebral cortex estimated by intrinsic functional connectivity Journal: Journal of Neurophysiology Author: B. T. Thomas Yeo, et al Link: https://www.ncbi.nlm.nih.gov/pubmed/21653723

More information

An Intensity Consistent Approach to the Cross Sectional Analysis of Deformation Tensor Derived Maps of Brain Shape

An Intensity Consistent Approach to the Cross Sectional Analysis of Deformation Tensor Derived Maps of Brain Shape An Intensity Consistent Approach to the Cross Sectional Analysis of Deformation Tensor Derived Maps of Brain Shape C. Studholme, V. Cardenas, A. Maudsley, and M. Weiner U.C.S.F., Dept of Radiology, VAMC

More information

ASAP_2.0 (Automatic Software for ASL Processing) USER S MANUAL

ASAP_2.0 (Automatic Software for ASL Processing) USER S MANUAL ASAP_2.0 (Automatic Software for ASL Processing) USER S MANUAL ASAP was developed as part of the COST Action "Arterial Spin Labelling Initiative in Dementia (AID)" by: Department of Neuroimaging, Institute

More information

FSL Pre-Processing Pipeline

FSL Pre-Processing Pipeline The Art and Pitfalls of fmri Preprocessing FSL Pre-Processing Pipeline Mark Jenkinson FMRIB Centre, University of Oxford FSL Pre-Processing Pipeline Standard pre-processing: Task fmri Resting-state fmri

More information

This exercise uses one anatomical data set (ANAT1) and two functional data sets (FUNC1 and FUNC2).

This exercise uses one anatomical data set (ANAT1) and two functional data sets (FUNC1 and FUNC2). Exploring Brain Anatomy This week s exercises will let you explore the anatomical organization of the brain to learn some of its basic properties, as well as the location of different structures. The human

More information

Group Sta*s*cs in MEG/EEG

Group Sta*s*cs in MEG/EEG Group Sta*s*cs in MEG/EEG Will Woods NIF Fellow Brain and Psychological Sciences Research Centre Swinburne University of Technology A Cau*onary tale. A Cau*onary tale. A Cau*onary tale. Overview Introduc*on

More information

Tensor-based Brain Surface Modeling and Analysis

Tensor-based Brain Surface Modeling and Analysis Tensor-based Brain Surface Modeling and Analysis Moo K. Chung 1, Keith J. Worsley 2, Steve Robbins 2 and Alan C. Evans 2 1 Department of Statistics, Department of Biostatistics and Medical Informatics

More information

Deformation-based surface morphometry applied to gray matter deformation

Deformation-based surface morphometry applied to gray matter deformation Available online at www.sciencedirect.com R NeuroImage 18 (2003) 198 213 www.elsevier.com/locate/ynimg Deformation-based surface morphometry applied to gray matter deformation Moo K. Chung, a,b, * Keith

More information

Where are we now? Structural MRI processing and analysis

Where are we now? Structural MRI processing and analysis Where are we now? Structural MRI processing and analysis Pierre-Louis Bazin bazin@cbs.mpg.de Leipzig, Germany Structural MRI processing: why bother? Just use the standards? SPM FreeSurfer FSL However:

More information

The Effects of Inter-slice Gap Thickness on Parametric Methods for Diffusion Tensor Imaging Abstract

The Effects of Inter-slice Gap Thickness on Parametric Methods for Diffusion Tensor Imaging Abstract The Effects of Inter-slice Gap Thickness on Parametric Methods for Diffusion Tensor Imaging Beth Hutchinson; Neuroscience Training program, Statistics 592 Abstract Although high-resolution, whole-brain

More information

BrainSuite. presented at the UCLA/NITP Advanced Neuroimaging Summer Program 29 July 2014

BrainSuite. presented at the UCLA/NITP Advanced Neuroimaging Summer Program 29 July 2014 BrainSuite presented at the UCLA/NITP Advanced Neuroimaging Summer Program 29 July 2014 David Shattuck Ahmanson-Lovelace Brain Mapping Center Department of Neurology David Geffen School of Medicine at

More information

FROM IMAGE RECONSTRUCTION TO CONNECTIVITY ANALYSIS: A JOURNEY THROUGH THE BRAIN'S WIRING. Francesca Pizzorni Ferrarese

FROM IMAGE RECONSTRUCTION TO CONNECTIVITY ANALYSIS: A JOURNEY THROUGH THE BRAIN'S WIRING. Francesca Pizzorni Ferrarese FROM IMAGE RECONSTRUCTION TO CONNECTIVITY ANALYSIS: A JOURNEY THROUGH THE BRAIN'S WIRING Francesca Pizzorni Ferrarese Pipeline overview WM and GM Segmentation Registration Data reconstruction Tractography

More information

BrainSpace V2.1: Geometric mapping and diffusion-based software for cross-subject multimodality brain imaging informatics

BrainSpace V2.1: Geometric mapping and diffusion-based software for cross-subject multimodality brain imaging informatics Brief Introduction to BrainSpace V2.1 BrainSpace V2.1: Geometric mapping and diffusion-based software for cross-subject multimodality brain imaging informatics Graphics and Imaging Laboratory Wayne State

More information

AFNI Preprocessing: Outline, Recommendations, and New(ish) Stuff. Robert W Cox SSCC / NIMH & NINDS / NIH / DHHS / USA / EARTH

AFNI Preprocessing: Outline, Recommendations, and New(ish) Stuff. Robert W Cox SSCC / NIMH & NINDS / NIH / DHHS / USA / EARTH AFNI Preprocessing: Outline, Recommendations, and New(ish) Stuff Robert W Cox SSCC / NIMH & NINDS / NIH / DHHS / USA / EARTH HBM 2016 As a work of a US Government official, this presentation is not copyrighted

More information

Introduction to Neuroimaging Janaina Mourao-Miranda

Introduction to Neuroimaging Janaina Mourao-Miranda Introduction to Neuroimaging Janaina Mourao-Miranda Neuroimaging techniques have changed the way neuroscientists address questions about functional anatomy, especially in relation to behavior and clinical

More information

MultiVariate Bayesian (MVB) decoding of brain images

MultiVariate Bayesian (MVB) decoding of brain images MultiVariate Bayesian (MVB) decoding of brain images Alexa Morcom Edinburgh SPM course 2015 With thanks to J. Daunizeau, K. Brodersen for slides stimulus behaviour encoding of sensorial or cognitive state?

More information

Modified Normal Vector Voting Estimation in neuroimage

Modified Normal Vector Voting Estimation in neuroimage Modified Normal Vector Voting Estimation in neuroimage Neuroimage Processing (339.632) Instructor: Moo. K. Chung Seung-goo KIM Dec 15, 2009 Abstract The normal vector is one of the metrics that are sensitive

More information

Data pre-processing framework in SPM. Bogdan Draganski

Data pre-processing framework in SPM. Bogdan Draganski Data pre-processing fraework in SPM Bogdan Draganski Outline Why do we need pre-processing? Overview Structural MRI pre-processing fmri pre-processing Why do we need pre-processing? What do we want? Reason

More information

Pa#ern Recogni-on for Neuroimaging Toolbox

Pa#ern Recogni-on for Neuroimaging Toolbox Pa#ern Recogni-on for Neuroimaging Toolbox Pa#ern Recogni-on Methods: Basics João M. Monteiro Based on slides from Jessica Schrouff and Janaina Mourão-Miranda PRoNTo course UCL, London, UK 2017 Outline

More information

Longitudinal Brain MRI Analysis with Uncertain Registration

Longitudinal Brain MRI Analysis with Uncertain Registration Longitudinal Brain MRI Analysis with Uncertain Registration Ivor J.A. Simpson 1,2,,MarkW.Woolrich 2,3,AdrianR.Groves 2, and Julia A. Schnabel 1 1 Institute of Biomedical Engineering, University of Oxford,

More information

Machine learning improves automated cortical surface reconstruction in human MRI studies

Machine learning improves automated cortical surface reconstruction in human MRI studies University of Iowa Iowa Research Online Theses and Dissertations Spring 2017 Machine learning improves automated cortical surface reconstruction in human MRI studies David G. Ellis University of Iowa Copyright

More information

Structural connectivity of the brain measured by diffusion tensor imaging [DTI]

Structural connectivity of the brain measured by diffusion tensor imaging [DTI] Structural connectivity of the brain measured by diffusion tensor imaging [DTI] Lars T. Westlye CSHC / Centre for Advanced Study PSY4320 06.05.2012 l.t.westlye@psykologi.uio.no ~ 40 % of the brain is white

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! h0p://www.cs.toronto.edu/~rsalakhu/ Lecture 3 Parametric Distribu>ons We want model the probability

More information

MR IMAGE SEGMENTATION

MR IMAGE SEGMENTATION MR IMAGE SEGMENTATION Prepared by : Monil Shah What is Segmentation? Partitioning a region or regions of interest in images such that each region corresponds to one or more anatomic structures Classification

More information

Correction of Partial Volume Effects in Arterial Spin Labeling MRI

Correction of Partial Volume Effects in Arterial Spin Labeling MRI Correction of Partial Volume Effects in Arterial Spin Labeling MRI By: Tracy Ssali Supervisors: Dr. Keith St. Lawrence and Udunna Anazodo Medical Biophysics 3970Z Six Week Project April 13 th 2012 Introduction

More information

Manifold Learning: Applications in Neuroimaging

Manifold Learning: Applications in Neuroimaging Your own logo here Manifold Learning: Applications in Neuroimaging Robin Wolz 23/09/2011 Overview Manifold learning for Atlas Propagation Multi-atlas segmentation Challenges LEAP Manifold learning for

More information

IMA Preprint Series # 2078

IMA Preprint Series # 2078 A GEOMETRIC METHOD FOR AUTOMATIC EXTRACTION OF SULCAL FUNDI By C.-Y. Kao M. Hofer G. Sapiro J. Stern and D. Rottenberg IMA Preprint Series # 2078 ( November 2005 ) INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS

More information

Multiple Cortical Surface Correspondence Using Pairwise Shape Similarity

Multiple Cortical Surface Correspondence Using Pairwise Shape Similarity Multiple Cortical Surface Correspondence Using Pairwise Shape Similarity Pahal Dalal 1, Feng Shi 2, Dinggang Shen 2, and Song Wang 1 1 Department of Computer Science and Engineering, University of South

More information

Introduc)on to FreeSurfer h0p://surfer.nmr.mgh.harvard.edu. Jenni Pacheco.

Introduc)on to FreeSurfer h0p://surfer.nmr.mgh.harvard.edu. Jenni Pacheco. Introduc)on to FreeSurfer h0p://surfer.nmr.mgh.harvard.edu Jenni Pacheco jpacheco@mail.utexas.edu Analyzing the individual subject What happens? How do I do that? Now what? Tools you will use recon all

More information

UNC 4D Infant Cortical Surface Atlases, from Neonate to 6 Years of Age

UNC 4D Infant Cortical Surface Atlases, from Neonate to 6 Years of Age UNC 4D Infant Cortical Surface Atlases, from Neonate to 6 Years of Age Version 1.0 UNC 4D infant cortical surface atlases from neonate to 6 years of age contain 11 time points, including 1, 3, 6, 9, 12,

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 4,000 116,000 120M Open access books available International authors and editors Downloads Our

More information

Normalization for clinical data

Normalization for clinical data Normalization for clinical data Christopher Rorden, Leonardo Bonilha, Julius Fridriksson, Benjamin Bender, Hans-Otto Karnath (2012) Agespecific CT and MRI templates for spatial normalization. NeuroImage

More information

Application of fuzzy set theory in image analysis. Nataša Sladoje Centre for Image Analysis

Application of fuzzy set theory in image analysis. Nataša Sladoje Centre for Image Analysis Application of fuzzy set theory in image analysis Nataša Sladoje Centre for Image Analysis Our topics for today Crisp vs fuzzy Fuzzy sets and fuzzy membership functions Fuzzy set operators Approximate

More information

Neural Networks for Machine Learning. Lecture 5a Why object recogni:on is difficult. Geoffrey Hinton with Ni:sh Srivastava Kevin Swersky

Neural Networks for Machine Learning. Lecture 5a Why object recogni:on is difficult. Geoffrey Hinton with Ni:sh Srivastava Kevin Swersky Neural Networks for Machine Learning Lecture 5a Why object recogni:on is difficult Geoffrey Hinton with Ni:sh Srivastava Kevin Swersky Things that make it hard to recognize objects Segmenta:on: Real scenes

More information

Wavelet-Based Representation of Biological Shapes

Wavelet-Based Representation of Biological Shapes Wavelet-Based Representation of Biological Shapes Bin Dong 1,YuMao 2, Ivo D. Dinov 3,ZhuowenTu 3, Yonggang Shi 3, Yalin Wang 3, and Arthur W. Toga 3 1 Department of Mathematics, University of California,

More information

FSL Pre-Processing Pipeline

FSL Pre-Processing Pipeline The Art and Pitfalls of fmri Preprocessing FSL Pre-Processing Pipeline Mark Jenkinson FMRIB Centre, University of Oxford FSL Pre-Processing Pipeline Standard pre-processing: Task fmri Resting-state fmri

More information

Pattern Recognition for Neuroimaging Toolbox: PRoNTo

Pattern Recognition for Neuroimaging Toolbox: PRoNTo Click to edit Master title style Pattern Recognition for Neuroimaging Toolbox: PRoNTo Jessica Schrouff PRNI 2018 June 14 th NUS, Singapore Click Outline to edit Master title style PRoNTo s goals and history

More information

A hybrid approach to the skull stripping problem in MRI

A hybrid approach to the skull stripping problem in MRI A hybrid approach to the skull stripping problem in MRI F. Ségonne, a,b, * A.M. Dale, a,b E. Busa, b M. Glessner, b D. Salat, b H.K. Hahn, c and B. Fischl a,b a MIT C.S.A.I. Laboratory, Cambridge, MA 02139,

More information

ADAPTIVE GRAPH CUTS WITH TISSUE PRIORS FOR BRAIN MRI SEGMENTATION

ADAPTIVE GRAPH CUTS WITH TISSUE PRIORS FOR BRAIN MRI SEGMENTATION ADAPTIVE GRAPH CUTS WITH TISSUE PRIORS FOR BRAIN MRI SEGMENTATION Abstract: MIP Project Report Spring 2013 Gaurav Mittal 201232644 This is a detailed report about the course project, which was to implement

More information

FreeSurfer: Troubleshooting surfer.nmr.mgh.harvard.edu

FreeSurfer: Troubleshooting surfer.nmr.mgh.harvard.edu FreeSurfer: Troubleshooting surfer.nmr.mgh.harvard.edu 1 Hard and Soft Failures Categories of errors: Hard & Soft Failures Hard = recon-all quits before it finishes Soft = recon-all finishes but results

More information

Basic Introduction to Data Analysis. Block Design Demonstration. Robert Savoy

Basic Introduction to Data Analysis. Block Design Demonstration. Robert Savoy Basic Introduction to Data Analysis Block Design Demonstration Robert Savoy Sample Block Design Experiment Demonstration Use of Visual and Motor Task Separability of Responses Combined Visual and Motor

More information

Journal of Neuroscience Methods

Journal of Neuroscience Methods Journal of Neuroscience Methods 172 (2008) 122 130 Contents lists available at ScienceDirect Journal of Neuroscience Methods journal homepage: www.elsevier.com/locate/jneumeth A robust and accurate algorithm

More information

A Fast and Accurate Method for Automated Cortical Surface Registration and Labeling

A Fast and Accurate Method for Automated Cortical Surface Registration and Labeling A Fast and Accurate Method for Automated Cortical Surface Registration and Labeling Anand A Joshi 1, David W Shattuck 2 and Richard M Leahy 1 1 Signal and Image Processing Institute, University of Southern

More information

Bayesian Inference in fmri Will Penny

Bayesian Inference in fmri Will Penny Bayesian Inference in fmri Will Penny Bayesian Approaches in Neuroscience Karolinska Institutet, Stockholm February 2016 Overview Posterior Probability Maps Hemodynamic Response Functions Population

More information

Function-Structure Integration in FreeSurfer

Function-Structure Integration in FreeSurfer Function-Structure Integration in FreeSurfer Outline Function-Structure Integration Function-Structure Registration in FreeSurfer fmri Analysis Preprocessing First-Level Analysis Higher-Level (Group) Analysis

More information

An ensemble of classiers guided by the AAL brain atlas for Alzheimer's disease detection

An ensemble of classiers guided by the AAL brain atlas for Alzheimer's disease detection An ensemble of classiers guided by the AAL brain atlas for Alzheimer's disease detection Alexandre Savio, Manuel Graña Grupo de Inteligencia Computacional (GIC), Universidad del País Vasco (UPV/EHU), San

More information

Automatic segmentation of the cortical grey and white matter in MRI using a Region Growing approach based on anatomical knowledge

Automatic segmentation of the cortical grey and white matter in MRI using a Region Growing approach based on anatomical knowledge Automatic segmentation of the cortical grey and white matter in MRI using a Region Growing approach based on anatomical knowledge Christian Wasserthal 1, Karin Engel 1, Karsten Rink 1 und André Brechmann

More information

Fmri Spatial Processing

Fmri Spatial Processing Educational Course: Fmri Spatial Processing Ray Razlighi Jun. 8, 2014 Spatial Processing Spatial Re-alignment Geometric distortion correction Spatial Normalization Smoothing Why, When, How, Which Why is

More information