Manifold T-spline. Ying He 1 Kexiang Wang 2 Hongyu Wang 2 Xianfeng David Gu 2 Hong Qin 2. Geometric Modeling and Processing 2006

Size: px
Start display at page:

Download "Manifold T-spline. Ying He 1 Kexiang Wang 2 Hongyu Wang 2 Xianfeng David Gu 2 Hong Qin 2. Geometric Modeling and Processing 2006"

Transcription

1 Ying He 1 Kexiang Wang 2 Hongyu Wang 2 Xianfeng David Gu 2 Hong Qin 2 1 School of Computer Engineering Nanyang Technological University, Singapore 2 Center for Visual Computing (CVC) Stony Brook University, USA Geometric Modeling and Processing 2006

2 Geometry Erlangen Program - F. Klein 1872 Different geometries study the invariants under different transformation groups. Euclidean Geometry : Rigid motion on R 2. Distances between arbitrary two points are the invariants. Affine Geometry: Affine transformations. Parallelism and barry centric coordinates are the invariants. Real Projective Geometry: Real projective transformations. Collinearity and cross ratios are the invariants.

3 Geometry Erlangen Program - F. Klein 1872 Different geometries study the invariants under different transformation groups. Euclidean Geometry : Rigid motion on R 2. Distances between arbitrary two points are the invariants. Affine Geometry: Affine transformations. Parallelism and barry centric coordinates are the invariants. Real Projective Geometry: Real projective transformations. Collinearity and cross ratios are the invariants.

4 Algorithms vs. Geometries Central Problem Can different geometries be defined on general surfaces? Can different planar algorithms be generalized to surface domains directly? The answers are yes and yes. The major theoretic tool is the Geometric Structure.

5 Algorithms vs. Geometries Central Problem Can different geometries be defined on general surfaces? Can different planar algorithms be generalized to surface domains directly? The answers are yes and yes. The major theoretic tool is the Geometric Structure.

6 Main Ideas Geometry Structure A surface is covered by local coordinate charts. Geometric construction is invariant during the transition from one local coordinate to another.

7 Manifold U α U β g replacements φ α S φ β φ αβ φ α (U α ) φ β (U β )

8 Manifold Definition (Manifold) A manifold is a topological space Σ covered by a set of open sets {U α }. A homeomorphism φ α : U α R n maps U α to the Euclidean space R n. (U α, φ α ) is called a chart of Σ, the set of all charts {(U α, φ α )} form the atlas of Σ. Suppose U α U β, then φ αβ = φ β φ α : φ α (U α U β ) φ β (U α U β ) is a transition map. Transition maps satisfy cocycle condition, suppose U α U β U γ, then φ βγ φ αβ = φ αγ.

9 (X, G) structure Definition ((X,G) Atlas) Suppose X is a topological space, G is the transformation group of X. A manifold Σ with an atlas A = {(U α, φ α )} is an (X, G) atlas if 1 φ α (U α ) X, for all charts (U α, φ α ). 2 Transition maps φ αβ G.

10 (X,G) structure Definition (Equivalent (X, G) atlases) Two (X, G) atlases A 1 and A 2 of Σ are equivalent, if their union is still an (X, G) atlas of Σ. Definition ((X,G) structure) An (X, G) structure of a manifold Σ is an equivalent class of its (X, G) atlases.

11 (X,G) structure Definition (Equivalent (X, G) atlases) Two (X, G) atlases A 1 and A 2 of Σ are equivalent, if their union is still an (X, G) atlas of Σ. Definition ((X,G) structure) An (X, G) structure of a manifold Σ is an equivalent class of its (X, G) atlases.

12 Geometries M.C.Esher s art works: Angels and Devils Regular divisin Sphere with Angels Circle limit IV of the plane and Devils Heaven and Hell

13 Geometries defined on surfaces

14 Common (X,G) structure lacements g T(P) T(g(P)) lacements g T(P) T(g(P)) Spherical Structure X: Unit sphere S 2. G: Rotation group. Surfaces: Genus zero closed surfaces; any open surfaces. Harmonic maps.

15 Common (X,G) structure lacements g T(P) T(g(P)) lacements g T(P) T(g(P)) Spherical Structure X: Unit sphere S 2. G: Rotation group. Surfaces: Genus zero closed surfaces; any open surfaces. Harmonic maps.

16 Common (X,G) structure lacements g T(P) T(g(P)) lacements g T(P) T(g(P)) Affine Structure X: Real plane R 2. G: Affine transformation group. Surfaces: Genus one closed surface and open surfaces. Holomorphic 1-forms.

17 Common (X,G) structure lacements g T(P) T(g(P)) lacements g T(P) T(g(P)) Affine Structure X: Real plane R 2. G: Affine transformation group. Surfaces: Genus one closed surface and open surfaces. Holomorphic 1-forms.

18 Common (X,G) structure lacements g T(P) T(g(P)) lacements g T(P) T(g(P)) Hyperbolic Structure X: Hyperbolic plane H 2. G: Möbius transformation group. Surfaces: with negative Euler number. Hyperbolic Ricci flow

19 Common (X,G) structure lacements g T(P) T(g(P)) lacements g T(P) T(g(P)) Hyperbolic Structure X: Hyperbolic plane H 2. G: Möbius transformation group. Surfaces: with negative Euler number. Hyperbolic Ricci flow

20 Common (X,G) structure lacements g T(P) T(g(P)) lacements g T(P) T(g(P)) Real Projective Structure X: Real projective plane RP 2. G: Real projective transformation group. Surfaces: any surface. Hyperbolic Ricci flow.

21 Common (X,G) structure lacements g T(P) T(g(P)) lacements g T(P) T(g(P)) Real Projective Structure X: Real projective plane RP 2. G: Real projective transformation group. Surfaces: any surface. Hyperbolic Ricci flow.

22 Pseudo (X,G) structure lacements g T(P) T(g(P)) Conformal Structure X: Complex plane C. G: Biholomorphic maps. Surfaces: any surface. Holomorphic 1-forms lacements g T(P) T(g(P))

23 Pseudo (X,G) structure lacements g T(P) T(g(P)) Conformal Structure X: Complex plane C. G: Biholomorphic maps. Surfaces: any surface. Holomorphic 1-forms lacements g T(P) T(g(P))

24 Conformal Structure cementspsfrag replacementspsfrag replacements g g g T(P) T(g(P)) T(P) T(g(P)) T(P) T(g(P)) cementspsfrag replacementspsfrag replacements g g g T(P) T(g(P)) T(P) T(g(P)) T(P) T(g(P))

25 (X,G) Invariant Algorithms Definition ((X,G) invariant Algorithm) Suppose X is a topological space, G is the transformation group on X. A geometric operator Ω defined on X is (X, G) invariant, if and only if Examples: Ω g = g Ω, g G. Convex Hull: Projective invariant. Voronoi Diagram: Rigid motion invariant. Polar form : Affine invariant.

26 (X,G) structure Theorem Suppose a manifold with an (X, G) structure, then any (X, G) invariant algorithms can be generalized on the manifold. Corollary (Manifold Splines - Gu,He,Qin 2005) Spline schemes based on polar forms can be defined on a manifold, if and only if the manifold has an affine structure.

27 Planar Splines cements g T(P) T(g(P)) PSfrag replacements g T(P) T(g(P)) Parametric Affine Invariant The spline is invariants under the affine transformations of the knots and the parameters.

28 Manifold SPlines F ents C α, F α φ α (U α ) φ β (U β ) φ α U α U β M Z φ β C β, F β φ α,β = φ β φ 1 α Idea: Geometry Structure A mesh is covered by local coordinate charts. Geometric construction is invariant during the transition from one local coordinate to another. Global Parameterization Find atlas with special transition functions.

29 Manifold SPlines F ents C α, F α φ α (U α ) φ β (U β ) φ α U α U β M Z φ β C β, F β φ α,β = φ β φ 1 α Idea: Geometry Structure A mesh is covered by local coordinate charts. Geometric construction is invariant during the transition from one local coordinate to another. Global Parameterization Find atlas with special transition functions.

30 Topological Obstructions Theorem (Benzécri 1959) If a closed surface admits an affine structure, it has zero Euler class. Real projective structure Real projective structure is general, it exists for all surfaces. Real projective structure is simple, all transitions are linear rational functions. Real projective structure is suitable for designing manifold spline schemes.

31 Topological Obstructions Theorem (Benzécri 1959) If a closed surface admits an affine structure, it has zero Euler class. Real projective structure Real projective structure is general, it exists for all surfaces. Real projective structure is simple, all transitions are linear rational functions. Real projective structure is suitable for designing manifold spline schemes.

32 Conformal Structure Global Tensor Product Structure

33 Holomorphic 1-forms Definition (Holomorphic 1-form) Suppose Σ is a Riemann surface, {z α } is a local complex parameter, a holomorphic 1-form ω has a local representation as ω = f (z α )dz α, where f (z α ) is a holomorphic function. PSfrag replacements g Locally, ω is the derivative of a T(P) holomorphic function. Globally, T(g(P)) it is not.

34 Holomorphic 1-forms Original Surface

35 Holomorphic 1-forms One basis holomorphic 1- form

36 Holomorphic 1-forms Another one basis holomorphic 1-form

37 Holomorphic 1-forms Summation of ω 1 and ω 2

38 Holomorphic 1-forms Difference between ω 1 and ω 2

39 Holomorphic 1-forms Holomorphic 1-form induces a conformal parameterization.

40 Holomorphic 1-forms Holomorphic 1-form induces a conformal parameterization.

41 Holomorphic 1-forms Theorem (Holomorphic 1-forms) All holomorphic 1-forms form a linear space Ω(Σ) which is isomorphic to the first cohomology group H 1 (Σ, R).

42 Affine Structure Theorem Holomorphic 1-form induces affine structure By integrating a holomorphic 1-form, local coordinate charts can be established. The charts covers the surface without the singularises, the transition maps are translations.

43 Manifold Splines SPM2005

44 Manifold Powell-Sabin Spline

45 Manifold Powell-Sabin Spline

46 T-spline T-spline is the superset of tensor-product B-spline and industry-standard NURBS Allow T-junction in parametric domain and control net Natural hierarchical structure Much more flexible than NURBS!

47 Critical Graph

48 Critical Graph and Local Charts

49 Critical Graph

50 Given the domain manifold M with conformal structure φ : M R 2, the manifold T-spline can be formulated as follows: F(u) = n C i B i (φ(u)), u M, (1) i=1 where B i s are basis functions and C i = (x i, y i, z i, w i ) are control points in P 4 whose weights are w i, and whose Cartesian coordinates are 1 w i (x i, y i, z i ). The cartesian coordinates of points on the surface are given by n i=1 (x i, y i, z i )B i (φ(u)) n i=1 w. (2) ib i (φ(u)) Given a parameter u M, the evaluation can be carried out on arbitrary charts covering u.

51 Hierarchical Surface Reconstruction Minimize a linear combination of interpolation and fairness functionals, min E = E dist + λe fair, (3) where E dist = m F(u i ) p i 2 i=1 and E fair in (3) is a smoothing term.

52 Hierarchical Surface Reconstruction P, N v = 200K Conformal structure N 1 c = 105 L 1 = 9.6% N 2 c = 295 L 2 = 5.7%

53 Hierarchical Surface Reconstruction N 3 c = 950 L 3 = 3.8% N 4 c = 2130 L 4 = 2.4% N 5 c = 5087 L 5 = 1.3% N 6 c = 7706 L 6 = 0.74%

54 Hierarchical Surface Reconstruction Figure: Close-up view of the reconstructed details

55 Examples

56 Examples

57 Examples

58 Examples

59 Examples

60 Statistics Table: Statistics of test cases. N p, # of points in the polygonal mesh; N c, # of control points; rms, root-mean-square error; L, maximal error. The execution time measures in minutes. Object N p N c rms L Time David 200, 000 7, % 0.74% 39m Bunny 34, 000 1, % 0.81% 18m Iphegenia 150, 000 9, % 0.46% 53m Rocker Arm 50, 000 2, % 0.36% 26m Kitten 40, % 0.44% 12m

61 Future Directions Manifold Splines with single singularity. Manifold Splines which are polynomials everywhere with C k continuity. Planar splines based on projective invariants.

62 Thanks For more information, please to Thank you!

Manifold splines. Xianfeng Gu, Ying He *, Hong Qin

Manifold splines. Xianfeng Gu, Ying He *, Hong Qin Graphical Models 68 (2006) 237 254 www.elsevier.com/locate/gmod Manifold splines Xianfeng Gu, Ying He *, Hong Qin Center for Visual Computing (CVC), Department of Computer Science, Stony Brook University,

More information

Manifold Splines. Abstract. 1 Introduction and Motivation. Ying He. Hong Qin. Xianfeng Gu Stony Brook University

Manifold Splines. Abstract. 1 Introduction and Motivation. Ying He. Hong Qin. Xianfeng Gu Stony Brook University Xianfeng Gu Stony Brook University Manifold Splines Ying He Stony Brook University Hong Qin Stony Brook University Abstract Constructing splines whose parametric domain is an arbitrary manifold and effectively

More information

CONFORMAL SPHERICAL PARAMETRIZATION FOR HIGH GENUS SURFACES

CONFORMAL SPHERICAL PARAMETRIZATION FOR HIGH GENUS SURFACES COMMUNICATIONS IN INFORMATION AND SYSTEMS c 2007 International Press Vol. 7, No. 3, pp. 273-286, 2007 004 CONFORMAL SPHERICAL PARAMETRIZATION FOR HIGH GENUS SURFACES WEI ZENG, XIN LI, SHING-TUNG YAU, AND

More information

Polycube Splines. Abstract. 1 Introduction and Motivation. Hong Qin Stony Brook. Ying He NTU. Xianfeng Gu Stony Brook. Hongyu Wang Stony Brook

Polycube Splines. Abstract. 1 Introduction and Motivation. Hong Qin Stony Brook. Ying He NTU. Xianfeng Gu Stony Brook. Hongyu Wang Stony Brook Polycube Splines Hongyu Wang Stony Brook Ying He NTU Xin Li Stony Brook Xianfeng Gu Stony Brook Hong Qin Stony Brook (a) Conformal polycube map (b) Polycube T-spline (c) T-junctions on polycube spline(d)

More information

Conformal Spherical Parametrization for High Genus Surfaces

Conformal Spherical Parametrization for High Genus Surfaces Conformal Spherical Parametrization for High Genus Surfaces Wei Zeng Chinese Academy of Sciences Stony Brook University Xin Li Stony Brook University Shing-Tung Yau Harvard University Xianfeng Gu Stony

More information

Computational Conformal Geometry and Its Applications

Computational Conformal Geometry and Its Applications Computational Conformal Geometry and Its Applications Wei Zeng Institute of Computing Technology Chinese Academy of Sciences zengwei@cs.sunysb.edu Thesis Proposal Advisor: Harry Shum Co-advisor: Xianfeng

More information

Polycube splines. Hongyu Wang a, Ying He b,, Xin Li a, Xianfeng Gu a, Hong Qin a. 1. Introduction and motivation

Polycube splines. Hongyu Wang a, Ying He b,, Xin Li a, Xianfeng Gu a, Hong Qin a. 1. Introduction and motivation Computer-Aided Design 40 (2008) 721 733 www.elsevier.com/locate/cad Polycube splines Hongyu Wang a, Ying He b,, Xin Li a, Xianfeng Gu a, Hong Qin a a Computer Science Department, Stony Brook University,

More information

Geometric structures on 2-orbifolds

Geometric structures on 2-orbifolds Geometric structures on 2-orbifolds Section 1: Manifolds and differentiable structures S. Choi Department of Mathematical Science KAIST, Daejeon, South Korea 2010 Fall, Lectures at KAIST S. Choi (KAIST)

More information

Manifold Splines with Single Extraordinary Point

Manifold Splines with Single Extraordinary Point Manifold Splines with Single Extraordinary Point Xianfeng Gu Stony Brook Ying He NTU Miao Jin Stony Brook Feng Luo Rutgers Hong Qin Stony Brook Shing-Tung Yau Harvard Abstract This paper develops a novel

More information

Topic: Orientation, Surfaces, and Euler characteristic

Topic: Orientation, Surfaces, and Euler characteristic Topic: Orientation, Surfaces, and Euler characteristic The material in these notes is motivated by Chapter 2 of Cromwell. A source I used for smooth manifolds is do Carmo s Riemannian Geometry. Ideas of

More information

Polycube Splines. Hongyu Wang a, Ying He b,, Xin Li a, Xianfeng Gu a,hong Qin a, 1. Introduction and Motivation

Polycube Splines. Hongyu Wang a, Ying He b,, Xin Li a, Xianfeng Gu a,hong Qin a, 1. Introduction and Motivation Polycube Splines Hongyu Wang a, Ying He b,, Xin Li a, Xianfeng Gu a,hong Qin a, a Computer Science Department, Stony Brook University, NY, USA. b School of Computer Engineering, Nanyang Technological University,

More information

Meshless Modeling, Animating, and Simulating Point-Based Geometry

Meshless Modeling, Animating, and Simulating Point-Based Geometry Meshless Modeling, Animating, and Simulating Point-Based Geometry Xiaohu Guo SUNY @ Stony Brook Email: xguo@cs.sunysb.edu http://www.cs.sunysb.edu/~xguo Graphics Primitives - Points The emergence of points

More information

Möbius Transformations in Scientific Computing. David Eppstein

Möbius Transformations in Scientific Computing. David Eppstein Möbius Transformations in Scientific Computing David Eppstein Univ. of California, Irvine School of Information and Computer Science (including joint work with Marshall Bern from WADS 01 and SODA 03) Outline

More information

Manifold Splines with Single Extraordinary Point

Manifold Splines with Single Extraordinary Point Manifold Splines with Single Extraordinary Point Xianfeng Gu a,ying He b,,miaojin a,fengluo c, Hong Qin a, Shing-Tung Yau d a Computer Science Department, Stony Brook University, NY, USA. b School of Computer

More information

Geometric structures on manifolds

Geometric structures on manifolds CHAPTER 3 Geometric structures on manifolds In this chapter, we give our first examples of hyperbolic manifolds, combining ideas from the previous two chapters. 3.1. Geometric structures 3.1.1. Introductory

More information

COMPUTING SURFACE UNIFORMIZATION USING DISCRETE BELTRAMI FLOW

COMPUTING SURFACE UNIFORMIZATION USING DISCRETE BELTRAMI FLOW COMPUTING SURFACE UNIFORMIZATION USING DISCRETE BELTRAMI FLOW Abstract. In this paper, we propose a novel algorithm for computing surface uniformization for surfaces with arbitrary topology. According

More information

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo 05 - Surfaces Acknowledgements: Olga Sorkine-Hornung Reminder Curves Turning Number Theorem Continuous world Discrete world k: Curvature is scale dependent is scale-independent Discrete Curvature Integrated

More information

CS Object Representation. Aditi Majumder, CS 112 Slide 1

CS Object Representation. Aditi Majumder, CS 112 Slide 1 CS 112 - Object Representation Aditi Majumder, CS 112 Slide 1 What is Graphics? Modeling Computer representation of the 3D world Analysis For efficient rendering For catering the model to different applications..

More information

Parameterization of triangular meshes

Parameterization of triangular meshes Parameterization of triangular meshes Michael S. Floater November 10, 2009 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to

More information

Introduction to geometry

Introduction to geometry 1 2 Manifolds A topological space in which every point has a neighborhood homeomorphic to (topological disc) is called an n-dimensional (or n-) manifold Introduction to geometry The German way 2-manifold

More information

Topological Data Analysis - I. Afra Zomorodian Department of Computer Science Dartmouth College

Topological Data Analysis - I. Afra Zomorodian Department of Computer Science Dartmouth College Topological Data Analysis - I Afra Zomorodian Department of Computer Science Dartmouth College September 3, 2007 1 Acquisition Vision: Images (2D) GIS: Terrains (3D) Graphics: Surfaces (3D) Medicine: MRI

More information

Human Brain Mapping with Conformal Geometry and Multivariate Tensor-based Morphometry

Human Brain Mapping with Conformal Geometry and Multivariate Tensor-based Morphometry Human Brain Mapping with Conformal Geometry and Multivariate Tensor-based Morphometry Jie Shi 1, Paul M. Thompson 2, Yalin Wang 1 1 School of Computing, Informatics and Decision Systems Engineering, ASU,

More information

Geometric structures on manifolds

Geometric structures on manifolds CHAPTER 3 Geometric structures on manifolds In this chapter, we give our first examples of hyperbolic manifolds, combining ideas from the previous two chapters. 3.1. Geometric structures 3.1.1. Introductory

More information

DISCRETE DIFFERENTIAL GEOMETRY

DISCRETE DIFFERENTIAL GEOMETRY AMS SHORT COURSE DISCRETE DIFFERENTIAL GEOMETRY Joint Mathematics Meeting San Diego, CA January 2018 DISCRETE CONFORMAL GEOMETRY AMS SHORT COURSE DISCRETE DIFFERENTIAL GEOMETRY Joint Mathematics Meeting

More information

3D Modeling Parametric Curves & Surfaces

3D Modeling Parametric Curves & Surfaces 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2012 3D Object Representations Raw data Point cloud Range image Polygon soup Solids Voxels BSP tree CSG Sweep Surfaces Mesh Subdivision

More information

274 Curves on Surfaces, Lecture 5

274 Curves on Surfaces, Lecture 5 274 Curves on Surfaces, Lecture 5 Dylan Thurston Notes by Qiaochu Yuan Fall 2012 5 Ideal polygons Previously we discussed three models of the hyperbolic plane: the Poincaré disk, the upper half-plane,

More information

Surfaces Beyond Classification

Surfaces Beyond Classification Chapter XII Surfaces Beyond Classification In most of the textbooks which present topological classification of compact surfaces the classification is the top result. However the topology of 2- manifolds

More information

Geometric Modeling Mortenson Chapter 11. Complex Model Construction

Geometric Modeling Mortenson Chapter 11. Complex Model Construction Geometric Modeling 91.580.201 Mortenson Chapter 11 Complex Model Construction Topics Topology of Models Connectivity and other intrinsic properties Graph-Based Models Emphasize topological structure Boolean

More information

Discrete Surface Ricci Flow

Discrete Surface Ricci Flow TO APPEAR IN IEEE TVCG 1 Discrete Surface Ricci Flow Miao Jin 1, Junho Kim 1,3,FengLuo 2, and Xianfeng Gu 1 1 Stony Brook University 2 Rutgers University 3 Dong-Eui University Abstract This work introduces

More information

COMPUTING CONFORMAL INVARIANTS: PERIOD MATRICES

COMPUTING CONFORMAL INVARIANTS: PERIOD MATRICES COMMUNICATIONS IN INFORMATION AND SYSTEMS c 2004 International Press Vol. 3, No. 3, pp. 153-170, March 2004 001 COMPUTING CONFORMAL INVARIANTS: PERIOD MATRICES XIANFENG GU, YALIN WANG, AND SHING-TUNG YAU

More information

Computing Geodesic Spectra of Surfaces

Computing Geodesic Spectra of Surfaces Computing Geodesic Spectra of Surfaces Miao Jin Stony Brook University Feng Luo Rutgers University Shing-Tung Yau Harvard University Xianfeng Gu Stony Brook University Abstract Surface classification is

More information

Greedy Routing with Guaranteed Delivery Using Ricci Flow

Greedy Routing with Guaranteed Delivery Using Ricci Flow Greedy Routing with Guaranteed Delivery Using Ricci Flow Jie Gao Stony Brook University Joint work with Rik Sarkar, Xiaotian Yin, Wei Zeng, Feng Luo, Xianfeng David Gu Greedy Routing Assign coordinatesto

More information

Flat Surfaces, Teichmueller Discs, Veech Groups, and the Veech Tessellation

Flat Surfaces, Teichmueller Discs, Veech Groups, and the Veech Tessellation Flat Surfaces, Teichmueller Discs, Veech Groups, and the Veech Tessellation S. Allen Broughton - Rose-Hulman Institute of Technology Chris Judge - Indiana University AMS Regional Meeting at Pennsylvania

More information

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013

3D Modeling Parametric Curves & Surfaces. Shandong University Spring 2013 3D Modeling Parametric Curves & Surfaces Shandong University Spring 2013 3D Object Representations Raw data Point cloud Range image Polygon soup Surfaces Mesh Subdivision Parametric Implicit Solids Voxels

More information

Three Points Make a Triangle Or a Circle

Three Points Make a Triangle Or a Circle Three Points Make a Triangle Or a Circle Peter Schröder joint work with Liliya Kharevych, Boris Springborn, Alexander Bobenko 1 In This Section Circles as basic primitive it s all about the underlying

More information

Constrained Willmore Tori in the 4 Sphere

Constrained Willmore Tori in the 4 Sphere (Technische Universität Berlin) 16 August 2006 London Mathematical Society Durham Symposium Methods of Integrable Systems in Geometry Constrained Willmore Surfaces The Main Result Strategy of Proof Constrained

More information

Lectures in Discrete Differential Geometry 3 Discrete Surfaces

Lectures in Discrete Differential Geometry 3 Discrete Surfaces Lectures in Discrete Differential Geometry 3 Discrete Surfaces Etienne Vouga March 19, 2014 1 Triangle Meshes We will now study discrete surfaces and build up a parallel theory of curvature that mimics

More information

Generalized PolyCube Trivariate Splines

Generalized PolyCube Trivariate Splines Generalized PolyCube Trivariate Splines Bo Li Department of Computer Science Stony Brook University (SUNY) Stony Brook, New York, 11790 bli@cs.sunysb.edu Xin Li Department of Electrical & Computer Engineering

More information

Surfaces for CAGD. FSP Tutorial. FSP-Seminar, Graz, November

Surfaces for CAGD. FSP Tutorial. FSP-Seminar, Graz, November Surfaces for CAGD FSP Tutorial FSP-Seminar, Graz, November 2005 1 Tensor Product Surfaces Given: two curve schemes (Bézier curves or B splines): I: x(u) = m i=0 F i(u)b i, u [a, b], II: x(v) = n j=0 G

More information

Digital Geometry Processing Parameterization I

Digital Geometry Processing Parameterization I Problem Definition Given a surface (mesh) S in R 3 and a domain find a bective F: S Typical Domains Cutting to a Disk disk = genus zero + boundary sphere = closed genus zero Creates artificial boundary

More information

Freeform Curves on Spheres of Arbitrary Dimension

Freeform Curves on Spheres of Arbitrary Dimension Freeform Curves on Spheres of Arbitrary Dimension Scott Schaefer and Ron Goldman Rice University 6100 Main St. Houston, TX 77005 sschaefe@rice.edu and rng@rice.edu Abstract Recursive evaluation procedures

More information

Discrete Ricci Flow and Its Applications

Discrete Ricci Flow and Its Applications Discrete Ricci Flow and Its Applications State University of New York 1 Motivation Ricci flow is a powerful tool for designing Riemannian metrics, which lays down the theoretic foundation for many crucial

More information

Globally Optimal Surface Mapping for Surfaces with Arbitrary Topology

Globally Optimal Surface Mapping for Surfaces with Arbitrary Topology 1 Globally Optimal Surface Mapping for Surfaces with Arbitrary Topology Xin Li, Yunfan Bao, Xiaohu Guo, Miao Jin, Xianfeng Gu, and Hong Qin Abstract Computing smooth and optimal one-to-one maps between

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

E. Vinberg, V. Kac, Quasi-homogeneous cones. (Russian) Mat. Zametki 1 (1967)

E. Vinberg, V. Kac, Quasi-homogeneous cones. (Russian) Mat. Zametki 1 (1967) Abstract Joint work with Gyeseon Lee Abstract: Real projective structures are given as projectively flat structures on manifolds or orbifolds. Hyperbolic structures form examples. Deforming hyperbolic

More information

Dynamic Points: When Geometry Meets Physics. Xiaohu Guo Stony Brook

Dynamic Points: When Geometry Meets Physics. Xiaohu Guo Stony Brook Dynamic Points: When Geometry Meets Physics Xiaohu Guo SUNY @ Stony Brook Email: xguo@cs.sunysb.edu http://www.cs.sunysb.edu/~xguo Point Based Graphics Pipeline Acquisition Modeling Rendering laser scanning

More information

2D Spline Curves. CS 4620 Lecture 18

2D Spline Curves. CS 4620 Lecture 18 2D Spline Curves CS 4620 Lecture 18 2014 Steve Marschner 1 Motivation: smoothness In many applications we need smooth shapes that is, without discontinuities So far we can make things with corners (lines,

More information

From isothermic triangulated surfaces to discrete holomorphicity

From isothermic triangulated surfaces to discrete holomorphicity From isothermic triangulated surfaces to discrete holomorphicity Wai Yeung Lam TU Berlin Oberwolfach, 2 March 2015 Joint work with Ulrich Pinkall Wai Yeung Lam (TU Berlin) isothermic triangulated surfaces

More information

Automated Surface Matching using Mutual Information Applied to Riemann Surface Structures

Automated Surface Matching using Mutual Information Applied to Riemann Surface Structures Automated Surface Matching using Mutual Information Applied to Riemann Surface Structures Yalin Wang 1, Ming-Chang Chiang 2, and Paul M. Thompson 2 1 Mathematics Department, UCLA, Los Angeles, CA 90095,

More information

Geometric Methods in Engineering Applications

Geometric Methods in Engineering Applications 1 Geometric Methods in Engineering Applications Xianfeng Gu Yalin Wang Hsiao-Bing Cheng Li-Tien Cheng and Shing-Tung Yau Computer Science Mathematics Mathematics Mathematics Mathematics Stony Brook University

More information

Introduction to Computational Manifolds and Applications

Introduction to Computational Manifolds and Applications IMPA - Instituto de Matemática Pura e Aplicada, Rio de Janeiro, RJ, Brazil Introduction to Computational Manifolds and Applications Part 1 - Foundations Prof. Jean Gallier jean@cis.upenn.edu Department

More information

Globally Optimal Surface Mapping for Surfaces with Arbitrary Topology

Globally Optimal Surface Mapping for Surfaces with Arbitrary Topology IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1 Globally Optimal Surface Mapping for Surfaces with Arbitrary Topology Xin Li, Yunfan Bao, Xiaohu Guo, Miao Jin, Xianfeng Gu, and Hong Qin Abstract

More information

Rational Bezier Curves

Rational Bezier Curves Rational Bezier Curves Use of homogeneous coordinates Rational spline curve: define a curve in one higher dimension space, project it down on the homogenizing variable Mathematical formulation: n P(u)

More information

CS354 Computer Graphics Rotations and Quaternions

CS354 Computer Graphics Rotations and Quaternions Slide Credit: Don Fussell CS354 Computer Graphics Rotations and Quaternions Qixing Huang April 4th 2018 Orientation Position and Orientation The position of an object can be represented as a translation

More information

Symmetric Conformal Mapping for Surface Matching and Registration

Symmetric Conformal Mapping for Surface Matching and Registration International Journal of CAD/CAM Vol. 9, No. 1, pp. 103~109 (2009) Symmetric Conformal Mapping for Surface Matching and Registration Wei Zeng 1, 2, Jing Hua 1, and Xianfeng David Gu 2 1Computer Science

More information

Greedy Routing in Wireless Networks. Jie Gao Stony Brook University

Greedy Routing in Wireless Networks. Jie Gao Stony Brook University Greedy Routing in Wireless Networks Jie Gao Stony Brook University A generic sensor node CPU. On-board flash memory or external memory Sensors: thermometer, camera, motion, light sensor, etc. Wireless

More information

Parameterization. Michael S. Floater. November 10, 2011

Parameterization. Michael S. Floater. November 10, 2011 Parameterization Michael S. Floater November 10, 2011 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to generate from point

More information

Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass

Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass University of California, Davis, USA http://www.cs.ucdavis.edu/~koehl/ims2017/ What is a shape? A shape is a 2-manifold with a Riemannian

More information

Curves and Surfaces for Computer-Aided Geometric Design

Curves and Surfaces for Computer-Aided Geometric Design Curves and Surfaces for Computer-Aided Geometric Design A Practical Guide Fourth Edition Gerald Farin Department of Computer Science Arizona State University Tempe, Arizona /ACADEMIC PRESS I San Diego

More information

THE UNIFORMIZATION THEOREM AND UNIVERSAL COVERS

THE UNIFORMIZATION THEOREM AND UNIVERSAL COVERS THE UNIFORMIZATION THEOREM AND UNIVERSAL COVERS PETAR YANAKIEV Abstract. This paper will deal with the consequences of the Uniformization Theorem, which is a major result in complex analysis and differential

More information

Multiresolution Computation of Conformal Structures of Surfaces

Multiresolution Computation of Conformal Structures of Surfaces Multiresolution Computation of Conformal Structures of Surfaces Xianfeng Gu Yalin Wang Shing-Tung Yau Division of Engineering and Applied Science, Harvard University, Cambridge, MA 0138 Mathematics Department,

More information

Introduction p. 1 What Is Geometric Modeling? p. 1 Computer-aided geometric design Solid modeling Algebraic geometry Computational geometry

Introduction p. 1 What Is Geometric Modeling? p. 1 Computer-aided geometric design Solid modeling Algebraic geometry Computational geometry Introduction p. 1 What Is Geometric Modeling? p. 1 Computer-aided geometric design Solid modeling Algebraic geometry Computational geometry Representation Ab initio design Rendering Solid modelers Kinematic

More information

Brain Surface Conformal Spherical Mapping

Brain Surface Conformal Spherical Mapping Brain Surface Conformal Spherical Mapping Min Zhang Department of Industrial Engineering, Arizona State University mzhang33@asu.edu Abstract It is well known and proved that any genus zero surface can

More information

HOMEOMORPHISMS OF 3-MANIFOLDS AND THE REALIZATION OF NIELSEN NUMBER

HOMEOMORPHISMS OF 3-MANIFOLDS AND THE REALIZATION OF NIELSEN NUMBER COMMUNICATIONS IN ANALYSIS AND GEOMETRY Volume 9, Number 4, 825-877, 2001 HOMEOMORPHISMS OF 3-MANIFOLDS AND THE REALIZATION OF NIELSEN NUMBER Boju Jiang 1, Shicheng Wang 1,2, and Ying-Qing Wu 2 Abstract.

More information

Two Connections between Combinatorial and Differential Geometry

Two Connections between Combinatorial and Differential Geometry Two Connections between Combinatorial and Differential Geometry John M. Sullivan Institut für Mathematik, Technische Universität Berlin Berlin Mathematical School DFG Research Group Polyhedral Surfaces

More information

2D Spline Curves. CS 4620 Lecture 13

2D Spline Curves. CS 4620 Lecture 13 2D Spline Curves CS 4620 Lecture 13 2008 Steve Marschner 1 Motivation: smoothness In many applications we need smooth shapes [Boeing] that is, without discontinuities So far we can make things with corners

More information

Conformal Surface Parameterization Using Euclidean Ricci Flow

Conformal Surface Parameterization Using Euclidean Ricci Flow Conformal Surface Parameterization Using Euclidean Ricci Flow Miao Jin, Juhno Kim, Feng Luo, Seungyong Lee, Xianfeng Gu Rutgers University Pohang University of Science and Technology State University of

More information

Shape-based Diffeomorphic Registration on Hippocampal Surfaces Using Beltrami Holomorphic Flow

Shape-based Diffeomorphic Registration on Hippocampal Surfaces Using Beltrami Holomorphic Flow Shape-based Diffeomorphic Registration on Hippocampal Surfaces Using Beltrami Holomorphic Flow Abstract. Finding meaningful 1-1 correspondences between hippocampal (HP) surfaces is an important but difficult

More information

Curves-on-Surface: A General Shape Comparison Framework

Curves-on-Surface: A General Shape Comparison Framework Curves-on-Surface: A General Shape Comparison Framework Xin Li Ying He Xianfeng Gu Hong Qin Stony Brook University, Stony Brook, NY 11794, USA {xinli, yhe, gu, qin}@cs.sunysb.edu Abstract We develop a

More information

Embedded graphs. Sasha Patotski. Cornell University November 24, 2014

Embedded graphs. Sasha Patotski. Cornell University November 24, 2014 Embedded graphs Sasha Patotski Cornell University ap744@cornell.edu November 24, 2014 Sasha Patotski (Cornell University) Embedded graphs November 24, 2014 1 / 11 Exercise Embed K 6 and K 7 into a torus.

More information

Dynamics on some Z 2 -covers of half-translation surfaces

Dynamics on some Z 2 -covers of half-translation surfaces Dynamics on some Z 2 -covers of half-translation surfaces Chris Johnson Clemson University April 27, 2011 Outline Background The windtree model HLT s recurrence result The folded plane Panov s density

More information

Implicit Matrix Representations of Rational Bézier Curves and Surfaces

Implicit Matrix Representations of Rational Bézier Curves and Surfaces Implicit Matrix Representations of Rational Bézier Curves and Surfaces Laurent Busé INRIA Sophia Antipolis, France Laurent.Buse@inria.fr GD/SPM Conference, Denver, USA November 11, 2013 Overall motivation

More information

Cannon s conjecture, subdivision rules, and expansion complexes

Cannon s conjecture, subdivision rules, and expansion complexes Cannon s conjecture, subdivision rules, and expansion complexes W. Floyd (joint work with J. Cannon and W. Parry) Department of Mathematics Virginia Tech UNC Greensboro: November, 2014 Motivation from

More information

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a

The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a The goal is the definition of points with numbers and primitives with equations or functions. The definition of points with numbers requires a coordinate system and then the measuring of the point with

More information

Pythagorean - Hodograph Curves: Algebra and Geometry Inseparable

Pythagorean - Hodograph Curves: Algebra and Geometry Inseparable Rida T. Farouki Pythagorean - Hodograph Curves: Algebra and Geometry Inseparable With 204 Figures and 15 Tables 4y Springer Contents 1 Introduction 1 1.1 The Lure of Analytic Geometry 1 1.2 Symbiosis of

More information

Lecture notes for Topology MMA100

Lecture notes for Topology MMA100 Lecture notes for Topology MMA100 J A S, S-11 1 Simplicial Complexes 1.1 Affine independence A collection of points v 0, v 1,..., v n in some Euclidean space R N are affinely independent if the (affine

More information

Bezier Curves, B-Splines, NURBS

Bezier Curves, B-Splines, NURBS Bezier Curves, B-Splines, NURBS Example Application: Font Design and Display Curved objects are everywhere There is always need for: mathematical fidelity high precision artistic freedom and flexibility

More information

Don t just read it; fight it! Ask your own questions, look for your own examples, discover your own proofs. Is the hypothesis necessary?

Don t just read it; fight it! Ask your own questions, look for your own examples, discover your own proofs. Is the hypothesis necessary? Don t just read it; fight it! Ask your own questions, look for your own examples, discover your own proofs. Is the hypothesis necessary? Is the converse true? What happens in the classical special case?

More information

Brain Surface Conformal Parameterization with Algebraic Functions

Brain Surface Conformal Parameterization with Algebraic Functions Brain Surface Conformal Parameterization with Algebraic Functions Yalin Wang 1,2, Xianfeng Gu 3, Tony F. Chan 1, Paul M. Thompson 2, and Shing-Tung Yau 4 1 Mathematics Department, UCLA, Los Angeles, CA

More information

Parameterization of Star-Shaped Volumes Using Green s Functions

Parameterization of Star-Shaped Volumes Using Green s Functions Parameterization of Star-Shaped Volumes Using Green s Functions Jiazhi Xia a, Ying He a, Shuchu Han a, Chi-Wing Fu a, Feng Luo b, and Xianfeng Gu c a School of Computer Engineering, Nanyang Technological

More information

A Construction of Rational Manifold Surfaces of Arbitrary Topology and Smoothness from Triangular Meshes

A Construction of Rational Manifold Surfaces of Arbitrary Topology and Smoothness from Triangular Meshes Manuscript A Construction of Rational Manifold Surfaces of Arbitrary Topology and Smoothness from Triangular Meshes Giovanni Della Vecchia, Bert Jüttler a and Myung-Soo Kim b a Johannes Kepler University

More information

Mathematical Research Letters 1, (1994) MÖBIUS CONE STRUCTURES ON 3-DIMENSIONAL MANIFOLDS. Feng Luo

Mathematical Research Letters 1, (1994) MÖBIUS CONE STRUCTURES ON 3-DIMENSIONAL MANIFOLDS. Feng Luo Mathematical Research Letters 1, 257 261 (1994) MÖBIUS CONE STRUCTURES ON 3-DIMENSIONAL MANIFOLDS Feng Luo Abstract. We show that for any given angle α (0, 2π), any closed 3- manifold has a Möbius cone

More information

Fathi El-Yafi Project and Software Development Manager Engineering Simulation

Fathi El-Yafi Project and Software Development Manager Engineering Simulation An Introduction to Geometry Design Algorithms Fathi El-Yafi Project and Software Development Manager Engineering Simulation 1 Geometry: Overview Geometry Basics Definitions Data Semantic Topology Mathematics

More information

Barycentric Coordinates and Parameterization

Barycentric Coordinates and Parameterization Barycentric Coordinates and Parameterization Center of Mass Geometric center of object Center of Mass Geometric center of object Object can be balanced on CoM How to calculate? Finding the Center of Mass

More information

Introduction to Riemann surfaces, moduli spaces and its applications

Introduction to Riemann surfaces, moduli spaces and its applications Introduction to Riemann surfaces, moduli spaces and its applications Oscar Brauer M2, Mathematical Physics Outline 1. Introduction to Moduli Spaces 1.1 Moduli of Lines 1.2 Line Bundles 2. Moduli space

More information

Surface Parameterization

Surface Parameterization Surface Parameterization A Tutorial and Survey Michael Floater and Kai Hormann Presented by Afra Zomorodian CS 468 10/19/5 1 Problem 1-1 mapping from domain to surface Original application: Texture mapping

More information

The Convex Hull of a Space Curve. Bernd Sturmfels, UC Berkeley (two papers with Kristian Ranestad)

The Convex Hull of a Space Curve. Bernd Sturmfels, UC Berkeley (two papers with Kristian Ranestad) The Convex Hull of a Space Curve Bernd Sturmfels, UC Berkeley (two papers with Kristian Ranestad) Convex Hull of a Trigonometric Curve { (cos(θ), sin(2θ), cos(3θ) ) R 3 : θ [0, 2π] } = { (x, y, z) R 3

More information

Optimal Möbius Transformation for Information Visualization and Meshing

Optimal Möbius Transformation for Information Visualization and Meshing Optimal Möbius Transformation for Information Visualization and Meshing Marshall Bern Xerox Palo Alto Research Ctr. David Eppstein Univ. of California, Irvine Dept. of Information and Computer Science

More information

Tripod Configurations

Tripod Configurations Tripod Configurations Eric Chen, Nick Lourie, Nakul Luthra Summer@ICERM 2013 August 8, 2013 Eric Chen, Nick Lourie, Nakul Luthra (S@I) Tripod Configurations August 8, 2013 1 / 33 Overview 1 Introduction

More information

Geometric Queries for Ray Tracing

Geometric Queries for Ray Tracing CSCI 420 Computer Graphics Lecture 16 Geometric Queries for Ray Tracing Ray-Surface Intersection Barycentric Coordinates [Angel Ch. 11] Jernej Barbic University of Southern California 1 Ray-Surface Intersections

More information

Translation surfaces: saddle connections, triangles and covering constructions

Translation surfaces: saddle connections, triangles and covering constructions Translation surfaces: saddle connections, triangles and covering constructions Chenxi Wu Cornell University July 29, 2016 Translation surfaces A (compact) translation surface is: a compact surface with

More information

GEOMETRIC TOOLS FOR COMPUTER GRAPHICS

GEOMETRIC TOOLS FOR COMPUTER GRAPHICS GEOMETRIC TOOLS FOR COMPUTER GRAPHICS PHILIP J. SCHNEIDER DAVID H. EBERLY MORGAN KAUFMANN PUBLISHERS A N I M P R I N T O F E L S E V I E R S C I E N C E A M S T E R D A M B O S T O N L O N D O N N E W

More information

Curve and Surface Basics

Curve and Surface Basics Curve and Surface Basics Implicit and parametric forms Power basis form Bezier curves Rational Bezier Curves Tensor Product Surfaces ME525x NURBS Curve and Surface Modeling Page 1 Implicit and Parametric

More information

Algebra II: Review Exercises

Algebra II: Review Exercises : Review Exercises These notes reflect material from our text, A First Course in Abstract Algebra, Seventh Edition, by John B. Fraleigh, published by Addison-Wesley, 2003. Chapter 7. Advanced Group Theory

More information

Lecture IV Bézier Curves

Lecture IV Bézier Curves Lecture IV Bézier Curves Why Curves? Why Curves? Why Curves? Why Curves? Why Curves? Linear (flat) Curved Easier More pieces Looks ugly Complicated Fewer pieces Looks smooth What is a curve? Intuitively:

More information

GEOMETRIC LIBRARY. Maharavo Randrianarivony

GEOMETRIC LIBRARY. Maharavo Randrianarivony GEOMETRIC LIBRARY Maharavo Randrianarivony During the last four years, I have maintained a numerical geometric library. The constituting routines, which are summarized in the following list, are implemented

More information

Spline Thin-Shell Simulation of Manifold Surfaces

Spline Thin-Shell Simulation of Manifold Surfaces Spline Thin-Shell Simulation of Manifold Surfaces Kexiang Wang, Ying He, Xiaohu Guo, and Hong Qin Department of Computer Science Stony Brook University Stony Brook, NY 11790-4400, USA {kwang, yhe, xguo,

More information

Lecture 0: Reivew of some basic material

Lecture 0: Reivew of some basic material Lecture 0: Reivew of some basic material September 12, 2018 1 Background material on the homotopy category We begin with the topological category TOP, whose objects are topological spaces and whose morphisms

More information

CS-184: Computer Graphics. Today

CS-184: Computer Graphics. Today CS-84: Computer Graphics Lecture #5: Curves and Surfaces Prof. James O Brien University of California, Berkeley V25F-5-. Today General curve and surface representations Splines and other polynomial bases

More information

Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia

Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia 2008 1 Non-Convex Non Convex Boundary Convex boundary creates significant distortion Free boundary is better 2 Fixed

More information