Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia

Size: px
Start display at page:

Download "Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia"

Transcription

1 Parameterization II Some slides from the Mesh Parameterization Course from Siggraph Asia

2 Non-Convex Non Convex Boundary Convex boundary creates significant distortion Free boundary is better 2

3 Fixed vs Free Boundary 3

4 Fixed vs Free Boundary 4

5 5

6 6

7 Cut graph 7

8 8

9 Free Boundary Methods - Tactics Solve for the (u,v) coordinates using the discrete first fundamental form MIPS [Hormann et al., 2000] Stretch optimization [Sander et al., 2001] LSCM (conformal, linear) [Levy et al., 2002] DCP (conformal, linear) [Desbrun et al., 2002] Solve for the angles of the map (conformal) ABF [Sheffer et al., 2001], ABF++ [Sheffer et al., 2004] LinABF (linear) [Zayer et al., 2007] 9

10 Free Boundary Methods - Tactics Solve for the edge lengths of the map by yprescribing curvature Circle patterns [Kharevych et al., 2006] CPMS (linear) [Ben-Chen et al., 2008] CETM [Springborn et al., 2008] Balance area/conformality ARAP [Liu et al., 2008] More 10

11 Back to the First Fundamental Form 11

12 Linear Map Surgery Singular Value Decomposition (SVD) of with rotations and and scale factors (singular values) 12

13 Notion of Distortion isometric or length-preserving conformal or angle-preserving equiareal or area-preservingp g everything defined pointwise on 13

14 Computing the Stretch Factors first fundamental form eigenvalues of singular values of and 14

15 Measuring Distortion local distortion measure has minimum at isometric measure conformal measure overall distortion 15

16 Piecewise Linear Parameterizations piecewise linear atomic maps distortion constant per triangle overall distortion 16

17 Distortion Based Methods Define energy functional F as a function of J p, I p, σ 1,σ 2 Expand their expression in F in function of the unknown u i, v i Design an algorithm to find the u i,v i 'ss that minimizes F 17

18 Linear Methods the terms and are quadratic in the parameter points Dirichlet energy Conformal energy minimization yields linear problem [Pinkall & Polthier 1993] [Eck et al. 1995] [Lévy et al. 2002] [Desbrun et al. 2002] 18

19 Linear Methods both result in barycentric mappings with discrete harmonic weights for interior vertices Dirichlet maps require to fix all boundary vertices Conformal maps only two result depends on this choice best choice [Mullen et al. 2008] both maps not necessarily bijective 19

20 Non-linear Methods MIPS energy [Hormann &Greiner2000] Area-preserving MIPS [Degener et al. 2003] 20

21 Non-linear Methods Green-Lagrange deformation tensor [Maillot et al. 1993] Stretch energies (,, and symmetric stretch) [Sander et al. 2001] [Sorkine et al. 2002] 21

22 Conformal Parameterization - LSCM v u Cauchy Riemann equations: No Piecewise Linear solution in general v u = x y v u = y x 22

23 Conformal Parameterization LSCM [Levy et al., 2002] 2 Minimize Fix two vertices to determine rot transl scaling T v u x y v u determine rot,transl,scaling T u y x 23

24 Conformal Parameterization - LSCM Equivalent formulation, uses only edge lengths ratios and angles For each triangle: p 1 p 2 p p = R α p p l 1 ( ) ( ) l l 2 α l 1 p 3 24

25 Conformal Parameterization DCP x 0 α [Desbrun et al., 2002] β x 2 For one triangle: x 1 γ cot 90 γ ( x x ) + cot β( x x ) = R ( x x ) i γ i β i 0 For complete one-ring of triangles (interior vertex): n (cot γ + cot β ) x x = 0 i= 1 i i i ( ) 0 For incomplete one-ring of triangles (boundary vertex): n 90 i 1 γi + βi ( xi x0 ) = R xi x 1 i2 0 i= 1 (cot cot ) ( ) i 2 25

26 Isotropic Parameterizations Conformal = Harmonic 26

27 Angle Based Flattening (ABF) Fact: Triangular 2D mesh is defined by its angles (up to similarity) Define problem in angle space Angle based formulation: Distortion i as function of angles Validity - set of angle constraints 27

28 Constrained Minimization Notation: β i are (given) 3D angles. α i are (unknown) 2D angles. Objective: minimize (relative) deviation of angles: 3T i = 1 D ( α ) = ( α β ) i i i 2 28

29 Constraints All angles are positive (linear inequalities). Sum of angles in each triangle is π (linear equalities). Sum of angles around each vertex is 2π (linear equalities). All one-rings close properly (non-linear equalities). 29

30 Solving Use non-linear solver (Lagrange multipliers, Newton method) to solve for α i Use LSCM to embed in plane based on α i 30

31 Examples LSCM ABF 31

32 Examples LSCM ABF 32

33 Linear Methods uniform harmonic mean value conformal 33

34 Linear Methods mean value conformal 34

35 Non-Linear Non Linear Methods ABF++ circle p patterns MIPS stretch 35

36 Non-Linear Non Linear Methods ABF++ circle patterns MIPS stretch 36

37 Curvature Prescription LSCM [2002] ABF++ [2005] LinABF [2007] 1. Cut mesh to disk 2. Compute new angles/lengths 3. Embed in plane Discontinuities in scale (and many more ) Circle Patterns [2006] Ricci Flow [2007] CPMS, CETM [2008]

38 Curvature Prescription LSCM [2002] ABF++ [2005] LinABF [2007] (and many more ) Circle Patterns [2006] Ricci Flow [2007] 1. Compute new angles/lengths 2. Cut Mesh to disk 3. Embed in plane No discontinuities in scale CPMS, CETM [2008]

39 Gaussian Curvature Continuous definition Scale dependent κ 1/r 2 Gauss-Bonnet theorem: κ = 2πχ v α i Discrete definition: κ(v) = 2π Σα i Scale independent! Gauss-Bonnet theorem: κ = 2πχ κ=π/2

40 Discrete Metric Triangle edge lengths (a,b,c) are the discrete metric The metric defines the angles by the cosine law v α i The angles define the Gaussian curvature

41 CPMS [2008] Original edge lengths (metric) Conformal factor (per vertex) Extend φ to edge φ () t = φ t +φ (1 t ) 2 3 Integrate e φ on edge Scale to get new edge lengths l = l e φ 1 1 ( t )

42 What Happens to the Curvature? Continuous conformal map 2 φ 2 e κ = κ φ Curvature after map Curvature before map Conformal factor

43 What Happens to the Curvature? Continuous conformal map 2φ 2 e κ = κ φ Discrete conformal map (for small changes) κ κ 2 φ Where did the exponent go? Discrete curvature doesn t scale!

44 The Flattening Algorithm for a Topological Disk Set target curvature to 0 on interior vertices Set φ to 0 on the boundary Find φ on interior vertices by solving 2 φ = κ κ Scale edge lengths to get conformal metric Embed new edge lengths using LSCM

45 Some Results

46 Comparison with Non-Linear Methods ABF++ circle patterns MIPS stretch CPMS 46

47 Reducing Area Distortion Gather Gaussian curvature into cone points Target curvature not 0 everywhere First compute new edge lengths, then cut through cone points No discontinuities in scale 47

48

49 Conformal Equivalence of Triangle Meshes [2008] 52

50 Conformal Equivalence of Triangle Meshes [2008] Given input mesh and target curvatures, find u st s.t. New mesh is conformally equivalent to source mesh Target curvatures are achieved Minimize i i convex energy global l minimum i First optimization step equivalent to CPMS 53

51 Conformal Equivalence of Triangle Meshes [2008] 54

52 Parameterization - Conclusions Many MANY methods out there e Fixed / free boundary Bijective / non bijective Conformal / area preserving Linear / non linear First cut then embed / cone points Best method depends on mesh Close to disk linear methods can work well Require large distortion prefer non-linear methods 58

Discrete Geometry Processing

Discrete Geometry Processing Non Convex Boundary Convex boundary creates significant distortion Free boundary is better Some slides from the Mesh Parameterization Course (Siggraph Asia 008) 1 Fixed vs Free Boundary Fixed vs Free Boundary

More information

Ph.D. Student Vintescu Ana-Maria

Ph.D. Student Vintescu Ana-Maria Ph.D. Student Vintescu Ana-Maria Context Background Problem Statement Strategy Metric Distortion Conformal parameterization techniques Cone singularities Our algorithm Experiments Perspectives Digital

More information

Surface Parameterization

Surface Parameterization Surface Parameterization A Tutorial and Survey Michael Floater and Kai Hormann Presented by Afra Zomorodian CS 468 10/19/5 1 Problem 1-1 mapping from domain to surface Original application: Texture mapping

More information

CS 468 (Spring 2013) Discrete Differential Geometry

CS 468 (Spring 2013) Discrete Differential Geometry Lecturer: Adrian Butscher, Justin Solomon Scribe: Adrian Buganza-Tepole CS 468 (Spring 2013) Discrete Differential Geometry Lecture 19: Conformal Geometry Conformal maps In previous lectures we have explored

More information

Digital Geometry Processing Parameterization I

Digital Geometry Processing Parameterization I Problem Definition Given a surface (mesh) S in R 3 and a domain find a bective F: S Typical Domains Cutting to a Disk disk = genus zero + boundary sphere = closed genus zero Creates artificial boundary

More information

DISCRETE DIFFERENTIAL GEOMETRY

DISCRETE DIFFERENTIAL GEOMETRY AMS SHORT COURSE DISCRETE DIFFERENTIAL GEOMETRY Joint Mathematics Meeting San Diego, CA January 2018 DISCRETE CONFORMAL GEOMETRY AMS SHORT COURSE DISCRETE DIFFERENTIAL GEOMETRY Joint Mathematics Meeting

More information

Parameterization of Triangular Meshes with Virtual Boundaries

Parameterization of Triangular Meshes with Virtual Boundaries Parameterization of Triangular Meshes with Virtual Boundaries Yunjin Lee 1;Λ Hyoung Seok Kim 2;y Seungyong Lee 1;z 1 Department of Computer Science and Engineering Pohang University of Science and Technology

More information

Discrete Conformal Structures

Discrete Conformal Structures Discrete Conformal Structures Boris Springborn (TUB) Ulrich Pinkall (TUB) Peter Schröder (Caltech) 1 The Problem Find nice texture maps simplicial surface metric data satisfy triangle inequality 2 The

More information

Mesh Parameterization Methods and their Applications

Mesh Parameterization Methods and their Applications Mesh Parameterization Methods and their Applications Alla Sheffer Emil Praun Kenneth Rose University of British Columbia Google University of British Columbia Abstract We present a survey of recent methods

More information

Greedy Routing with Guaranteed Delivery Using Ricci Flow

Greedy Routing with Guaranteed Delivery Using Ricci Flow Greedy Routing with Guaranteed Delivery Using Ricci Flow Jie Gao Stony Brook University Joint work with Rik Sarkar, Xiaotian Yin, Wei Zeng, Feng Luo, Xianfeng David Gu Greedy Routing Assign coordinatesto

More information

Surface Parameterization: a Tutorial and Survey

Surface Parameterization: a Tutorial and Survey Surface Parameterization: a Tutorial and Survey Michael S. Floater Computer Science Department Oslo University, Norway Kai Hormann ISTI CNR, Pisa, Italy Abstract This paper provides a tutorial and survey

More information

Conformal Surface Parameterization Using Euclidean Ricci Flow

Conformal Surface Parameterization Using Euclidean Ricci Flow Conformal Surface Parameterization Using Euclidean Ricci Flow Miao Jin, Juhno Kim, Feng Luo, Seungyong Lee, Xianfeng Gu Rutgers University Pohang University of Science and Technology State University of

More information

Parameterization of Meshes

Parameterization of Meshes 2-Manifold Parameterization of Meshes What makes for a smooth manifold? locally looks like Euclidian space collection of charts mutually compatible on their overlaps form an atlas Parameterizations are

More information

arxiv: v1 [cs.cg] 29 Aug 2014

arxiv: v1 [cs.cg] 29 Aug 2014 Noname manuscript No. (will be inserted by the editor) Fast Disk Conformal Parameterization of Simply-connected Open Surfaces Pui Tung Choi Lok Ming Lui the date of receipt and acceptance should be inserted

More information

Surface Parameterization: a Tutorial and Survey

Surface Parameterization: a Tutorial and Survey 2 M. Floater and K. Hormann Surface Parameterization: a Tutorial and Survey Michael S. Floater 1 and Kai Hormann 2 1 Computer Science Department, Oslo University, Norway, michaelf@ifi.uio.no 2 ISTI, CNR,

More information

A linear formulation for disk conformal parameterization of simply-connected open surfaces

A linear formulation for disk conformal parameterization of simply-connected open surfaces Adv Comput Math (2018) 44:87 114 DOI 10.1007/s10444-017-9536-x A linear formulation for disk conformal parameterization of simply-connected open surfaces Gary Pui-Tung Choi 1 Lok Ming Lui 2 Received: 1

More information

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo 05 - Surfaces Acknowledgements: Olga Sorkine-Hornung Reminder Curves Turning Number Theorem Continuous world Discrete world k: Curvature is scale dependent is scale-independent Discrete Curvature Integrated

More information

AN ADAPTABLE SURFACE PARAMETERIZATION METHOD

AN ADAPTABLE SURFACE PARAMETERIZATION METHOD AN ADAPTABLE SURFACE PARAMETERIZATION METHOD P. Degener, J. Meseth and R. Klein University of Bonn Institute of Computer Science II Römerstrasse 164 D-53117 Bonn, Germany August 12, 23 ABSTRACT Parameterizations

More information

Comparison and affine combination of generalized barycentric coordinates for convex polygons

Comparison and affine combination of generalized barycentric coordinates for convex polygons Annales Mathematicae et Informaticae 47 (2017) pp. 185 200 http://ami.uni-eszterhazy.hu Comparison and affine combination of generalized barycentric coordinates for convex polygons Ákos Tóth Department

More information

Three Points Make a Triangle Or a Circle

Three Points Make a Triangle Or a Circle Three Points Make a Triangle Or a Circle Peter Schröder joint work with Liliya Kharevych, Boris Springborn, Alexander Bobenko 1 In This Section Circles as basic primitive it s all about the underlying

More information

Segmentation & Constraints

Segmentation & Constraints Siggraph Course Mesh Parameterization Theory and Practice Segmentation & Constraints Segmentation Necessary for closed and high genus meshes Reduce parametric distortion Chartification Texture Atlas Segmentation

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

Implementation of Circle Pattern Parameterization

Implementation of Circle Pattern Parameterization Implementation of Circle Pattern Parameterization Thesis by Liliya Kharevych In Partial Fulfillment of the Requirements for the Degree of Master of Science California Institute of Technology Pasadena,

More information

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry of Surfaces Andrew Nealen, Rutgers, 2011 2/22/2011 Differential Geometry of Surfaces Continuous and Discrete Motivation Smoothness

More information

COMPUTING SURFACE UNIFORMIZATION USING DISCRETE BELTRAMI FLOW

COMPUTING SURFACE UNIFORMIZATION USING DISCRETE BELTRAMI FLOW COMPUTING SURFACE UNIFORMIZATION USING DISCRETE BELTRAMI FLOW Abstract. In this paper, we propose a novel algorithm for computing surface uniformization for surfaces with arbitrary topology. According

More information

Discrete Surface Ricci Flow

Discrete Surface Ricci Flow TO APPEAR IN IEEE TVCG 1 Discrete Surface Ricci Flow Miao Jin 1, Junho Kim 1,3,FengLuo 2, and Xianfeng Gu 1 1 Stony Brook University 2 Rutgers University 3 Dong-Eui University Abstract This work introduces

More information

Motivation. towards more realism. + Texture Mapping Texture Mapping

Motivation. towards more realism. + Texture Mapping Texture Mapping Texture Mapping Wireframe Model + Lighting & Shading Motivation + Texture Mapping http://www.3drender.com/jbirn/productions.html towards more realism 2 Idea Add surface detail without raising geometric

More information

Parameterizing Subdivision Surfaces

Parameterizing Subdivision Surfaces Parameterizing Subdivision Surfaces Lei He Texas A&M University Scott Schaefer Texas A&M University Kai Hormann University of Lugano Figure : a) As-rigid-as-possible ARAP) polygon parameterization [Liu

More information

Parameterization of triangular meshes

Parameterization of triangular meshes Parameterization of triangular meshes Michael S. Floater November 10, 2009 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to

More information

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece

Parallel Computation of Spherical Parameterizations for Mesh Analysis. Th. Athanasiadis and I. Fudos University of Ioannina, Greece Parallel Computation of Spherical Parameterizations for Mesh Analysis Th. Athanasiadis and I. Fudos, Greece Introduction Mesh parameterization is a powerful geometry processing tool Applications Remeshing

More information

Global Parametrization by Incremental Flattening

Global Parametrization by Incremental Flattening Global Parametrization by Incremental Ashish Myles and Denis Zorin New York University Abstract Global parametrization of surfaces requires singularities (cones) to keep distortion minimal. We describe

More information

04 - Normal Estimation, Curves

04 - Normal Estimation, Curves 04 - Normal Estimation, Curves Acknowledgements: Olga Sorkine-Hornung Normal Estimation Implicit Surface Reconstruction Implicit function from point clouds Need consistently oriented normals < 0 0 > 0

More information

Spanning Tree Seams for Reducing Parameterization Distortion of Triangulated Surfaces

Spanning Tree Seams for Reducing Parameterization Distortion of Triangulated Surfaces Spanning Tree Seams for Reducing Parameterization Distortion of Triangulated Surfaces Alla Sheffer Department of Computer Science Technion, Haifa, Israel e-mail:sheffa@cs.technion.ac.il Abstract Providing

More information

Smoothing an Overlay Grid to Minimize Linear Distortion in Texture Mapping

Smoothing an Overlay Grid to Minimize Linear Distortion in Texture Mapping Smoothing an Overlay Grid to Minimize Linear Distortion in Texture Mapping ALLA SHEFFER Computer Science Department, Technion and ERIC DE STURLER Department of Computer Science, University of Illinois

More information

CS 523: Computer Graphics, Spring Differential Geometry of Surfaces

CS 523: Computer Graphics, Spring Differential Geometry of Surfaces CS 523: Computer Graphics, Spring 2009 Shape Modeling Differential Geometry of Surfaces Andrew Nealen, Rutgers, 2009 3/4/2009 Recap Differential Geometry of Curves Andrew Nealen, Rutgers, 2009 3/4/2009

More information

Orbifold Tutte Embeddings

Orbifold Tutte Embeddings Orbifold Tutte Embeddings Noam Aigerman Yaron Lipman Weizmann Institute of Science Abstract Injective parameterizations of surface meshes are vital for many applications in Computer Graphics, Geometry

More information

Discrete Surfaces. David Gu. Tsinghua University. Tsinghua University. 1 Mathematics Science Center

Discrete Surfaces. David Gu. Tsinghua University. Tsinghua University. 1 Mathematics Science Center Discrete Surfaces 1 1 Mathematics Science Center Tsinghua University Tsinghua University Discrete Surface Discrete Surfaces Acquired using 3D scanner. Discrete Surfaces Our group has developed high speed

More information

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder]

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Preliminaries Recall: Given a smooth function f:r R, the function

More information

CS 177 Homework 1. Julian Panetta. October 22, We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F:

CS 177 Homework 1. Julian Panetta. October 22, We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F: CS 177 Homework 1 Julian Panetta October, 009 1 Euler Characteristic 1.1 Polyhedral Formula We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F: V E + F = 1 First,

More information

Strict Minimizers For Geometric Optimization

Strict Minimizers For Geometric Optimization Strict Minimizers For Geometric Optimization Zohar Levi New York University bounded distortion strict minimizer Denis Zorin New York University bounded distortion strict minimizer bounded distortion strict

More information

Manifold Splines with Single Extraordinary Point

Manifold Splines with Single Extraordinary Point Manifold Splines with Single Extraordinary Point Xianfeng Gu Stony Brook Ying He NTU Miao Jin Stony Brook Feng Luo Rutgers Hong Qin Stony Brook Shing-Tung Yau Harvard Abstract This paper develops a novel

More information

Computational Conformal Geometry and Its Applications

Computational Conformal Geometry and Its Applications Computational Conformal Geometry and Its Applications Wei Zeng Institute of Computing Technology Chinese Academy of Sciences zengwei@cs.sunysb.edu Thesis Proposal Advisor: Harry Shum Co-advisor: Xianfeng

More information

274 Curves on Surfaces, Lecture 5

274 Curves on Surfaces, Lecture 5 274 Curves on Surfaces, Lecture 5 Dylan Thurston Notes by Qiaochu Yuan Fall 2012 5 Ideal polygons Previously we discussed three models of the hyperbolic plane: the Poincaré disk, the upper half-plane,

More information

Geometric Methods in Engineering Applications

Geometric Methods in Engineering Applications 1 Geometric Methods in Engineering Applications Xianfeng Gu Yalin Wang Hsiao-Bing Cheng Li-Tien Cheng and Shing-Tung Yau Computer Science Mathematics Mathematics Mathematics Mathematics Stony Brook University

More information

Curvature Berkeley Math Circle January 08, 2013

Curvature Berkeley Math Circle January 08, 2013 Curvature Berkeley Math Circle January 08, 2013 Linda Green linda@marinmathcircle.org Parts of this handout are taken from Geometry and the Imagination by John Conway, Peter Doyle, Jane Gilman, and Bill

More information

Assignment 4: Mesh Parametrization

Assignment 4: Mesh Parametrization CSCI-GA.3033-018 - Geometric Modeling Assignment 4: Mesh Parametrization In this exercise you will Familiarize yourself with vector field design on surfaces. Create scalar fields whose gradients align

More information

Locally Injective Mappings

Locally Injective Mappings 8/6/ Locally Injective Mappings Christian Schüller 1 Ladislav Kavan 2 Daniele Panozzo 1 Olga Sorkine-Hornung 1 1 ETH Zurich 2 University of Pennsylvania Locally Injective Mappings Popular tasks in geometric

More information

Geometry of Flat Surfaces

Geometry of Flat Surfaces Geometry of Flat Surfaces Marcelo iana IMPA - Rio de Janeiro Xi an Jiaotong University 2005 Geometry of Flat Surfaces p.1/43 Some (non-flat) surfaces Sphere (g = 0) Torus (g = 1) Bitorus (g = 2) Geometry

More information

SIMPLICIAL ENERGY AND SIMPLICIAL HARMONIC MAPS

SIMPLICIAL ENERGY AND SIMPLICIAL HARMONIC MAPS SIMPLICIAL ENERGY AND SIMPLICIAL HARMONIC MAPS JOEL HASS AND PETER SCOTT Abstract. We introduce a combinatorial energy for maps of triangulated surfaces with simplicial metrics and analyze the existence

More information

THIS paper presents the recent advances in mesh deformation

THIS paper presents the recent advances in mesh deformation 1 On Linear Variational Surface Deformation Methods Mario Botsch Computer Graphics Laboratory ETH Zurich Olga Sorkine Computer Graphics Group TU Berlin Abstract This survey reviews the recent advances

More information

Spherical Parameterization Balancing Angle and Area Distortions

Spherical Parameterization Balancing Angle and Area Distortions 1 Spherical Parameterization Balancing Angle and Area Distortions Saad Nadeem, Zhengyu Su, Wei Zeng, Arie Kaufman, Fellow, IEEE, and Xianfeng Gu We focus on algorithms for finding angle-preserving, areapreserving

More information

Non-Distorted Texture Mapping Using Angle Based Flattening

Non-Distorted Texture Mapping Using Angle Based Flattening Non-Distorted Texture Mapping Using Angle Based Flattening A. Sheffer and E. de Sturler Abstract: This article introduces a new method for surface parameterization for texture mapping. In the first step

More information

Optimal parametrizations for surface remeshing

Optimal parametrizations for surface remeshing Noname manuscript No. (will be inserted by the editor) Optimal parametrizations for surface remeshing Emilie Marchandise Jean-François Remacle Christophe Geuzaine Received: date / Accepted: date Abstract

More information

Globally Optimal Surface Mapping for Surfaces with Arbitrary Topology

Globally Optimal Surface Mapping for Surfaces with Arbitrary Topology 1 Globally Optimal Surface Mapping for Surfaces with Arbitrary Topology Xin Li, Yunfan Bao, Xiaohu Guo, Miao Jin, Xianfeng Gu, and Hong Qin Abstract Computing smooth and optimal one-to-one maps between

More information

From isothermic triangulated surfaces to discrete holomorphicity

From isothermic triangulated surfaces to discrete holomorphicity From isothermic triangulated surfaces to discrete holomorphicity Wai Yeung Lam TU Berlin Oberwolfach, 2 March 2015 Joint work with Ulrich Pinkall Wai Yeung Lam (TU Berlin) isothermic triangulated surfaces

More information

Multiresolution Computation of Conformal Structures of Surfaces

Multiresolution Computation of Conformal Structures of Surfaces Multiresolution Computation of Conformal Structures of Surfaces Xianfeng Gu Yalin Wang Shing-Tung Yau Division of Engineering and Applied Science, Harvard University, Cambridge, MA 0138 Mathematics Department,

More information

Introduction to Rational Billiards II. Talk by John Smillie. August 21, 2007

Introduction to Rational Billiards II. Talk by John Smillie. August 21, 2007 Introduction to Rational Billiards II Talk by John Smillie August 21, 2007 Translation surfaces and their singularities Last time we described the Zemlyakov-Katok construction for billiards on a triangular

More information

Curvature, Finite Topology, and Foliations

Curvature, Finite Topology, and Foliations Characterizations of Complete Embedded Minimal Surfaces: Finite Curvature, Finite Topology, and Foliations Michael Nagle March 15, 2005 In classifying minimal surfaces, we start by requiring them to be

More information

3D Surface Matching and Recognition Using Conformal Geometry

3D Surface Matching and Recognition Using Conformal Geometry 3D Surface Matching and Recognition Using Conformal Geometry Sen Wang, Yang Wang, Miao Jin, Xianfeng Gu, Dimitris Samaras State University of New York at Stony Brook Computer Science Department Stony Brook,

More information

Barycentric Coordinates and Parameterization

Barycentric Coordinates and Parameterization Barycentric Coordinates and Parameterization Center of Mass Geometric center of object Center of Mass Geometric center of object Object can be balanced on CoM How to calculate? Finding the Center of Mass

More information

Efficient Texture Mapping by Homogeneous Patch Discovery

Efficient Texture Mapping by Homogeneous Patch Discovery Efficient Texture Mapping by Homogeneous Patch Discovery R.Vikram Pratap Singh Anoop M.Namboodiri Center for Visual Information Technology, IIIT Hyderabad, India. vikrampratap.singh@research.iiit.ac.in,

More information

Parameterization of Triangulations and Unorganized Points

Parameterization of Triangulations and Unorganized Points Parameterization of Triangulations and Unorganized Points Michael Floater 1 and Kai Hormann 2 1 SINTEF Applied Mathematics, N-0314 Oslo, Norway 2 University of Erlangen, D-91058 Erlangen, Germany Abstract.

More information

1 Unstable periodic discrete minimal surfaces

1 Unstable periodic discrete minimal surfaces 1 Unstable periodic discrete minimal surfaces Konrad Polthier Technische Universität Berlin, Institut für Mathematik polthier@math.tu-berlin.de Summary. In this paper we define the new alignment energy

More information

Generalized Barycentric Coordinates

Generalized Barycentric Coordinates Generalized Barycentric Coordinates Kai Hormann Faculty of Informatics University of Lugano Cartesian coordinates y 3 2 ( 3,1) 1 3 2 1 1 2 3 (2,2) (0,0) 1 2 3 (1, 2) x René Descartes (1596 1650) Appendix

More information

Research Proposal: Computational Geometry with Applications on Medical Images

Research Proposal: Computational Geometry with Applications on Medical Images Research Proposal: Computational Geometry with Applications on Medical Images MEI-HENG YUEH yueh@nctu.edu.tw National Chiao Tung University 1 Introduction My research mainly focuses on the issues of computational

More information

Hierarchical Least Squares Conformal Map

Hierarchical Least Squares Conformal Map Hierarchical Least Squares Conformal Map Nicolas RAY Bruno LEVY Abstract A texture atlas is an efficient way to represent information (like colors, normals, displacement maps...) on triangulated surfaces.

More information

Greedy Routing in Wireless Networks. Jie Gao Stony Brook University

Greedy Routing in Wireless Networks. Jie Gao Stony Brook University Greedy Routing in Wireless Networks Jie Gao Stony Brook University A generic sensor node CPU. On-board flash memory or external memory Sensors: thermometer, camera, motion, light sensor, etc. Wireless

More information

Optimizing triangular meshes to have the incrircle packing property

Optimizing triangular meshes to have the incrircle packing property Packing Circles and Spheres on Surfaces Ali Mahdavi-Amiri Introduction Optimizing triangular meshes to have p g g the incrircle packing property Our Motivation PYXIS project Geometry Nature Geometry Isoperimetry

More information

One-Forms on Meshes and Applications to 3D Mesh Parameterization

One-Forms on Meshes and Applications to 3D Mesh Parameterization One-Forms on Meshes and Applications to 3D Mesh Parameterization Steven J. Gortler Craig Gotsman Dylan Thurston Computer Science Dept. Computer Science Dept. Mathematics Dept. Harvard University Harvard

More information

SURFACE parameterization is the process of mapping a

SURFACE parameterization is the process of mapping a 1054 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 14, NO. 5, SEPTEMBER/OCTOBER 2008 Optimal Surface Parameterization Using Inverse Curvature Map Yong-Liang Yang, Junho Kim, Feng Luo,

More information

THE UNIFORMIZATION THEOREM AND UNIVERSAL COVERS

THE UNIFORMIZATION THEOREM AND UNIVERSAL COVERS THE UNIFORMIZATION THEOREM AND UNIVERSAL COVERS PETAR YANAKIEV Abstract. This paper will deal with the consequences of the Uniformization Theorem, which is a major result in complex analysis and differential

More information

Least Squares Affine Transitions for Global Parameterization

Least Squares Affine Transitions for Global Parameterization Least Squares Affine Transitions for Global Parameterization Ana Maria Vintescu LTCI - Télécom ParisTech - Institut Mines-Telecom 75013 Paris, France vintescu@telecom-paristech.fr Florent Dupont Université

More information

Bounded Distortion Mapping and Shape Deformation

Bounded Distortion Mapping and Shape Deformation Bounded Distortion Mapping and Shape Deformation 陈仁杰 德国马克斯普朗克计算机研究所 GAMES Web Seminar, 29 March 2018 Outline Planar Mapping & Applications Bounded Distortion Mapping Harmonic Shape Deformation Shape Interpolation

More information

Planar quad meshes from relative principal curvature lines

Planar quad meshes from relative principal curvature lines Planar quad meshes from relative principal curvature lines Alexander Schiftner Institute of Discrete Mathematics and Geometry Vienna University of Technology 15.09.2007 Alexander Schiftner (TU Vienna)

More information

Computational Design. Stelian Coros

Computational Design. Stelian Coros Computational Design Stelian Coros Schedule for presentations February 3 5 10 12 17 19 24 26 March 3 5 10 12 17 19 24 26 30 April 2 7 9 14 16 21 23 28 30 Send me: ASAP: 3 choices for dates + approximate

More information

Manifold Splines with Single Extraordinary Point

Manifold Splines with Single Extraordinary Point Manifold Splines with Single Extraordinary Point Xianfeng Gu a,ying He b,,miaojin a,fengluo c, Hong Qin a, Shing-Tung Yau d a Computer Science Department, Stony Brook University, NY, USA. b School of Computer

More information

meshes, and in particular triangle meshes, for describing geometrical shapes rather than using piecewise polynomial representations.

meshes, and in particular triangle meshes, for describing geometrical shapes rather than using piecewise polynomial representations. Geometry Processing Kai Hormann Abstract Citation Info The interdisciplinary research area of geometry processing combines concepts from computer science, applied mathematics, and engineering for the efficient

More information

(Discrete) Differential Geometry

(Discrete) Differential Geometry (Discrete) Differential Geometry Motivation Understand the structure of the surface Properties: smoothness, curviness, important directions How to modify the surface to change these properties What properties

More information

2018 AMS short course Discrete Differential Geometry. Discrete Mappings. Yaron Lipman Weizmann Institute of Science

2018 AMS short course Discrete Differential Geometry. Discrete Mappings. Yaron Lipman Weizmann Institute of Science 2018 AMS short course Discrete Differential Geometry 1 Discrete Mappings Yaron Lipman Weizmann Institute of Science 2 Surfaces as triangulations Triangles stitched to build a surface. 3 Surfaces as triangulations

More information

Computer Aided Geometric Design

Computer Aided Geometric Design Computer Aided Geometric Design 28 (2011) 349 356 Contents lists available at ScienceDirect Computer Aided Geometric Design www.elsevier.com/locate/cagd Embedding a triangular graph within a given boundary

More information

1 Discrete Connections

1 Discrete Connections CS 177: Discrete Differential Geometry Homework 4: Vector Field Design (due: Tuesday Nov 30th, 11:59pm) In the last homework you saw how to decompose an existing vector field using DEC. In this homework

More information

Slit Map : Conformal Parameterization for Multiply Connected Surfaces

Slit Map : Conformal Parameterization for Multiply Connected Surfaces Slit Map : Conformal Parameterization for Multiply Connected Surfaces Xiaotian Yin 1, Junfei Dai 2, Shing-Tung Yau 3, and Xianfeng Gu 1 1 Center for Visual Computing State University of New York at Stony

More information

COMPUTING CONFORMAL INVARIANTS: PERIOD MATRICES

COMPUTING CONFORMAL INVARIANTS: PERIOD MATRICES COMMUNICATIONS IN INFORMATION AND SYSTEMS c 2004 International Press Vol. 3, No. 3, pp. 153-170, March 2004 001 COMPUTING CONFORMAL INVARIANTS: PERIOD MATRICES XIANFENG GU, YALIN WANG, AND SHING-TUNG YAU

More information

Lectures in Discrete Differential Geometry 3 Discrete Surfaces

Lectures in Discrete Differential Geometry 3 Discrete Surfaces Lectures in Discrete Differential Geometry 3 Discrete Surfaces Etienne Vouga March 19, 2014 1 Triangle Meshes We will now study discrete surfaces and build up a parallel theory of curvature that mimics

More information

Geometric structures on manifolds

Geometric structures on manifolds CHAPTER 3 Geometric structures on manifolds In this chapter, we give our first examples of hyperbolic manifolds, combining ideas from the previous two chapters. 3.1. Geometric structures 3.1.1. Introductory

More information

Discrete Differential Geometry. Differential Geometry

Discrete Differential Geometry. Differential Geometry Discrete Differential Geometry Yiying Tong CSE 891 Sect 004 Differential Geometry Why do we care? theory: special surfaces minimal, CMC, integrable, etc. computation: simulation/processing Grape (u. of

More information

A GEOMETRIC APPROACH TO CURVATURE ESTIMATION ON TRIANGULATED 3D SHAPES

A GEOMETRIC APPROACH TO CURVATURE ESTIMATION ON TRIANGULATED 3D SHAPES A GEOMETRIC APPROACH TO CURVATURE ESTIMATION ON TRIANGULATED 3D SHAPES Mohammed Mostefa Mesmoudi, Leila De Floriani, Paola Magillo Department of Computer Science and Information Science (DISI), University

More information

Mesh Parameterization: Theory and Practice

Mesh Parameterization: Theory and Practice Siggraph Course Notes Mesh Parameterization: Theory and Practice Kai Hormann Clausthal University of Technology Bruno Lévy INRIA August 2007 Alla Sheffer The University of British Columbia Summary Mesh

More information

Interlude: Solving systems of Equations

Interlude: Solving systems of Equations Interlude: Solving systems of Equations Solving Ax = b What happens to x under Ax? The singular value decomposition Rotation matrices Singular matrices Condition number Null space Solving Ax = 0 under

More information

3D Face Matching and Registration Based on Hyperbolic Ricci Flow

3D Face Matching and Registration Based on Hyperbolic Ricci Flow 3D Face Matching and Registration Based on Hyperbolic Ricci Flow Wei Zeng 13 Xiaotian Yin 1 Yun Zeng 1 Yukun Lai 1 Xianfeng Gu 1 Dimitris Samaras 1 1 Computer Science Department, Stony Brook University,

More information

Optimal Global Conformal Surface Parameterization

Optimal Global Conformal Surface Parameterization Optimal Global Conformal Surface Parameterization Miao Jin Computer Science Department SUNY at Stony Brook Yalin Wang Math Department UCLA Shing-Tung Yau Math Department Harvard University Xianfeng Gu

More information

Cut-and-Paste Editing of Multiresolution Surfaces

Cut-and-Paste Editing of Multiresolution Surfaces Cut-and-Paste Editing of Multiresolution Surfaces Henning Biermann, Ioana Martin, Fausto Bernardini, Denis Zorin NYU Media Research Lab IBM T. J. Watson Research Center Surface Pasting Transfer geometry

More information

Discrete minimal surfaces of Koebe type

Discrete minimal surfaces of Koebe type Discrete minimal surfaces of Koebe type Alexander I. Bobenko, Ulrike Bücking, Stefan Sechelmann March 5, 2018 1 Introduction Minimal surfaces have been studied for a long time, but still contain unsolved

More information

Numerical Methods for Digital Geometry Processing extended abstract

Numerical Methods for Digital Geometry Processing extended abstract Numerical Methods for Digital Geometry Processing extended abstract Bruno Lévy ALICE INRIA 54600, Villers-les-Nancy, France levy@loria.fr Abstract Digital Geometry Processing recently appeared (in the

More information

Voronoi Diagram. Xiao-Ming Fu

Voronoi Diagram. Xiao-Ming Fu Voronoi Diagram Xiao-Ming Fu Outlines Introduction Post Office Problem Voronoi Diagram Duality: Delaunay triangulation Centroidal Voronoi tessellations (CVT) Definition Applications Algorithms Outlines

More information

Computing Curvature CS468 Lecture 8 Notes

Computing Curvature CS468 Lecture 8 Notes Computing Curvature CS468 Lecture 8 Notes Scribe: Andy Nguyen April 4, 013 1 Motivation In the previous lecture we developed the notion of the curvature of a surface, showing a bunch of nice theoretical

More information

Polycube Splines. Abstract. 1 Introduction and Motivation. Hong Qin Stony Brook. Ying He NTU. Xianfeng Gu Stony Brook. Hongyu Wang Stony Brook

Polycube Splines. Abstract. 1 Introduction and Motivation. Hong Qin Stony Brook. Ying He NTU. Xianfeng Gu Stony Brook. Hongyu Wang Stony Brook Polycube Splines Hongyu Wang Stony Brook Ying He NTU Xin Li Stony Brook Xianfeng Gu Stony Brook Hong Qin Stony Brook (a) Conformal polycube map (b) Polycube T-spline (c) T-junctions on polycube spline(d)

More information

Generalized Discrete Ricci Flow

Generalized Discrete Ricci Flow Pacific Graphics 2009 S. Lee, D. Lischinski, and Y. Yu (Guest Editors) Volume 28 (2009), Number 7 Generalized Discrete Ricci Flow Yong-Liang Yang 1 Ren Guo 2 Feng Luo 2 Shi-Min Hu 1 Xianfeng Gu 3 1 Tsinghua

More information

Meshless Modeling, Animating, and Simulating Point-Based Geometry

Meshless Modeling, Animating, and Simulating Point-Based Geometry Meshless Modeling, Animating, and Simulating Point-Based Geometry Xiaohu Guo SUNY @ Stony Brook Email: xguo@cs.sunysb.edu http://www.cs.sunysb.edu/~xguo Graphics Primitives - Points The emergence of points

More information

Conformal Spherical Parametrization for High Genus Surfaces

Conformal Spherical Parametrization for High Genus Surfaces Conformal Spherical Parametrization for High Genus Surfaces Wei Zeng Chinese Academy of Sciences Stony Brook University Xin Li Stony Brook University Shing-Tung Yau Harvard University Xianfeng Gu Stony

More information