We imagine the egg being the three dimensional solid defined by rotating this ellipse around the x-axis:

Size: px
Start display at page:

Download "We imagine the egg being the three dimensional solid defined by rotating this ellipse around the x-axis:"

Transcription

1 CHAPTER 6. INTEGRAL APPLICATIONS 7 Example. Imagine we want to find the volume of hard boiled egg. We could put the egg in a measuring cup and measure how much water it displaces. But we suppose we want to do it more mathematically, using functions and formulas. We will imagine cutting the egg into slices, and then measuring the volume of each slice as a cylinder. (a) Use the ellipse x + y.8 = to model the outline of an egg with length.3 in and diameter.6 in. Draw the ellipse and the shape it makes when rotated around the x-axis. (b) Imagine cutting the shape from (a) into slices, and draw the result. (c) Imagine replacing each slice from (b) with a cylinder and draw the result. (d) Figure out how to find the volume of each cylinder-slice in (c) and write down a formula for the sum of the volumes. (e) Translate the formula from (d) into an integral, and solve the integral. Solution. (a) We imagine the egg being the three dimensional solid defined by rotating this ellipse around the x-axis: (b) Show how we can slice this volume into pieces, and approximate the volume of each piece using a disk, and then turn the the sum of volumes of disks into an integral. We start by drawing a picture of the egg after it s cut into a bunch of slices (notice that cutting a shape into pieces doesn t change the total volume): Vol

2 CHAPTER 6. INTEGRAL APPLICATIONS 8 (c) Now each slice has a slight curve on the top and bottom. This makes it hard to find the exact volume of the slice, but we can approximate the volume by using a cylinder of the same size: Vol (d) Now, we can give a formula for the volume of all these disk-shaped slices above stuff r x + πr x + πr 3 x +... To find r, r,etc.,wegobacktohowthisshapeisdefined:theradiusisthe distance of the curve from the x-axis. This distance is what we usually call the x y-value, i.e. r = y. Now we find the y-values from the ellipse + y.8 = by solving for y: y x =.8 y =.8 x y =.8 x y =.8 x Combining this formula with the above sum of volumes we get above stuff.8 x / x+π.8 x / x+π (e) Now we apply the Approximation Principle: anything that we can approximate with a sum of function values, we can make exact by integrating: π.8 x / dx This last line is the most important conclusion of this example: translating avolumebyrotationintoanintegral. Ofcourse,it salsonicetofindthe integral: π.8 x / dx.8 x / dx (.8) x / dx.8 x 3/ x+...

3 CHAPTER 6. INTEGRAL APPLICATIONS 9 (.8) x =3.in 3 x () Example. Find the volume generated by rotating y = x + around the x-axis, between x = and x =. Solution. The original shape, and the volume generated by it are pictured below. r = y = x + x We apply b a π(f(x)) dx with a =, b =, f(x) = x +andget π( x +) dx x 4 4x +4dx 5 x5 4 3 x3 +4x 5 5/ 4 3 3/ / / 4 =π 5 5/ 4 3 3/ +4 =π = 4 π =8 3 π = 64 π 5 Example 3. Find the volume generated by rotating y = x around the y-axis, between y = and y =.

4 CHAPTER 6. INTEGRAL APPLICATIONS Solution. This is a sideways problem because the way we can cut it into disks is to make cuts that go up and down along the y-axis. One slice of this volume gives a disk of thickness y and and radius given by the x-value. To get the x-value we need to write x(y), i.e. x as a function of y. We solve y = x for x = y.wealsoneedtoknowtheboundsofintegration; this is from the smallest y-value to the largest one. The y-values are y = and y =. π( y) dy y =π ydy Example 4. Set up an integral, and use your calculator to find it, for the volume of the napkin ring made by rotating the region bounded by y = x +, and y = around the x-axis. Solution. volume: We picture the region defined below, along with one slice of

5 CHAPTER 6. INTEGRAL APPLICATIONS The volume of the slice is given by the area of the face, times x. The main work is to figure out the formula for the area. We start with the two dimensional shape, involving r and R r R Area R πr Volume = (πr πr ) x So, to finish, we just need to figure out formulas for R and r in the shape that we have. R r Thus, R = y = x +andr =. Puttingallofthistogether,wehave the integral that we want. π x + π dx = π x + π dx π( x +4 x +4 4) dx x +4 x +dx x dx

6 CHAPTER 6. INTEGRAL APPLICATIONS To finish this, we need to figure out what x dx is. This is probably not something that you know how to find the anti-derivative of. But, you can figure out the integral without knowing the anti-derivative. If you think of what area is represented by x dx, youshouldbeabletoseethat it s the area of the top half of a unit circle. This has area π.thus, 4 π 3 +4 π = 4 3 π +π Example 5. Find the volume of the napkin ring made by rotating the region bounded by y = 4 9 x +, and y = 4 x + 7 (shown below) around the line 6 y =. Solution. The rotated shape looks roughly as follows:

7 CHAPTER 6. INTEGRAL APPLICATIONS 3 graphics/rotated_graph_for_napkin_ring_of_quadratics-eps-converted-to.pdf The larger radius is defined by the top curve, y = 4 9 x +. It is the distance between this curve and the horizontal axis, y =. Thus, R = 4 9 x + ( ) = 4 9 x +3. The smaller radius, the radius of the hole, is defined by the bottom curve y = 4 x Itisthedistancebetweenthiscurveandthehorizontalaxis y =. Thus r = 4 x ( ) = 4 x Now we integrate (skipping some of the messy steps) 3/ π x π 4 x + 3 dx 6 3/ (messy steps of foiling skipped) = 5π 6 = 5π 6 3/ 3/ 3/ x x dx 3/ = 5π 6 87 = π 7 8 x4 3 6 x dx 7 45 x5 3 8 x x 3/ 3/

8 CHAPTER 6. INTEGRAL APPLICATIONS 4 Example 6. Find the volume of the region between the curves y = g(x) =x 3 and y = f(x) = x rotated around the line x =(shownbelow). Solution. We solve this with washers, that are stacked up and down along the vertical line x =. Thus,wewillhave b a πr πr dy where we need R and r to be formulas for the radiuses, written as functions of y. The larger radius, R, isthehorizontaldistancebetweenx =andthe curve f(x). We need the formula in terms of y, sowesolvey = x for x = y, R = y The smaller radius, r, is the horizontal distance between x =andthecurve g(x). Again we rewrite the equation first y = x 3 x = y /3 r = y /3

9 CHAPTER 6. INTEGRAL APPLICATIONS 5 Putting it all together we get π( y ) π( y /3 ) dy y + y 4 ( y /3 + y /3 ) dy y + y 4 +y /3 y /3 dy 3 y3 + y5 = 3 3 π +y4/3 5 4/3 y5/3 5/ Extra examples Example 7. Derive the formula for the volume of a sphere of radius r. Solution. We start with the formula for the top half of a circle of radius r: y = r x and then plug this into our volume by rotation formula r r r π( r x ) dx (r x ) dx r r x x3 r 3 r r r r3 3 =π r 3 r3 3 =π 3 r3 = 4 3 πr3 r r + r3 3 Challenge. Can you figure out how to find the volume of a shape rotated around the line y = x? What about other lines? Can you figure out how to apply washers when f(x) and g(x) switch places with respect to which one is farther from c? What about if they switch places also with respect to which side of c they fall on?

Section 7.2 Volume: The Disk Method

Section 7.2 Volume: The Disk Method Section 7. Volume: The Disk Method White Board Challenge Find the volume of the following cylinder: No Calculator 6 ft 1 ft V 3 1 108 339.9 ft 3 White Board Challenge Calculate the volume V of the solid

More information

2.2 Volumes of Solids of Revolution

2.2 Volumes of Solids of Revolution 2.2 Volumes of Solids of Revolution We know how to find volumes of well-established solids such as a cylinder or rectangular box. What happens when the volume can t be found quite as easily nice or when

More information

Applications of Integration

Applications of Integration Week 12. Applications of Integration 12.1.Areas Between Curves Example 12.1. Determine the area of the region enclosed by y = x 2 and y = x. Solution. First you need to find the points where the two functions

More information

Math 2260 Exam #1 Practice Problem Solutions

Math 2260 Exam #1 Practice Problem Solutions Math 6 Exam # Practice Problem Solutions. What is the area bounded by the curves y x and y x + 7? Answer: As we can see in the figure, the line y x + 7 lies above the parabola y x in the region we care

More information

Unit #13 : Integration to Find Areas and Volumes, Volumes of Revolution

Unit #13 : Integration to Find Areas and Volumes, Volumes of Revolution Unit #13 : Integration to Find Areas and Volumes, Volumes of Revolution Goals: Beabletoapplyaslicingapproachtoconstructintegralsforareasandvolumes. Be able to visualize surfaces generated by rotating functions

More information

Notice that the height of each rectangle is and the width of each rectangle is.

Notice that the height of each rectangle is and the width of each rectangle is. Math 1410 Worksheet #40: Section 6.3 Name: In some cases, computing the volume of a solid of revolution with cross-sections can be difficult or even impossible. Is there another way to compute volumes

More information

Chapter 8: Applications of Definite Integrals

Chapter 8: Applications of Definite Integrals Name: Date: Period: AP Calc AB Mr. Mellina Chapter 8: Applications of Definite Integrals v v Sections: 8.1 Integral as Net Change 8.2 Areas in the Plane v 8.3 Volumes HW Sets Set A (Section 8.1) Pages

More information

AP Calculus. Slide 1 / 95. Slide 2 / 95. Slide 3 / 95. Applications of Definite Integrals

AP Calculus. Slide 1 / 95. Slide 2 / 95. Slide 3 / 95. Applications of Definite Integrals Slide 1 / 95 Slide 2 / 95 AP Calculus Applications of Definite Integrals 2015-11-23 www.njctl.org Table of Contents Slide 3 / 95 Particle Movement Area Between Curves Volume: Known Cross Sections Volume:

More information

AP * Calculus Review. Area and Volume

AP * Calculus Review. Area and Volume AP * Calculus Review Area and Volume Student Packet Advanced Placement and AP are registered trademark of the College Entrance Examination Board. The College Board was not involved in the production of,

More information

5 Applications of Definite Integrals

5 Applications of Definite Integrals 5 Applications of Definite Integrals The previous chapter introduced the concepts of a definite integral as an area and as a limit of Riemann sums, demonstrated some of the properties of integrals, introduced

More information

Coordinate Transformations in Advanced Calculus

Coordinate Transformations in Advanced Calculus Coordinate Transformations in Advanced Calculus by Sacha Nandlall T.A. for MATH 264, McGill University Email: sacha.nandlall@mail.mcgill.ca Website: http://www.resanova.com/teaching/calculus/ Fall 2006,

More information

LECTURE 3-1 AREA OF A REGION BOUNDED BY CURVES

LECTURE 3-1 AREA OF A REGION BOUNDED BY CURVES 7 CALCULUS II DR. YOU 98 LECTURE 3- AREA OF A REGION BOUNDED BY CURVES If y = f(x) and y = g(x) are continuous on an interval [a, b] and f(x) g(x) for all x in [a, b], then the area of the region between

More information

y = 4x + 2, 0 x 1 Name: Class: Date: 1 Find the area of the region that lies under the given curve:

y = 4x + 2, 0 x 1 Name: Class: Date: 1 Find the area of the region that lies under the given curve: Name: Class: Date: 1 Find the area of the region that lies under the given curve: y = 4x + 2, 0 x 1 Select the correct answer. The choices are rounded to the nearest thousandth. 8 Find the volume of the

More information

Direction Fields; Euler s Method

Direction Fields; Euler s Method Direction Fields; Euler s Method It frequently happens that we cannot solve first order systems dy (, ) dx = f xy or corresponding initial value problems in terms of formulas. Remarkably, however, this

More information

(Section 6.2: Volumes of Solids of Revolution: Disk / Washer Methods)

(Section 6.2: Volumes of Solids of Revolution: Disk / Washer Methods) (Section 6.: Volumes of Solids of Revolution: Disk / Washer Methods) 6.. PART E: DISK METHOD vs. WASHER METHOD When using the Disk or Washer Method, we need to use toothpicks that are perpendicular to

More information

In this chapter, we will investigate what have become the standard applications of the integral:

In this chapter, we will investigate what have become the standard applications of the integral: Chapter 8 Overview: Applications of Integrals Calculus, like most mathematical fields, began with trying to solve everyday problems. The theory and operations were formalized later. As early as 70 BC,

More information

MAT01B1: Surface Area of Solids of Revolution

MAT01B1: Surface Area of Solids of Revolution MAT01B1: Surface Area of Solids of Revolution Dr Craig 02 October 2018 My details: acraig@uj.ac.za Consulting hours: Monday 14h40 15h25 Thursday 11h20 12h55 Friday 11h20 12h55 Office C-Ring 508 https://andrewcraigmaths.wordpress.com/

More information

Volumes of Solids of Revolution

Volumes of Solids of Revolution Volumes of Solids of Revolution Farid Aliniaeifard York University http://math.yorku.ca/ faridanf April 27, 2016 Overview What is a solid of revolution? Method of Rings or Method of Disks Method of Cylindrical

More information

Applications of Integration. Copyright Cengage Learning. All rights reserved.

Applications of Integration. Copyright Cengage Learning. All rights reserved. Applications of Integration Copyright Cengage Learning. All rights reserved. Volume: The Disk Method Copyright Cengage Learning. All rights reserved. Objectives Find the volume of a solid of revolution

More information

2. Give an example of a non-constant function f(x, y) such that the average value of f over is 0.

2. Give an example of a non-constant function f(x, y) such that the average value of f over is 0. Midterm 3 Review Short Answer 2. Give an example of a non-constant function f(x, y) such that the average value of f over is 0. 3. Compute the Riemann sum for the double integral where for the given grid

More information

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions

Calculus III. Math 233 Spring In-term exam April 11th. Suggested solutions Calculus III Math Spring 7 In-term exam April th. Suggested solutions This exam contains sixteen problems numbered through 6. Problems 5 are multiple choice problems, which each count 5% of your total

More information

I IS II. = 2y"\ V= n{ay 2 l 3 -\y 2 )dy. Jo n [fy 5 ' 3 1

I IS II. = 2y\ V= n{ay 2 l 3 -\y 2 )dy. Jo n [fy 5 ' 3 1 r Exercises 5.2 Figure 530 (a) EXAMPLE'S The region in the first quadrant bounded by the graphs of y = i* and y = 2x is revolved about the y-axis. Find the volume of the resulting solid. SOLUTON The region

More information

Math 52 - Fall Final Exam PART 1

Math 52 - Fall Final Exam PART 1 Math 52 - Fall 2013 - Final Exam PART 1 Name: Student ID: Signature: Instructions: Print your name and student ID number and write your signature to indicate that you accept the Honor Code. This exam consists

More information

CIRCLES ON TAKS NAME CLASS PD DUE

CIRCLES ON TAKS NAME CLASS PD DUE CIRCLES ON TAKS NAME CLASS PD DUE 1. On the calculator: Let s say the radius is 2. Find the area. Now let s double the radius to 4 and find the area. How do these two numbers relate? 2. The formula for

More information

Area and Volume. where x right and x left are written in terms of y.

Area and Volume. where x right and x left are written in terms of y. Area and Volume Area between two curves Sketch the region and determine the points of intersection. Draw a small strip either as dx or dy slicing. Use the following templates to set up a definite integral:

More information

x + 2 = 0 or Our limits of integration will apparently be a = 2 and b = 4.

x + 2 = 0 or Our limits of integration will apparently be a = 2 and b = 4. QUIZ ON CHAPTER 6 - SOLUTIONS APPLICATIONS OF INTEGRALS; MATH 15 SPRING 17 KUNIYUKI 15 POINTS TOTAL, BUT 1 POINTS = 1% Note: The functions here are continuous on the intervals of interest. This guarantees

More information

Chapter 6 Some Applications of the Integral

Chapter 6 Some Applications of the Integral Chapter 6 Some Applications of the Integral More on Area More on Area Integrating the vertical separation gives Riemann Sums of the form More on Area Example Find the area A of the set shaded in Figure

More information

Volumes by Cylindrical Shells (Silindirik Kabuk ile Hacim Bulma)

Volumes by Cylindrical Shells (Silindirik Kabuk ile Hacim Bulma) APPLICATIONS OF INTEGRATION Volumes by Cylindrical Shells (Silindirik Kabuk ile Hacim Bulma) In this section, we will learn: How to apply the method of cylindrical shells to find out the volume of a solid.

More information

AP CALCULUS BC PACKET 2 FOR UNIT 4 SECTIONS 6.1 TO 6.3 PREWORK FOR UNIT 4 PT 2 HEIGHT UNDER A CURVE

AP CALCULUS BC PACKET 2 FOR UNIT 4 SECTIONS 6.1 TO 6.3 PREWORK FOR UNIT 4 PT 2 HEIGHT UNDER A CURVE AP CALCULUS BC PACKET FOR UNIT 4 SECTIONS 6. TO 6.3 PREWORK FOR UNIT 4 PT HEIGHT UNDER A CURVE Find an expression for the height of an vertical segment that can be drawn into the shaded region... = x =

More information

Sect Volume. 3 ft. 2 ft. 5 ft

Sect Volume. 3 ft. 2 ft. 5 ft 199 Sect 8.5 - Volume Objective a & b: Understanding Volume of Various Solids The Volume is the amount of space a three dimensional object occupies. Volume is measured in cubic units such as in or cm.

More information

Lab 2B Parametrizing Surfaces Math 2374 University of Minnesota Questions to:

Lab 2B Parametrizing Surfaces Math 2374 University of Minnesota   Questions to: Lab_B.nb Lab B Parametrizing Surfaces Math 37 University of Minnesota http://www.math.umn.edu/math37 Questions to: rogness@math.umn.edu Introduction As in last week s lab, there is no calculus in this

More information

AP Calculus. Areas and Volumes. Student Handout

AP Calculus. Areas and Volumes. Student Handout AP Calculus Areas and Volumes Student Handout 016-017 EDITION Use the following link or scan the QR code to complete the evaluation for the Study Session https://www.surveymonkey.com/r/s_sss Copyright

More information

Volumes of Solids of Revolution Lecture #6 a

Volumes of Solids of Revolution Lecture #6 a Volumes of Solids of Revolution Lecture #6 a Sphereoid Parabaloid Hyperboloid Whateveroid Volumes Calculating 3-D Space an Object Occupies Take a cross-sectional slice. Compute the area of the slice. Multiply

More information

Volume by Slicing (Disks & Washers)

Volume by Slicing (Disks & Washers) Volume by Slicing (Disks & Washers) SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should reference Chapter 6.2 of the recommended textbook (or the equivalent chapter

More information

January 23, HW 3 GeometricSolids Key. Fundamentals of Algebra. Geometric Solids. Homework #3. Key

January 23, HW 3 GeometricSolids Key. Fundamentals of Algebra. Geometric Solids. Homework #3. Key Fundamentals of Algebra Geometric Solids Homework #3 Key 1 Problem #1 6 2 Problem #1 I Need To 6 I need to find the container that holds the largest volume of water, choosing between two cylinders and

More information

Math 11 Fall 2016 Section 1 Monday, October 17, 2016

Math 11 Fall 2016 Section 1 Monday, October 17, 2016 Math 11 Fall 16 Section 1 Monday, October 17, 16 First, some important points from the last class: f(x, y, z) dv, the integral (with respect to volume) of f over the three-dimensional region, is a triple

More information

Worksheet 3.4: Triple Integrals in Cylindrical Coordinates. Warm-Up: Cylindrical Volume Element d V

Worksheet 3.4: Triple Integrals in Cylindrical Coordinates. Warm-Up: Cylindrical Volume Element d V Boise State Math 275 (Ultman) Worksheet 3.4: Triple Integrals in Cylindrical Coordinates From the Toolbox (what you need from previous classes) Know what the volume element dv represents. Be able to find

More information

Mathematics 205 HWK 21 Solutions Section 16.5 p766

Mathematics 205 HWK 21 Solutions Section 16.5 p766 Mathematics 5 HK 1 Solutions Section 16.5 p766 Problem 5, 16.5, p766. For the region shown (a rectangular slab of dimensions 1 5; see the text), choose coordinates and set up a triple integral, including

More information

VOLUME OF A REGION CALCULATOR EBOOK

VOLUME OF A REGION CALCULATOR EBOOK 19 March, 2018 VOLUME OF A REGION CALCULATOR EBOOK Document Filetype: PDF 390.92 KB 0 VOLUME OF A REGION CALCULATOR EBOOK How do you calculate volume. A solid of revolution is a solid formed by revolving

More information

V = 2πx(1 x) dx. x 2 dx. 3 x3 0

V = 2πx(1 x) dx. x 2 dx. 3 x3 0 Wednesday, September 3, 215 Page 462 Problem 1 Problem. Use the shell method to set up and evaluate the integral that gives the volume of the solid generated by revolving the region (y = x, y =, x = 2)

More information

USING THE DEFINITE INTEGRAL

USING THE DEFINITE INTEGRAL Print this page Chapter Eight USING THE DEFINITE INTEGRAL 8.1 AREAS AND VOLUMES In Chapter 5, we calculated areas under graphs using definite integrals. We obtained the integral by slicing up the region,

More information

MATH 104 First Midterm Exam - Fall (d) A solid has as its base the region in the xy-plane the region between the curve y = 1 x2

MATH 104 First Midterm Exam - Fall (d) A solid has as its base the region in the xy-plane the region between the curve y = 1 x2 MATH 14 First Midterm Exam - Fall 214 1. Find the area between the graphs of y = x 2 + x + 5 and y = 2x 2 x. 1. Find the area between the graphs of y = x 2 + 4x + 6 and y = 2x 2 x. 1. Find the area between

More information

6.2 Volumes by Disks, Washers, and Cross-Sections

6.2 Volumes by Disks, Washers, and Cross-Sections 6.2 Volumes by Disks, Washers, and Cross-Sections General Principle: Disks Take slices PERPENDICULAR to axis of rotation and rotate around that axis. About x-axis: About y-axis: 1 Examples: Set up integrals

More information

Fair Game Review. Chapter 15. Name Date. Find the area of the figure ft

Fair Game Review. Chapter 15. Name Date. Find the area of the figure ft Name Date Chapter 15 Fair Game Review Find the area of the figure. 1. 3 m 3 m 2. 5 m 7 m 14 m 9 m 3 m 3. 4 in. 1 in. 4. 12 in. 5 in. 9 in. 12 in. 7 in. 12 in. 5. 6. 5 ft 3 ft 15 ft 1 ft 4 in. 10 in. 8

More information

Lecture 11 (Application of Integration) Areas between Curves Let and be continuous and on. Let s look at the region between and on.

Lecture 11 (Application of Integration) Areas between Curves Let and be continuous and on. Let s look at the region between and on. Lecture 11 (Application of Integration) Areas between Curves Let and be continuous and on. Let s look at the region between and on. Definition: The area of the region bounded by the curves and, and the

More information

MATH 31A HOMEWORK 9 (DUE 12/6) PARTS (A) AND (B) SECTION 5.4. f(x) = x + 1 x 2 + 9, F (7) = 0

MATH 31A HOMEWORK 9 (DUE 12/6) PARTS (A) AND (B) SECTION 5.4. f(x) = x + 1 x 2 + 9, F (7) = 0 FROM ROGAWSKI S CALCULUS (2ND ED.) SECTION 5.4 18.) Express the antiderivative F (x) of f(x) satisfying the given initial condition as an integral. f(x) = x + 1 x 2 + 9, F (7) = 28.) Find G (1), where

More information

The diagram above shows a sketch of the curve C with parametric equations

The diagram above shows a sketch of the curve C with parametric equations 1. The diagram above shows a sketch of the curve C with parametric equations x = 5t 4, y = t(9 t ) The curve C cuts the x-axis at the points A and B. (a) Find the x-coordinate at the point A and the x-coordinate

More information

Volumes of Rotation with Solids of Known Cross Sections

Volumes of Rotation with Solids of Known Cross Sections Volumes of Rotation with Solids of Known Cross Sections In this lesson we are going to learn how to find the volume of a solid which is swept out by a curve revolving about an ais. There are three main

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

Differentiation and Integration

Differentiation and Integration Edexcel GCE Core Mathematics C Advanced Subsidiary Differentiation and Integration Materials required for examination Mathematical Formulae (Pink or Green) Items included with question papers Nil Advice

More information

Volume Worksheets (Chapter 6)

Volume Worksheets (Chapter 6) Volume Worksheets (Chapter 6) Name page contents: date AP Free Response Area Between Curves 3-5 Volume b Cross-section with Riemann Sums 6 Volume b Cross-section Homework 7-8 AP Free Response Volume b

More information

Study Guide for Test 2

Study Guide for Test 2 Study Guide for Test Math 6: Calculus October, 7. Overview Non-graphing calculators will be allowed. You will need to know the following:. Set Pieces 9 4.. Trigonometric Substitutions (Section 7.).. Partial

More information

Let s try drawing cross-sections of an everyday object, such as a coffee cup. Sketch the cross-sections at each of the indicated heights.

Let s try drawing cross-sections of an everyday object, such as a coffee cup. Sketch the cross-sections at each of the indicated heights. Cross Sections Let s try drawing cross-sections of an everyday object, such as a coffee cup. 1 2 3 4 5 Sketch the cross-sections at each of the indicated heights. 1 2 3 4 5 Continued on back QUESTIONS:

More information

Review for Applications of Definite Integrals Sections

Review for Applications of Definite Integrals Sections Review for Applications of Definite Integrals Sections 6.1 6.4 Math 166 Iowa State University http://orion.math.iastate.edu/dstolee/teaching/15-166/ September 4, 2015 1. What type of problem: Volume? Arc

More information

5/27/12. Objectives 7.1. Area of a Region Between Two Curves. Find the area of a region between two curves using integration.

5/27/12. Objectives 7.1. Area of a Region Between Two Curves. Find the area of a region between two curves using integration. Objectives 7.1 Find the area of a region between two curves using integration. Find the area of a region between intersecting curves using integration. Describe integration as an accumulation process.

More information

NAME: Section # SSN: X X X X

NAME: Section # SSN: X X X X Math 155 FINAL EXAM A May 5, 2003 NAME: Section # SSN: X X X X Question Grade 1 5 (out of 25) 6 10 (out of 25) 11 (out of 20) 12 (out of 20) 13 (out of 10) 14 (out of 10) 15 (out of 16) 16 (out of 24)

More information

38. Triple Integration over Rectangular Regions

38. Triple Integration over Rectangular Regions 8. Triple Integration over Rectangular Regions A rectangular solid region S in R can be defined by three compound inequalities, a 1 x a, b 1 y b, c 1 z c, where a 1, a, b 1, b, c 1 and c are constants.

More information

Polar Coordinates

Polar Coordinates Polar Coordinates 7-7-2 Polar coordinates are an alternative to rectangular coordinates for referring to points in the plane. A point in the plane has polar coordinates r,θ). r is roughly) the distance

More information

Volume by Slicing (Disks & Washers)

Volume by Slicing (Disks & Washers) Volume by Slicing Disks & Washers) SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should reference Chapter 6. of the recommended textbook or the equivalent chapter in

More information

Log1 Contest Round 2 Theta Circles, Parabolas and Polygons. 4 points each

Log1 Contest Round 2 Theta Circles, Parabolas and Polygons. 4 points each Name: Units do not have to be included. 016 017 Log1 Contest Round Theta Circles, Parabolas and Polygons 4 points each 1 Find the value of x given that 8 x 30 Find the area of a triangle given that it

More information

The Geometry of Solids

The Geometry of Solids CONDENSED LESSON 10.1 The Geometry of Solids In this lesson you will Learn about polyhedrons, including prisms and pyramids Learn about solids with curved surfaces, including cylinders, cones, and spheres

More information

L22 Measurement in Three Dimensions. 22b Pyramid, Cone, & Sphere

L22 Measurement in Three Dimensions. 22b Pyramid, Cone, & Sphere A pyramid (#VOC) is a polyhedron with a polygon base and triangle faces (other than perhaps the base) that meet at the top (apex). There are triangular pyramids, square pyramids, pentagonal pyramids, and

More information

1. Fill in the right hand side of the following equation by taking the derivative: (x sin x) =

1. Fill in the right hand side of the following equation by taking the derivative: (x sin x) = 7.1 What is x cos x? 1. Fill in the right hand side of the following equation by taking the derivative: (x sin x = 2. Integrate both sides of the equation. Instructor: When instructing students to integrate

More information

February 07, Dimensional Geometry Notebook.notebook. Glossary & Standards. Prisms and Cylinders. Return to Table of Contents

February 07, Dimensional Geometry Notebook.notebook. Glossary & Standards. Prisms and Cylinders. Return to Table of Contents Prisms and Cylinders Glossary & Standards Return to Table of Contents 1 Polyhedrons 3-Dimensional Solids A 3-D figure whose faces are all polygons Sort the figures into the appropriate side. 2. Sides are

More information

Answer Key: Three-Dimensional Cross Sections

Answer Key: Three-Dimensional Cross Sections Geometry A Unit Answer Key: Three-Dimensional Cross Sections Name Date Objectives In this lesson, you will: visualize three-dimensional objects from different perspectives be able to create a projection

More information

Math 113 Exam 1 Practice

Math 113 Exam 1 Practice Math Exam Practice January 6, 00 Exam will cover sections 6.-6.5 and 7.-7.5 This sheet has three sections. The first section will remind you about techniques and formulas that you should know. The second

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below:

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below: Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

Math 265 Exam 3 Solutions

Math 265 Exam 3 Solutions C Roettger, Fall 16 Math 265 Exam 3 Solutions Problem 1 Let D be the region inside the circle r 5 sin θ but outside the cardioid r 2 + sin θ. Find the area of D. Note that r and θ denote polar coordinates.

More information

Aptitude Volume and Surface Area. Theory

Aptitude Volume and Surface Area. Theory Aptitude Volume and Surface Area Theory Volume Volume is the amount of space inside a three-dimensional (length, width and height.) object, or its capacity. measured in cubic units. Surfce Area Total area

More information

MA 114 Worksheet #17: Average value of a function

MA 114 Worksheet #17: Average value of a function Spring 2019 MA 114 Worksheet 17 Thursday, 7 March 2019 MA 114 Worksheet #17: Average value of a function 1. Write down the equation for the average value of an integrable function f(x) on [a, b]. 2. Find

More information

MATH 104 Sample problems for first exam - Fall MATH 104 First Midterm Exam - Fall (d) 256 3

MATH 104 Sample problems for first exam - Fall MATH 104 First Midterm Exam - Fall (d) 256 3 MATH 14 Sample problems for first exam - Fall 1 MATH 14 First Midterm Exam - Fall 1. Find the area between the graphs of y = 9 x and y = x + 1. (a) 4 (b) (c) (d) 5 (e) 4 (f) 81. A solid has as its base

More information

CHAPTER 6: APPLICATIONS OF INTEGRALS

CHAPTER 6: APPLICATIONS OF INTEGRALS (Exercises for Section 6.1: Area) E.6.1 CHAPTER 6: APPLICATIONS OF INTEGRALS SECTION 6.1: AREA 1) For parts a) and b) below, in the usual xy-plane i) Sketch the region R bounded by the graphs of the given

More information

Geometry: Angle Relationships

Geometry: Angle Relationships Geometry: Angle Relationships I. Define the following angles (in degrees) and draw an example of each. 1. Acute 3. Right 2. Obtuse 4. Straight Complementary angles: Supplementary angles: a + b = c + d

More information

Mathematics 134 Calculus 2 With Fundamentals Exam 2 Answers/Solutions for Sample Questions March 2, 2018

Mathematics 134 Calculus 2 With Fundamentals Exam 2 Answers/Solutions for Sample Questions March 2, 2018 Sample Exam Questions Mathematics 1 Calculus 2 With Fundamentals Exam 2 Answers/Solutions for Sample Questions March 2, 218 Disclaimer: The actual exam questions may be organized differently and ask questions

More information

Basic and Intermediate Math Vocabulary Spring 2017 Semester

Basic and Intermediate Math Vocabulary Spring 2017 Semester Digit A symbol for a number (1-9) Whole Number A number without fractions or decimals. Place Value The value of a digit that depends on the position in the number. Even number A natural number that is

More information

The base of a solid is the region in the first quadrant bounded above by the line y = 2, below by

The base of a solid is the region in the first quadrant bounded above by the line y = 2, below by Chapter 7 1) (AB/BC, calculator) The base of a solid is the region in the first quadrant bounded above by the line y =, below by y sin 1 x, and to the right by the line x = 1. For this solid, each cross-section

More information

= f (a, b) + (hf x + kf y ) (a,b) +

= f (a, b) + (hf x + kf y ) (a,b) + Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

11.4 Volume of Prisms and Cylinders

11.4 Volume of Prisms and Cylinders 11.4 Volume of Prisms and Cylinders Learning Objectives Find the volume of a prism. Find the volume of a cylinder. Review Queue 1. Define volume in your own words. 2. What is the surface area of a cube

More information

Math Boot Camp: Coordinate Systems

Math Boot Camp: Coordinate Systems Math Boot Camp: Coordinate Systems You can skip this boot camp if you can answer the following question: Staying on a sphere of radius R, what is the shortest distance between the point (0, 0, R) on the

More information

Math 253, Section 102, Fall 2006 Practice Final Solutions

Math 253, Section 102, Fall 2006 Practice Final Solutions Math 253, Section 102, Fall 2006 Practice Final Solutions 1 2 1. Determine whether the two lines L 1 and L 2 described below intersect. If yes, find the point of intersection. If not, say whether they

More information

NATIONAL UNIVERSITY OF SINGAPORE MA MATHEMATICS 1. AY2013/2014 : Semester 2. Time allowed : 2 hours

NATIONAL UNIVERSITY OF SINGAPORE MA MATHEMATICS 1. AY2013/2014 : Semester 2. Time allowed : 2 hours Matriculation Number: NATIONAL UNIVERSITY OF SINGAPORE MA1505 - MATHEMATICS 1 AY2013/2014 : Semester 2 Time allowed : 2 hours INSTRUCTIONS TO CANDIDATES 1. Write your matriculation number neatly in the

More information

Math 116 First Midterm February 6, 2012

Math 116 First Midterm February 6, 2012 Math 6 First Midterm Februar 6, 202 Name: Instructor: Section:. Do not open this exam until ou are told to do so. 2. This exam has 0 pages including this cover. There are 9 problems. Note that the problems

More information

B. Examples Set up the integral(s) needed to find the area of the region bounded by

B. Examples Set up the integral(s) needed to find the area of the region bounded by Math 176 Calculus Sec. 6.1: Area Between Curves I. Area between the Curve and the x Axis A. Let f(x) 0 be continuous on [a,b]. The area of the region between the graph of f and the x-axis is A = f ( x)

More information

Deductive reasoning can be used to establish area formulas.

Deductive reasoning can be used to establish area formulas. Mathematics: Modeling Our World Unit 4: THE RIGHT STUFF S U P P L E M E N TAL ACTIVITY AREA PROOFS S4.1 Deductive reasoning can be used to establish area formulas. 1.Many area proofs are based on a fact

More information

3. Draw the orthographic projection (front, right, and top) for the following solid. Also, state how many cubic units the volume is.

3. Draw the orthographic projection (front, right, and top) for the following solid. Also, state how many cubic units the volume is. PAP Geometry Unit 7 Review Name: Leave your answers as exact answers unless otherwise specified. 1. Describe the cross sections made by the intersection of the plane and the solids. Determine if the shape

More information

Surface Area and Volume

Surface Area and Volume Surface Area and Volume Level 1 2 1. Calculate the surface area and volume of each shape. Use metres for all lengths. Write your answers to 4 decimal places: a) 0.8 m Surface Area: Volume: b) 1 m 0.2 m

More information

Objectives: Find a function that models a problem and apply the techniques from 4.1, 4.2, and 4.3 the find the optimal or best value.

Objectives: Find a function that models a problem and apply the techniques from 4.1, 4.2, and 4.3 the find the optimal or best value. Objectives: Find a function that models a problem and apply the techniques from 4.1, 4., and 4.3 the find the optimal or best value. Suggested procedure: Step 1. Draw a picture! Label variables and known

More information

Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves

Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves Block #1: Vector-Valued Functions Goals: Course Unit: Describing Moving Objects Different Ways of Representing Functions Vector-valued Functions, or Parametric Curves 1 The Calculus of Moving Objects Problem.

More information

Homework 8. Due: Tuesday, March 31st, 2009

Homework 8. Due: Tuesday, March 31st, 2009 MATH 55 Applied Honors Calculus III Winter 9 Homework 8 Due: Tuesday, March 3st, 9 Section 6.5, pg. 54: 7, 3. Section 6.6, pg. 58:, 3. Section 6.7, pg. 66: 3, 5, 47. Section 6.8, pg. 73: 33, 38. Section

More information

1. Show that the rectangle of maximum area that has a given perimeter p is a square.

1. Show that the rectangle of maximum area that has a given perimeter p is a square. Constrained Optimization - Examples - 1 Unit #23 : Goals: Lagrange Multipliers To study constrained optimization; that is, the maximizing or minimizing of a function subject to a constraint (or side condition).

More information

S8.6 Volume. Section 1. Surface area of cuboids: Q1. Work out the surface area of each cuboid shown below:

S8.6 Volume. Section 1. Surface area of cuboids: Q1. Work out the surface area of each cuboid shown below: Things to Learn (Key words, Notation & Formulae) Complete from your notes Radius- Diameter- Surface Area- Volume- Capacity- Prism- Cross-section- Surface area of a prism- Surface area of a cylinder- Volume

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6 Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections REVIEW I MATH 254 Calculus IV Exam I (Friday, April 29 will cover sections 14.1-8. 1. Functions of multivariables The definition of multivariable functions is similar to that of functions of one variable.

More information

10.4 Areas in Polar Coordinates

10.4 Areas in Polar Coordinates CHAPTER 0. PARAMETRIC AND POLAR 9 0.4 Areas in Polar Coordinates Example. Find the area of the circle defined by r.5sin( ) (seeexample ). Solution. A Z 0.5 (.5sin( )) d sin( )cos( ).5 (.5/) (r where r.5/)

More information

Name. Center axis. Introduction to Conic Sections

Name. Center axis. Introduction to Conic Sections Name Introduction to Conic Sections Center axis This introduction to conic sections is going to focus on what they some of the skills needed to work with their equations and graphs. year, we will only

More information

Double Integrals in Polar Coordinates

Double Integrals in Polar Coordinates Double Integrals in Polar Coordinates. A flat plate is in the shape of the region in the first quadrant ling between the circles + and +. The densit of the plate at point, is + kilograms per square meter

More information

B.Stat / B.Math. Entrance Examination 2017

B.Stat / B.Math. Entrance Examination 2017 B.Stat / B.Math. Entrance Examination 017 BOOKLET NO. TEST CODE : UGA Forenoon Questions : 0 Time : hours Write your Name, Registration Number, Test Centre, Test Code and the Number of this Booklet in

More information

Unit 4. Applications of integration

Unit 4. Applications of integration 18.01 EXERCISES Unit 4. Applications of integration 4A. Areas between curves. 4A-1 Find the area between the following curves a) y = 2x 2 and y = 3x 1 b) y = x 3 and y = ax; assume a > 0 c) y = x + 1/x

More information

Curvature Berkeley Math Circle January 08, 2013

Curvature Berkeley Math Circle January 08, 2013 Curvature Berkeley Math Circle January 08, 2013 Linda Green linda@marinmathcircle.org Parts of this handout are taken from Geometry and the Imagination by John Conway, Peter Doyle, Jane Gilman, and Bill

More information

Unit 4. Applications of integration

Unit 4. Applications of integration Unit 4. Applications of integration 4A. Areas between curves. 4A-1 Find the area between the following curves a) y = 2x 2 and y = 3x 1 b) y = x 3 and y = ax; assume a > 0 c) y = x + 1/x and y = 5/2. d)

More information