Pick up Light Packet & Light WS

Size: px
Start display at page:

Download "Pick up Light Packet & Light WS"

Transcription

1 Pick up Light Packet & Light WS Only sit or stand at a station with a cup. Test or Quiz Make Ups Today/Tomorrow after School Only. Sound Test Corrections/Retakes: Wednesday, Next Tuesday, Wednesday, Thursday After School Only

2 Light Notes Student Stations

3 What can you see?

4 What can you see? The only thing you see is LIGHT! This unit is self guided up to Mirror Diagrams and Mirror Calculations This week you will collect the information from all the slides in this presentation in station form. Complete Light WS Complete Light Quiz This should all be done by Thursday end of class

5 Light is a form of energy. Light travels in a straight line Light speed is 3.0 x 10 8 m/s Light is carried by photons Light can travel through a vacuum Light is a transverse wave Light is an electromagnetic wave (EM)

6 All electromagnetic waves are transverse waves. They have electric and magnetic components which vibrate perpendicular to each other.

7

8

9

10

11

12

13

14 dual nature of light Is light a particle or a wave

15 Example 1: A beam of light has a wavelength 1 x 10-3 m. What is its speed? Is it an X Ray? Why or why not?

16 "Courtesy of the Advanced Light Source, Berkeley Lab."

17 Example 2: The wavelength of an electromagnetic wave measures 3.63 x 10-9 m. What is the frequency of this waveform? Is it an infrared wave? Why or Why not? Given: Formula: Substitution Answer and Units

18 "Courtesy of the Advanced Light Source, Berkeley Lab."

19 Example 3: An EM wave has a frequency of 1 x Hz. What is its wavelength? What type of wave is it? Is it high or low energy? Given: Formula: Substitution Answer and Units

20 "Courtesy of the Advanced Light Source, Berkeley Lab."

21 Tour of EM Spectrum

22 What you need to know about the EM Spectrum Order of the different portions according to wavelength, frequency, and energy. You do not need to memorize numbers! Examples of each portion

23 740nm 370nm

24 Wavelength: 1m to m Frequency: 3 x 10 9 to 3 x 10 4 Hz Uses: Telecommunications, TV, Radio Dangers: none

25 Wavelength: 0.001m to 1m Frequency: 3 x to 3 x 10 9 Hz Uses: Telecommunications, RADAR, Cooking Dangers: can produce burns, cataracts, cancer (?)

26 Wavelength: 740nm to 0.01m Frequency: 4 x to 3 x Hz Uses: Heating, cooking, TV remotes, night-vision Dangers: can burn

27 Wavelength: 370nm (violet) to 740nm (red) Frequency: 8 x to 4 x Hz Uses: seeing Dangers: eye damage from bright lights Visible light is best at getting through our atmosphere which is why we use it to see!

28 Visible Spectrum Low Freq, Long λ High Freq, Short λ

29

30 Wavelength: 10-9 m to 370nm Frequency: 3 x to 8 x Hz Uses: discos, tanning salons, counterfeit detections, pollination Dangers: skin cancer Bees see in UV to help them find pollen!

31 Wavelength: to 10-7 m Frequency: 3 x to 3 x Hz Uses: medical imagery, security Dangers: cancer Hand with Rings by Wilhelm Röntgen. The first "medical" X-ray of his wife's hand taken on 22 December 1895.

32 Wavelength: to 10-9 m Frequency: 3 x to 3 x Hz Uses: cancer treatment, observing the universe Dangers: cancer ( )

33 Memorization Trick Red Low Radio High Gamma Vi

34 "Courtesy of the Advanced Light Source, Berkeley Lab."

35 Refer to the chart of the EM Spectrum answer the following: As wavelength increases, frequency and energy As frequency increases, wavelength and energy Longest EM Wave Shortest EM Wave Longest Visible Light Color Shortest Visible Light Color

36 The Dangers of the EM Spectrum As the wavelength of EM spectrum changes, the way the different wavelengths interact with matter also changes. As the frequency increases, wavelength gets smaller. Eventually the waves are so small that they can interact with cells, DNA and atoms. This is called IONISING RADIATION. NON-IONISING IONISING

37 How we see Color and Intensity sensitive cells on retina image inverted due to refraction by lens. Signal sent to brain via optic nerve

38 What we see: In visible spectrum nm If you see red, object absorbs all frequencies of visible light but red, ie object reflects red White: combination of all visible light frequencies, all frequencies reflected Black: combination of all visible light frequencies absorbed, no frequencies reflected

39 Rod Cells: sensitive to brightness Obeys inverse square law Brightness is inversely related to the square of the distance from the source

40 Cone cells: detect color Detect the 3 primary colors of light: red, blue, and green (not to be confused with the primary colors of pigment (red, blue and yellow) you learned in elementary school.)

41 Colors of Light Primary Blue Red Green Secondary B + R = Magenta B + G = Cyan R + G = Yellow

42 Can you get sunburnt sitting inside your car with windows up? Record this information in margin by Terms You should Know 42

43 Ultraviolet light (particularly UVB) oscillates at too high a frequency for electrons in glass molecules, while infrared is too low. Visible light is just right. Making glass transparent to visible light and opaque to some infrared and some ultraviolet. Yes you can get sumburnt through some types of glass!

44 Reflection and Refraction at an Interface Why does the light bend?

45 When Light approaches a Boundary it can: Be Absorbed ( Stuck inside ) Pass through the boundary (transmitted) Medium Changes Therefore Speed Changes What is this called? Refraction Bounce off the boundary Medium its traveling through does not change Therefore Speed remains same What is this called? Reflection Any Combination of the above! 45

46 Law of Reflection

47 Try This!

48 If all surfaces reflect, why can t I see my image?

49 Light reflection from a smooth surface is called regular or specular reflection. Light reflection from a rough or irregular surface is called diffuse reflection.

50

51 What type of reflection?

52 TOTAL INTERNAL REFLECTION Light gets trapped in a dense medium and continuously reflects in that medium. This is the basis of Fiber Optics!

53

54 Record this information about the sky and the sun by the rainbow

55

56

57 Polarized Sunglasses- How do they work? light waves vibrate in more than one plane light waves can be made to vibrate in a single plane by use of polarizing filters. 57

58

59 Object: source of rays Image: reproduction of object When we look at something in the mirror, the light wave we see is the reflected ray

60 3 Ways to Describe Images 1. Size Same Reduced Enlarged 2. Orientation Upright or inverted, Reversed 3. Virtual or Real 60

61 Virtual Images reflected rays do not actually converge to form image. Cannot be projected. images form where light rays appear to have crossed. In mirrors, they form behind the mirror. are always upright. 61

62 Real Images images form where light rays actually cross. Can be projected. In mirrors, they form on the same side of the mirror as the object since light can not pass through a mirror. are always inverted (flipped upside down). Objects that your see are projected onto your on your retina. They are inverted! They are real images. 62

63 The following three slides refer to the large mirrors and a demo that I have in the classroom. We will go over this information again in class next week.

64 Convex Mirror or Diverging Mirror Look at your image close up Are you Upright or Inverted? Is that a real or virtual image? What about your size? Now, move away from the mirror and see what happens. What changed?

65 Concave Mirror or Converging Mirror Look at your image close up Are you Upright or Inverted? Is that a real or virtual image? What about your size? Now, move away from the mirror and see what happens. What changed?

66 The secret of the floating pig is due to 2 curved mirrors that form a Real Image!!

67 Can you answer the following?

68 EM Station Fast Check Name: 1. Why are EM Waves called EM Waves? 2. Are EM Waves mechanical or non-mechanical? 3. Are EM Waves transverse or longitudinal? 4. What is a photon? 5. Is light a particle or a wave? Period: 6. What is common between a radio wave, the color purple, and an X ray? 7. What is the difference between a radio wave, the color purple, and an X ray?

69 CHECK YOUR ANSWERS!!!!

70 Example 1: A beam of light has a wavelength 1 x 10-3 m. What is its speed? Is it an X Ray? Why or why not? Given: Formula: Substitution Answer and Units λ = 1 x 10-3 m c = 3.00 x 10 8 m/s c = fλ Not needed. All EM waves travel at 3.00 x 10 8 m/s! Not needed. All EM waves travel at 3.00 x 10 8 m/s! Microwave If you check the chart you will notice that microwaves have a length in 1 x 10-3 m range

71 Example 2: The wavelength of an electromagnetic wave measures 3.63 x 10-9 m. What is the frequency of this waveform? Is it an infrared wave? Why or Why not? Given: λ = 3.63 x 10-9 m c = 3.00 x 10 8 m/s Formula: c = fλ f = c/λ Substitution f = (3.00 x 10 8 m/s) / (3.63 x 10-9 m) Answer and Units f = 8.26 x Hz UV If you check the chart you will notice that UV light has a frequency in Hz range

72 Example 3: An EM wave has a frequency of 1 x Hz. What is its wavelength? What type of wave is it? Is it high or low energy? Given: f = 1 x Hz c = 3.00 x 10 8 m/s Formula: c = fλ λ = c/f Substitution λ = (3.00 x 10 8 m/s) / (1 x Hz ) Answer and Units 3.00 x m Gamma ray. Highest Energy. Refer to chart

73 Refer to the chart of the EM Spectrum answer the following: As wavelength increases, frequency decreases and energy decreases As frequency increases, wavelength decreases and energy increases Longest EM Wave radio Shortest EM Wave gamma ray Longest Visible Light Color red Shortest Visible Light Color violet

74 Did you get 65? Ex 4

75 Why are EM Waves called EM Waves? They are composed of an electrical wave and a magnetic wave that vibrate perpendicular to one another Are EM Waves mechanical or non-mechanical? non-mechanical no medium needed can travel in vacuum of space Are EM Waves transverse or longitudinal? transverse What is a photon? packet of light energy Is light a particle or a wave? Both: dual nature of light What is common between a radio wave, the color purple, and an X ray? All travel at same speed C! 3 x 10 8 m/s What is the difference between a radio wave, the color purple, and an X ray? They vary by frequency and wavelength c = fʎ is just v = fʎ

76 Links to video for fun!

77 Eye anatomy Biologix: The eye Vision and Perception (29min)

78 Primary colors of light primary colors of light (3:48min) k

79 What are the primary colors of light? How do you see color How do we see color 402 What color is the dress How colorblind people see the world Color Demo PPT 79

80 Light and Color Nye (4:48min) What makes up white light? How do we see individual colors? What are we seeing when we look at something white? What are we seeing when we look at something black? Why do we wear white in the summer?

81 Light and Color Nye What makes up white light? All the colors How do we see individual colors? We see the unabsorbed or reflected color What are we seeing when we look at something white? All colors reflected What are we seeing when we look at something black? All colors absorbed, energy converted to heat Why do we wear white in the summer? Since all colors reflected, energy reflected (less heat)

All forms of EM waves travel at the speed of light in a vacuum = 3.00 x 10 8 m/s This speed is constant in air as well

All forms of EM waves travel at the speed of light in a vacuum = 3.00 x 10 8 m/s This speed is constant in air as well Pre AP Physics Light & Optics Chapters 14-16 Light is an electromagnetic wave Electromagnetic waves: Oscillating electric and magnetic fields that are perpendicular to the direction the wave moves Difference

More information

What is it? How does it work? How do we use it?

What is it? How does it work? How do we use it? What is it? How does it work? How do we use it? Dual Nature http://www.youtube.com/watch?v=dfpeprq7ogc o Electromagnetic Waves display wave behavior o Created by oscillating electric and magnetic fields

More information

S2 Science EM Spectrum Revision Notes --------------------------------------------------------------------------------------------------------------------------------- What is light? Light is a form of

More information

SNC 2PI Optics Unit Review /95 Name:

SNC 2PI Optics Unit Review /95 Name: SNC 2PI Optics Unit Review /95 Name: Part 1: True or False Indicate in the space provided if the statement is true (T) or false(f) [15] 1. Light is a form of energy 2. Shadows are proof that light travels

More information

Unit 3: Optics Chapter 4

Unit 3: Optics Chapter 4 Unit 3: Optics Chapter 4 History of Light https://www.youtube.com/watch?v=j1yiapztlos History of Light Early philosophers (Pythagoras) believed light was made up of tiny particles Later scientist found

More information

Characteristics of Light

Characteristics of Light Characteristics of Light The Nature of Light Light is electromagnetic energy that stimulates the photoreceptor cells in the retina of the eye. This form of energy is our most important means of learning

More information

Light and Mirrors MIRRORS

Light and Mirrors MIRRORS Light and Mirrors MIRRORS 1 Polarized Sunglasses- How do they work? light waves vibrate in more than one plane light waves can be made to vibrate in a single plane by use of polarizing filters. 2 polarizing

More information

Light and Electromagnetic Waves. Honors Physics

Light and Electromagnetic Waves. Honors Physics Light and Electromagnetic Waves Honors Physics Electromagnetic Waves EM waves are a result of accelerated charges and disturbances in electric and magnetic fields (Radio wave example here) As electrons

More information

Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Conceptual Physics 11 th Edition Chapter 28: REFLECTION & REFRACTION This lecture will help you understand: Reflection Principle of Least Time Law of Reflection Refraction Cause of Refraction Dispersion

More information

Optics Test Science What are some devices that you use in everyday life that require optics?

Optics Test Science What are some devices that you use in everyday life that require optics? Optics Test Science 8 Introduction to Optics 1. What are some devices that you use in everyday life that require optics? Light Energy and Its Sources 308-8 identify and describe properties of visible light

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but

More information

Unit 11 Light and Optics Holt Chapter 14 Student Outline Light and Refraction

Unit 11 Light and Optics Holt Chapter 14 Student Outline Light and Refraction Holt Chapter 14 Student Outline Light and Refraction Variables introduced or used in chapter: Quantity Symbol Units Speed of light frequency wavelength angle Object Distance Image Distance Radius of Curvature

More information

10/24/2012. Recall: Electromagnetic Waves do NOT require matter to transport energy

10/24/2012. Recall: Electromagnetic Waves do NOT require matter to transport energy We are told to let our light shine, and if it does, we won't need to tell anybody it does. Lighthouses don't fire cannons to call attention to their shining they just shine. Dwight L. Moody American Evangelist

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 14: PROPERTIES OF LIGHT This lecture will help you understand: Reflection Refraction Dispersion Total Internal Reflection Lenses Polarization Properties of Light

More information

Willis High School Physics Workbook Unit 7 Waves and Optics

Willis High School Physics Workbook Unit 7 Waves and Optics Willis High School Physics Workbook Unit 7 Waves and Optics This workbook belongs to Period Waves and Optics Pacing Guide DAY DATE TEXTBOOK PREREADING CLASSWORK HOMEWORK ASSESSMENT M 2/25 T 2/26 W 2/27

More information

Physics 11. Unit 8 Geometric Optics Part 1

Physics 11. Unit 8 Geometric Optics Part 1 Physics 11 Unit 8 Geometric Optics Part 1 1.Review of waves In the previous section, we have investigated the nature and behaviors of waves in general. We know that all waves possess the following characteristics:

More information

HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3. Chapter 20. Classic and Modern Optics. Dr. Armen Kocharian

HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3. Chapter 20. Classic and Modern Optics. Dr. Armen Kocharian HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3 Chapter 20 Classic and Modern Optics Dr. Armen Kocharian Electromagnetic waves and matter: A Brief History of Light 1000 AD It was proposed that light consisted

More information

2/26/2016. Chapter 23 Ray Optics. Chapter 23 Preview. Chapter 23 Preview

2/26/2016. Chapter 23 Ray Optics. Chapter 23 Preview. Chapter 23 Preview Chapter 23 Ray Optics Chapter Goal: To understand and apply the ray model of light. Slide 23-2 Chapter 23 Preview Slide 23-3 Chapter 23 Preview Slide 23-4 1 Chapter 23 Preview Slide 23-5 Chapter 23 Preview

More information

In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook.

In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook. In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook. When summarising notes, use different colours and draw diagrams/pictures. If you

More information

Light and Sound. Wave Behavior and Interactions

Light and Sound. Wave Behavior and Interactions Light and Sound Wave Behavior and Interactions How do light/sound waves interact with matter? WORD Definition Example Picture REFLECTED REFRACTED is the change in direction of a wave when it changes speed

More information

Chapter 24. Geometric optics. Assignment No. 11, due April 27th before class: Problems 24.4, 24.11, 24.13, 24.15, 24.24

Chapter 24. Geometric optics. Assignment No. 11, due April 27th before class: Problems 24.4, 24.11, 24.13, 24.15, 24.24 Chapter 24 Geometric optics Assignment No. 11, due April 27th before class: Problems 24.4, 24.11, 24.13, 24.15, 24.24 A Brief History of Light 1000 AD It was proposed that light consisted of tiny particles

More information

TOPIC 3 PROPERTIES OF WAVES INCLUDING LIGHT AND SOUND

TOPIC 3 PROPERTIES OF WAVES INCLUDING LIGHT AND SOUND IGCSE Physics 0625 notes Topic 3: Waves. Light and Sound: Revised on: 17 September 2010 1 TOPIC 3 PROPERTIES OF WAVES INCLUDING LIGHT AND SOUND WHAT IS WAVE MOTION? The wave motion is a means of transferring

More information

KULLEGG MARIA REGINA BOYS SECONDARY MOSTA HALF-YEARLY EXAMINATIONS 2012/2013. SUBJECT: PHYSICS Form 4 TIME: 1 HR 30 MIN NAME :

KULLEGG MARIA REGINA BOYS SECONDARY MOSTA HALF-YEARLY EXAMINATIONS 2012/2013. SUBJECT: PHYSICS Form 4 TIME: 1 HR 30 MIN NAME : KULLEGG MARIA REGINA BOYS SECONDARY MOSTA HALF-YEARLY EXAMINATIONS 2012/2013 SUBJECT: PHYSICS Form 4 TIME: 1 HR 30 MIN NAME : CLASS : INDEX NO : Track 2 Answer ALL questions in the spaces provided on the

More information

Unit 3: Optics Chapter 4

Unit 3: Optics Chapter 4 Unit 3: Optics Chapter 4 History of Light https://www.youtube.com/watch?v=j1yiapztlos History of Light Early philosophers (Pythagoras) believed light was made up of tiny particles Later scientist found

More information

Exam Review: Geometric Optics 1. Know the meaning of the following terms and be able to apply or recognize them:

Exam Review: Geometric Optics 1. Know the meaning of the following terms and be able to apply or recognize them: Exam Review: Geometric Optics 1. Know the meaning of the following terms and be able to apply or recognize them: physics transparent convex mirror real image optics translucent refraction virtual image

More information

(A) Electromagnetic. B) Mechanical. (C) Longitudinal. (D) None of these.

(A) Electromagnetic. B) Mechanical. (C) Longitudinal. (D) None of these. Downloaded from LIGHT 1.Light is a form of radiation. (A) Electromagnetic. B) Mechanical. (C) Longitudinal. 2.The wavelength of visible light is in the range: (A) 4 10-7 m to 8 10-7 m. (B) 4 10 7

More information

Light and all its colours

Light and all its colours Light and all its colours Hold a CD to the light You can see all the colours of the rainbow The CD is a non-luminous body It is reflecting white light from the sun Where do the colours come from? Truth

More information

Science 8 Chapter 5 Section 1

Science 8 Chapter 5 Section 1 Science 8 Chapter 5 Section 1 The Ray Model of Light (pp. 172-187) Models of Light wave model of light: a model in which light is a type of wave that travels through space and transfers energy from one

More information

Optics of Vision. MATERIAL TO READ Web: 1.

Optics of Vision. MATERIAL TO READ Web: 1. Optics of Vision MATERIAL TO READ Web: 1. www.physics.uoguelph.ca/phys1070/webst.html Text: Chap. 3, pp. 1-39 (NB: pg. 3-37 missing) Chap. 5 pp.1-17 Handbook: 1. study guide 3 2. lab 3 Optics of the eye

More information

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses LIGHT Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses Light = Electromagnetic Wave Requires No Medium to Travel Oscillating Electric and Magnetic Field Travel at the speed of light

More information

Chapter 22. Reflection and Refraction of Light

Chapter 22. Reflection and Refraction of Light Chapter 22 Reflection and Refraction of Light Nature of Light Light has a dual nature. Particle Wave Wave characteristics will be discussed in this chapter. Reflection Refraction These characteristics

More information

EM Spectrum, Reflection & Refraction Test

EM Spectrum, Reflection & Refraction Test EM Spectrum, Reflection & Refraction Test Name: 1. For each of the diagrams below, an object is shown in position before a concave mirror. The shiny side is on the left, facing the object. For each case,

More information

Human Retina. Sharp Spot: Fovea Blind Spot: Optic Nerve

Human Retina. Sharp Spot: Fovea Blind Spot: Optic Nerve Chapter 35 I am Watching YOU!! Human Retina Sharp Spot: Fovea Blind Spot: Optic Nerve Human Vision An optical Tuning Fork Optical Antennae: Rods & Cones Rods: Intensity Cones: Color Where does light actually

More information

Chapter 23 Reflection and Refraction. Copyright 2010 Pearson Education, Inc.

Chapter 23 Reflection and Refraction. Copyright 2010 Pearson Education, Inc. Chapter 23 Reflection and Refraction C O L O R S White light contains all colors. White objects reflect all colors. Black objects absorb all colors. Green objects absorb all colors but reflect green. Red,

More information

Multiple Choice Identify the choice that best completes the statement or answers the question.

Multiple Choice Identify the choice that best completes the statement or answers the question. Practice Test Light Equations Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which colour of light has the shortest wavelength? a. red c. green b. blue

More information

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc.

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc. Chapter 32 Light: Reflection and Refraction Units of Chapter 32 The Ray Model of Light Reflection; Image Formation by a Plane Mirror Formation of Images by Spherical Mirrors Index of Refraction Refraction:

More information

Lecture 7 Notes: 07 / 11. Reflection and refraction

Lecture 7 Notes: 07 / 11. Reflection and refraction Lecture 7 Notes: 07 / 11 Reflection and refraction When an electromagnetic wave, such as light, encounters the surface of a medium, some of it is reflected off the surface, while some crosses the boundary

More information

Optics. a- Before the beginning of the nineteenth century, light was considered to be a stream of particles.

Optics. a- Before the beginning of the nineteenth century, light was considered to be a stream of particles. Optics 1- Light Nature: a- Before the beginning of the nineteenth century, light was considered to be a stream of particles. The particles were either emitted by the object being viewed or emanated from

More information

Recap: Refraction. Amount of bending depends on: - angle of incidence - refractive index of medium. (n 2 > n 1 ) n 2

Recap: Refraction. Amount of bending depends on: - angle of incidence - refractive index of medium. (n 2 > n 1 ) n 2 Amount of bending depends on: - angle of incidence - refractive index of medium Recap: Refraction λ 1 (n 2 > n 1 ) Snell s Law: When light passes from one transparent medium to another, the rays will be

More information

Light, Lenses, Mirrors

Light, Lenses, Mirrors Light, Lenses, Mirrors Optics Light is Dual in nature- has both particle and wave properties. Light = range of frequencies of electromagnetic waves that stimulates the eye s retina Facts About Light It

More information

Phys 102 Lecture 17 Introduction to ray optics

Phys 102 Lecture 17 Introduction to ray optics Phys 102 Lecture 17 Introduction to ray optics 1 Physics 102 lectures on light Light as a wave Lecture 15 EM waves Lecture 16 Polarization Lecture 22 & 23 Interference & diffraction Light as a ray Lecture

More information

The branch of physics which studies light

The branch of physics which studies light Mr.V The branch of physics which studies light Geometric model XVI century by W Snell Wave Model XIX century by JC Maxwell Photon Model XX century by Planck, Einstein Models of Light Basic Concept Laws

More information

Red Orange the reflected ray. Yellow Green and the normal. Blue Indigo line. Colours of visible reflection

Red Orange the reflected ray. Yellow Green and the normal. Blue Indigo line. Colours of visible reflection distance the carrying the moves away from rest position Brightness Loudness The angle between the incident ray and the normal line Amplitude Amplitude of a light Amplitude of a sound incidence Angle between

More information

Chapter 35. The Nature of Light and the Laws of Geometric Optics

Chapter 35. The Nature of Light and the Laws of Geometric Optics Chapter 35 The Nature of Light and the Laws of Geometric Optics Introduction to Light Light is basic to almost all life on Earth. Light is a form of electromagnetic radiation. Light represents energy transfer

More information

PHYS 219 General Physics: Electricity, Light and Modern Physics

PHYS 219 General Physics: Electricity, Light and Modern Physics PHYS 219 General Physics: Electricity, Light and Modern Physics Exam 2 is scheduled on Tuesday, March 26 @ 8 10 PM In Physics 114 It will cover four Chapters 21, 22, 23, and 24. Start reviewing lecture

More information

Physics: Energy can be transferred as both a particle and a wave

Physics: Energy can be transferred as both a particle and a wave Physics: Energy can be transferred as both a particle and a wave What are the properties and behaviors of light? How do you sense light? What are the effects of electromagnetic energy behaving like both

More information

EM Waves, Reflection

EM Waves, Reflection EM Waves, Reflection Level : Conceptual Physics Teacher : Kim Warm-up Question We heard that Superman can see through objects because he has something called x-ray vision. In the movie Superman(1978),

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

4. Refraction. glass, air, Perspex and water.

4. Refraction. glass, air, Perspex and water. Mr. C. Grima 11 1. Rays and Beams A ray of light is a narrow beam of parallel light, which can be represented by a line with an arrow on it, in diagrams. A group of rays makes up a beam of light. In laboratory

More information

Chapter 5 Mirrors and Lenses

Chapter 5 Mirrors and Lenses Chapter 5 Notes: Mirrors and Lenses Name: Block: The Ray Model of Light The ray model of light represents light as a line, or ray, indicating the path of a beam of light. Light travels in straight lines

More information

waves_05 ELECTROMAGNETIC WAVES

waves_05 ELECTROMAGNETIC WAVES waves_05 ELECTROMAGNETIC WAVES 1 waves_05: MINDMAP SUMMARY - ELECTROMAGNETIC WAVES Electromagnetic waves, electromagnetic radiation, speed of light, electromagnetic spectrum, electric field, magnetic field,

More information

Which row could be correct for the colours seen at X, at Y and at Z?

Which row could be correct for the colours seen at X, at Y and at Z? 1 The ray diagram shows the image of an formed by a converging lens. converging lens image 50 cm What is the focal length of the lens? 40 cm 72 cm 40 cm 50 cm 72 cm 90 cm 2 The diagram shows the dispersion

More information

Phys 1020, Day 18: Questions? Cameras, Blmfld Reminders: Next Up: digital cameras finish Optics Note Final Project proposals next week!

Phys 1020, Day 18: Questions? Cameras, Blmfld Reminders: Next Up: digital cameras finish Optics Note Final Project proposals next week! Lights. Action. Phys 1020, Day 18: Questions? Cameras, Blmfld 15.1 Reminders: Next Up: digital cameras finish Optics Note Final Project proposals next week! 1 What have we learned in this section: 1) Lasers

More information

11.1 CHARACTERISTICS OF LIGHT

11.1 CHARACTERISTICS OF LIGHT CHARACTERISTICS OF LIGHT 11.1 An electromagnetic wave has both electric and magnetic parts; it does not require a medium, and it travels at the speed of light. As wavelength decreases, energy increases.

More information

Light & Optical Systems Reflection & Refraction. Notes

Light & Optical Systems Reflection & Refraction. Notes Light & Optical Systems Reflection & Refraction Notes What is light? Light is electromagnetic radiation Ultra-violet + visible + infra-red Behavior of Light Light behaves in 2 ways particles (photons)

More information

Ray Optics. Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors

Ray Optics. Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors Ray Optics Ray model Reflection Refraction, total internal reflection Color dispersion Lenses Image formation Magnification Spherical mirrors 1 Ray optics Optical imaging and color in medicine Integral

More information

Ray Optics. Lecture 23. Chapter 34. Physics II. Course website:

Ray Optics. Lecture 23. Chapter 34. Physics II. Course website: Lecture 23 Chapter 34 Physics II Ray Optics Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Today we are going to discuss: Chapter 34: Section 34.1-3 Ray Optics Ray Optics Wave

More information

PHY 112: Light, Color and Vision. Lecture 11. Prof. Clark McGrew Physics D 134. Review for Exam. Lecture 11 PHY 112 Lecture 1

PHY 112: Light, Color and Vision. Lecture 11. Prof. Clark McGrew Physics D 134. Review for Exam. Lecture 11 PHY 112 Lecture 1 PHY 112: Light, Color and Vision Lecture 11 Prof. Clark McGrew Physics D 134 Review for Exam Lecture 11 PHY 112 Lecture 1 From Last Time Lenses Ray tracing a Convex Lens Announcements The midterm is Thursday

More information

Blue Skies Blue Eyes Blue Butterflies

Blue Skies Blue Eyes Blue Butterflies Blue Skies Blue Eyes Blue Butterflies Friday, April 19 Homework #9 due in class Lecture: Blue Skies, Blue Eyes & Blue Butterflies: Interaction of electromagnetic waves with matter. Week of April 22 Lab:

More information

When light strikes an object there are different ways it can be affected. Light can be

When light strikes an object there are different ways it can be affected. Light can be When light strikes an object there are different ways it can be affected. Light can be transmitted, reflected, refracted, and absorbed, It depends on the type of matter that it strikes. For example light

More information

Inaugural University of Michigan Science Olympiad Invitational Tournament. Optics

Inaugural University of Michigan Science Olympiad Invitational Tournament. Optics Inaugural University of Michigan Science Olympiad Invitational Tournament Test length: 50 Minutes Optics Team number: Team name: Student names: Instructions: Do not open this test until told to do so.

More information

L 32 Light and Optics [3]

L 32 Light and Optics [3] L 32 Light and Optics [3] Measurements of the speed of light The bending of light refraction Total internal reflection Dispersion Dispersion Rainbows Atmospheric scattering Blue sky red sunsets Light and

More information

INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface

INTRODUCTION REFLECTION AND REFRACTION AT BOUNDARIES. Introduction. Reflection and refraction at boundaries. Reflection at a single surface Chapter 8 GEOMETRICAL OPTICS Introduction Reflection and refraction at boundaries. Reflection at a single surface Refraction at a single boundary Dispersion Summary INTRODUCTION It has been shown that

More information

Ray Optics. Lecture 23. Chapter 23. Physics II. Course website:

Ray Optics. Lecture 23. Chapter 23. Physics II. Course website: Lecture 23 Chapter 23 Physics II Ray Optics Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Let s finish talking about a diffraction grating Diffraction Grating Let s improve (more

More information

Nicholas J. Giordano. Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College

Nicholas J. Giordano.   Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 24 Geometrical Optics Marilyn Akins, PhD Broome Community College Optics The study of light is called optics Some highlights in the history

More information

Lecture 14: Refraction

Lecture 14: Refraction Lecture 14: Refraction We know from experience that there are several transparent substances through which light can travel air, water, and glass are three examples When light passes from one such medium

More information

Dispersion (23.5) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 17

Dispersion (23.5) Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring / 17 Neil Alberding (SFU Physics) Physics 121: Optics, Electricity & Magnetism Spring 2010 1 / 17 Dispersion (23.5) The speed of light in a material depends on its wavelength White light is a mixture of wavelengths

More information

Instructional Sequence for Electromagnetic Waves & Technology

Instructional Sequence for Electromagnetic Waves & Technology Grade Level: 7 Content and Performance Expectations Essential Question Disciplinary Core Ideas Cross Cutting Concepts Performance Expectation for Assessment Instructional Sequence for Electromagnetic Waves

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 26.1 The Reflection of Light 26.2 Forming Images With a Plane Mirror 26.3 Spherical Mirrors 26.4 Ray Tracing and the Mirror Equation 26.5 The Refraction of Light 26.6 Ray

More information

Physics Themed 1516 Williams. Mirrors & Reflective Optics

Physics Themed 1516 Williams. Mirrors & Reflective Optics Physics Themed 1516 Williams Mirrors & Reflective Optics 1 2 Flat Ray Tracing Exercise The black dot represents where an image from the "tip of the flickering flame" would appear to be to any observer

More information

What is light? This question sparked a huge debate in physics.

What is light? This question sparked a huge debate in physics. Optics Sol PH. 11 What is light? This question sparked a huge debate in physics. Light is a Stream of Particles. Newton called corpuscles Colors travel at different speeds. Einstein called quanti Light

More information

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Chapter 7 Optics and Wave Effects

James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Chapter 7 Optics and Wave Effects James T. Shipman Jerry D. Wilson Charles A. Higgins, Jr. Chapter 7 Optics and Wave Effects Reflection The change in direction of a wave when it strikes and rebounds from a surface or the boundary between

More information

Section 2 Flat Mirrors. Distinguish between specular and diffuse reflection of light. Apply the law of reflection for flat mirrors.

Section 2 Flat Mirrors. Distinguish between specular and diffuse reflection of light. Apply the law of reflection for flat mirrors. Section 2 Flat Mirrors Objectives Distinguish between specular and diffuse reflection of light. Apply the law of reflection for flat mirrors. Describe the nature of images formed by flat mirrors. Section

More information

Physics 132: Lecture Fundamentals of Physics II Agenda for Today

Physics 132: Lecture Fundamentals of Physics II Agenda for Today Physics 132: Lecture Fundamentals of Physics II Agenda for Today Reflection of light Law of reflection Refraction of light Snell s law Dispersion PHY132 Lecture 17, Pg1 Electromagnetic waves A changing

More information

History of Light. 5 th Century B.C.

History of Light. 5 th Century B.C. History of Light 5 th Century B.C. Philosophers thought light was made up of streamers emitted by the eye making contact with an object Others thought that light was made of particles that traveled from

More information

Reflection and Refraction. Chapter 29

Reflection and Refraction. Chapter 29 Reflection and Refraction Chapter 29 Reflection When a wave reaches a boundary between two media, some or all of the wave bounces back into the first medium. Reflection The angle of incidence is equal

More information

Hot Sync. Materials Needed Today

Hot Sync. Materials Needed Today Chapter 11 Lesson 2 Materials Needed Today Please take these materials out of your backpack. Pencil Blank sheet of paper for a lab! Hot Sync Thursday 3/27/14 After learning how light acts. Write a new

More information

GEOMETRIC OPTICS. LENSES refract light, so we need to know how light bends when entering and exiting a lens and how that interaction forms an image.

GEOMETRIC OPTICS. LENSES refract light, so we need to know how light bends when entering and exiting a lens and how that interaction forms an image. I. What is GEOMTERIC OPTICS GEOMETRIC OPTICS In geometric optics, LIGHT is treated as imaginary rays. How these rays interact with at the interface of different media, including lenses and mirrors, is

More information

Refraction of Light. This bending of the ray is called refraction

Refraction of Light. This bending of the ray is called refraction Refraction & Lenses Refraction of Light When a ray of light traveling through a transparent medium encounters a boundary leading into another transparent medium, part of the ray is reflected and part of

More information

3 Interactions of Light Waves

3 Interactions of Light Waves CHAPTER 22 3 Interactions of Light Waves SECTION The Nature of Light BEFORE YOU READ After you read this section, you should be able to answer these questions: How does reflection affect the way we see

More information

Physics 1202: Lecture 17 Today s Agenda

Physics 1202: Lecture 17 Today s Agenda Physics 1202: Lecture 17 Today s Agenda Announcements: Team problems today Team 10, 11 & 12: this Thursday Homework #8: due Friday Midterm 2: Tuesday April 10 Office hours if needed (M-2:30-3:30 or TH

More information

Textbook Assignment #1: DUE Friday 5/9/2014 Read: PP Do Review Questions Pg 388 # 1-20

Textbook Assignment #1: DUE Friday 5/9/2014 Read: PP Do Review Questions Pg 388 # 1-20 Page 1 of 38 Page 2 of 38 Unit Packet Contents Unit Objectives Notes 1: Waves Introduction Guided Practice: Waves Introduction (CD pp 89-90) Independent Practice: Speed of Waves Notes 2: Interference and

More information

Basic Waves, Sound & Light Waves, and the E & M Spectrum

Basic Waves, Sound & Light Waves, and the E & M Spectrum Basic Waves, Sound & Light Waves, and the E & M Spectrum 1. What are the amplitude and wavelength of the wave shown below? A) amplitude = 0.10 m, wavelength = 0.30 m B) amplitude = 0.10 m, wavelength =

More information

Ray Optics. Physics 11. Sources of Light Rays: Self-Luminous Objects. The Ray Model of Light

Ray Optics. Physics 11. Sources of Light Rays: Self-Luminous Objects. The Ray Model of Light Physics 11 Ray Optics Ray Model of Light Reflection Plane Mirrors Spherical Mirrors Ray Tracing Images from a Concave Mirror Images from a Convex Mirror Slide 18-3 The Ray Model of Light Sources of Light

More information

Light. Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see

Light. Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see Light Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see Facts About Light The speed of light, c, is constant in a vacuum. Light can be: REFLECTED ABSORBED REFRACTED

More information

Chapter 5 Mirror and Lenses

Chapter 5 Mirror and Lenses Chapter 5 Mirror and Lenses Name: 5.1 Ray Model of Light Another model for light is that it is made up of tiny particles called. Photons travel in perfect, lines from a light source This model helps us

More information

Chapter 12 Notes: Optics

Chapter 12 Notes: Optics Chapter 12 Notes: Optics How can the paths traveled by light rays be rearranged in order to form images? In this chapter we will consider just one form of electromagnetic wave: visible light. We will be

More information

UNIT C: LIGHT AND OPTICAL SYSTEMS

UNIT C: LIGHT AND OPTICAL SYSTEMS 1 UNIT C: LIGHT AND OPTICAL SYSTEMS Science 8 2 LIGHT BEHAVES IN PREDICTABLE WAYS. Section 2.0 1 3 LIGHT TRAVELS IN RAYS AND INTERACTS WITH MATERIALS Topic 2.1 RAY DIAGRAMS Scientists use ray diagrams

More information

Stevens High School AP Physics II Work for Not-school

Stevens High School AP Physics II Work for Not-school 1. Gravitational waves are ripples in the fabric of space-time (more on this in the next unit) that travel at the speed of light (c = 3.00 x 10 8 m/s). In 2016, the LIGO (Laser Interferometry Gravitational

More information

CHAPTER 29: REFLECTION

CHAPTER 29: REFLECTION CHAPTER 29: REFLECTION 29.1 REFLECTION The return of a wave back to its original medium is called reflection. Fasten a spring to a wall and send a pulse along the spring s length. The wall is a very rigid

More information

Light is a type of energy. Light does not unless it encounters a different. In Albert Michelson in Mt. Wilson, California did an experiment:

Light is a type of energy. Light does not unless it encounters a different. In Albert Michelson in Mt. Wilson, California did an experiment: Properties of Visible Light Science 8 Light is a form of Light energy enables us to Light is a type of energy It is the form of energy that The lines in which light travels are called (the traveled by

More information

Reflection W.S. 2. A periscope has a pair of mirrors in it. Draw the light path from the object to the eye of the observer.

Reflection W.S. 2. A periscope has a pair of mirrors in it. Draw the light path from the object to the eye of the observer. Reflection W.S. 1. Light from a flashlight shines on a mirror and illuminates one of the cards. Draw the reflected beam to indicate the illuminated card. Which card would you see? 2. A periscope has a

More information

Light travels in straight lines, this is referred to as... this means that light does not bend...

Light travels in straight lines, this is referred to as... this means that light does not bend... SNC 2DI - 10.2 Properties of Light and Reflection Light travels in straight lines, this is referred to as... this means that light does not bend... Reflection : Light travels in a straight line as long

More information

At the interface between two materials, where light can be reflected or refracted. Within a material, where the light can be scattered or absorbed.

At the interface between two materials, where light can be reflected or refracted. Within a material, where the light can be scattered or absorbed. At the interface between two materials, where light can be reflected or refracted. Within a material, where the light can be scattered or absorbed. The eye sees by focusing a diverging bundle of rays from

More information

The Ray model of Light. Reflection. Class 18

The Ray model of Light. Reflection. Class 18 The Ray model of Light Over distances of a terrestrial scale light travels in a straight line. The path of a laser is now the best way we have of defining a straight line. The model of light which assumes

More information

LECTURE 37: Ray model of light and Snell's law

LECTURE 37: Ray model of light and Snell's law Lectures Page 1 Select LEARNING OBJECTIVES: LECTURE 37: Ray model of light and Snell's law Understand when the ray model of light is applicable. Be able to apply Snell's Law of Refraction to any system.

More information

index of refraction-light speed

index of refraction-light speed AP Physics Study Guide Chapters 22, 23, 24 Reflection, Refraction and Interference Name Write each of the equations specified below, include units for all quantities. Law of Reflection Lens-Mirror Equation

More information

Physics 11 - Waves Extra Practice Questions

Physics 11 - Waves Extra Practice Questions Physics - Waves xtra Practice Questions. Wave motion in a medium transfers ) energy, only ) mass, only. both mass and energy. neither mass nor energy. single vibratory disturbance that moves from point

More information

Internal Reflection. Total Internal Reflection. Internal Reflection in Prisms. Fiber Optics. Pool Checkpoint 3/20/2013. Physics 1161: Lecture 18

Internal Reflection. Total Internal Reflection. Internal Reflection in Prisms. Fiber Optics. Pool Checkpoint 3/20/2013. Physics 1161: Lecture 18 Physics 1161: Lecture 18 Internal Reflection Rainbows, Fiber Optics, Sun Dogs, Sun Glasses sections 26-8 & 25-5 Internal Reflection in Prisms Total Internal Reflection Recall Snell s Law: n 1 sin( 1 )=

More information

What is Color and How is It Measured?

What is Color and How is It Measured? Insight on Color Vol. 12, No. 5 What is Color and How is It Measured? The most important part of HunterLab s business is helping our customers to measure color. In this Applications Note, you will learn

More information