Approximate Inference 1. Forward Sampling

Size: px
Start display at page:

Download "Approximate Inference 1. Forward Sampling"

Transcription

1 Approximate Inference This section on approximate inference relies on samples / particles Full particles: complete assignment to all network variables eg. (X = x, X = x,..., X N = x N )

2 Topological sort or order: An ordering of the nodes in the AG where X comes before Y in the ordering if there is a directed path from X to Y in the graph. A topological order is equivalent to a partial order on the nodes of the graph There may be several topological orderings A C B Examples of Topological orders: A,B,C, B,A,C, 3 Student Example P() low 0.6 I P(I) low 0.7 high 0.3 high 0.4 I S P(S I) I G P(G,I) low low C 0.3 low low B 0.4 low low A 0.3 ifficulty Intelligence low low 0.95 low high 0.05 high low 0. high high 0.8 low high C 0.0 low high B 0.08 low high A 0.9 high low C 0.7 high low B 0.5 high low A 0.05 high high C 0. high high B 0.3 Grade Letter SAT G L P(L G) C weak 0.99 C strong 0.0 B weak 0.4 B strong 0.6 A weak 0. A strong 0.9 high high A 0.5 4

3 Topological ordering:, I, G, S, L ifficulty Grade Letter Intelligence SAT. Sample from P() (Say you get =high). Sample I from P(I) (Say you get I=low) 3. Sample G from P(G I=low,=high) (Say you get G=C) 4. Sample S from P(S I=low) (Say you get S=low) 5. Sample L from P(L G=C) (Say you get L=weak) You now have a sample (=high, I=low, G=C, S=low, L=weak) 5 Suppose you want to calculate P( X = x, X = x,, X n = x n ) using forward sampling on a Bayesian network. The algorithm:. o a topological sort of the nodes in the Bayesian network.. For j = to NU_SAPLES For each node i in the ordering (starting from the top of the Bayesian network down) Sample the value xˆi from the distribution P( X i Parents(X i )) Add { xˆ ˆ ˆ, x,..., xn} to your collection of samples 3. Let P( X x, X x,..., X x ) # of samples with X x, X x,..., X NU _ SAPLES n n n x n 6 3

4 How do you sample from P(X i Parents(X i ))? Note: P( X i Parents(X i )) is a multinomial distribution P(x i,..., x ik,..., k )? 7 How do you sample from a multinomial distribution P(x i,..., x ik,..., k )? Generate a sample s uniformly from [0,] Partition interval into k subintervals: [0, ), [, + ),... ore generally, the ith interval is i i j, j j j If s is in the ith interval, the sample value is x i. Use binary search to find the interval for s in time O(log k) 8 4

5 Suppose your list of samples looks like the following table: I G S L low low B low weak low high A high strong low high A high weak high high A high strong high low C low weak P(I=high) = 3/5 = 0.6 Note that this value becomes a lot more accurate as the number of samples heads to infinity. 9 From a set of samples = {[],..., []}, we can estimate the expectation of any function f as: Eˆ ( f ) m To estimate P(y) Pˆ ( y) I{ y[ m] m f ( [ m]) y} This will return if the sample [m] matches the values in y (eg. y is I=high) and 0 otherwise. 0 5

6 Rejection Sampling Rejection Sampling What if we want to estimate P(y E=e)? Rejection sampling: do forward sampling but throw out samples where Ee Example: P(I=high L=weak) = /3 I G S L low low B low weak low high A high strong low high A high weak high high A high strong high low C low weak 6

7 Rejection Sampling What if the evidence E=e is very very rare? For example, if P(e) = 0.00, then for 0,000 samples, we get 0 unrejected samples To obtain at least * unrejected samples, we need to generate on average = */P(e) samples If evidence is rare, we end up generating a lot of samples which wastes time 3 Bad news: Rejection Sampling Rare evidence is the norm! As # of evidence variables k = E grows, the probability of the evidence decreases exponentially with k Need something better than rejection sampling! 4 7

8 Likelihood Weighting 5 Likelihood Weighting Intuition: Weight samples according to probability of the evidence Intelligence SAT I P(I) low 0.7 high 0.3 I S P(S I) low low 0.95 low high 0.05 high low 0. high high 0.8 rawing I = high and S = high should be 80% of a sample rawing I = low and S = high should be 5% of a sample 6 8

9 Likelihood Weighting Weighted particles: [ ], w[],..., [ ], w[ ] Estimate: Pˆ ( y e) m w[ m] I{ y[ m] m w[ m] y} 7 Likelihood Weighting Procedure LW-Sample(, // Bayesian network over X Z=z // Event in the network ). Let X,, X n be a topological ordering of X. w 3. for i =,, n 4. u i x<pa Xi > // Assignment to Pa Xi in x,, x i- 5. if X i Zthen 6. Sample x i from P(X i u i ) 7. else 8. x i z<x i > // Assignment to X i in z 9. w w P(x i u i ) // ultiply weight by probability of desired value 0. return (x,, x n ), w 8 9

Forward Sampling. Forward Sampling. Forward Sampling. Approximate Inference 1

Forward Sampling. Forward Sampling. Forward Sampling. Approximate Inference 1 Approximate Inference This section on approximate inference relies on samples / particles Full particles: complete assignment to all network variables eg. ( = x, = x,..., N = x N ) Topological sort or

More information

Bayesian Networks. A Bayesian network is a directed acyclic graph that represents causal relationships between random variables. Earthquake.

Bayesian Networks. A Bayesian network is a directed acyclic graph that represents causal relationships between random variables. Earthquake. Bayes Nets Independence With joint probability distributions we can compute many useful things, but working with joint PD's is often intractable. The naïve Bayes' approach represents one (boneheaded?)

More information

Warm-up as you walk in

Warm-up as you walk in arm-up as you walk in Given these N=10 observations of the world: hat is the approximate value for P c a, +b? A. 1/10 B. 5/10. 1/4 D. 1/5 E. I m not sure a, b, +c +a, b, +c a, b, +c a, +b, +c +a, b, +c

More information

Bayesian Classification Using Probabilistic Graphical Models

Bayesian Classification Using Probabilistic Graphical Models San Jose State University SJSU ScholarWorks Master's Projects Master's Theses and Graduate Research Spring 2014 Bayesian Classification Using Probabilistic Graphical Models Mehal Patel San Jose State University

More information

Bayes Net Learning. EECS 474 Fall 2016

Bayes Net Learning. EECS 474 Fall 2016 Bayes Net Learning EECS 474 Fall 2016 Homework Remaining Homework #3 assigned Homework #4 will be about semi-supervised learning and expectation-maximization Homeworks #3-#4: the how of Graphical Models

More information

STAT 598L Probabilistic Graphical Models. Instructor: Sergey Kirshner. Exact Inference

STAT 598L Probabilistic Graphical Models. Instructor: Sergey Kirshner. Exact Inference STAT 598L Probabilistic Graphical Models Instructor: Sergey Kirshner Exact Inference What To Do With Bayesian/Markov Network? Compact representation of a complex model, but Goal: efficient extraction of

More information

Bayesian Networks Inference (continued) Learning

Bayesian Networks Inference (continued) Learning Learning BN tutorial: ftp://ftp.research.microsoft.com/pub/tr/tr-95-06.pdf TAN paper: http://www.cs.huji.ac.il/~nir/abstracts/frgg1.html Bayesian Networks Inference (continued) Learning Machine Learning

More information

Lecture 6,

Lecture 6, Lecture 6, 4.16.2009 Today: Review: Basic Set Operation: Recall the basic set operator,!. From this operator come other set quantifiers and operations:!,!,!,! \ Set difference (sometimes denoted, a minus

More information

Computational Intelligence

Computational Intelligence Computational Intelligence A Logical Approach Problems for Chapter 10 Here are some problems to help you understand the material in Computational Intelligence: A Logical Approach. They are designed to

More information

Approximate Bayesian Computation. Alireza Shafaei - April 2016

Approximate Bayesian Computation. Alireza Shafaei - April 2016 Approximate Bayesian Computation Alireza Shafaei - April 2016 The Problem Given a dataset, we are interested in. The Problem Given a dataset, we are interested in. The Problem Given a dataset, we are interested

More information

CMPSCI 105: Lecture #12 Searching, Sorting, Joins, and Indexing PART #1: SEARCHING AND SORTING. Linear Search. Binary Search.

CMPSCI 105: Lecture #12 Searching, Sorting, Joins, and Indexing PART #1: SEARCHING AND SORTING. Linear Search. Binary Search. CMPSCI 105: Lecture #12 Searching, Sorting, Joins, and Indexing PART #1: SEARCHING AND SORTING Linear Search Binary Search Items can be in any order, Have to examine first record, then second record, then

More information

Introduction to Graphical Models

Introduction to Graphical Models Robert Collins CSE586 Introduction to Graphical Models Readings in Prince textbook: Chapters 10 and 11 but mainly only on directed graphs at this time Credits: Several slides are from: Review: Probability

More information

Data Compression Techniques

Data Compression Techniques Data Compression Techniques Part 1: Entropy Coding Lecture 1: Introduction and Huffman Coding Juha Kärkkäinen 31.10.2017 1 / 21 Introduction Data compression deals with encoding information in as few bits

More information

Comparative Analysis of Naive Bayes and Tree Augmented Naive Bayes Models

Comparative Analysis of Naive Bayes and Tree Augmented Naive Bayes Models San Jose State University SJSU ScholarWorks Master's Projects Master's Theses and Graduate Research Spring 2014 Comparative Analysis of Naive Bayes and Tree Augmented Naive Bayes Models Harini Padmanaban

More information

Tools for Scalable Data Mining

Tools for Scalable Data Mining Tools for Scalable Data Mining XANDA SCHOFIELD CS 6410 11/13/2014 1. Astrolabe Large, eventuallyconsistent distributed system ROBERT VAN RENESSE, KEN BIRMAN, WERNER VOGELS [Source: Wikipedia] The Problem

More information

Power Set of a set and Relations

Power Set of a set and Relations Power Set of a set and Relations 1 Power Set (1) Definition: The power set of a set S, denoted P(S), is the set of all subsets of S. Examples Let A={a,b,c}, P(A)={,{a},{b},{c},{a,b},{b,c},{a,c},{a,b,c}}

More information

Inference. Inference: calculating some useful quantity from a joint probability distribution Examples: Posterior probability: Most likely explanation:

Inference. Inference: calculating some useful quantity from a joint probability distribution Examples: Posterior probability: Most likely explanation: Inference Inference: calculating some useful quantity from a joint probability distribution Examples: Posterior probability: B A E J M Most likely explanation: This slide deck courtesy of Dan Klein at

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Bayes Nets: Inference Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

RNNs as Directed Graphical Models

RNNs as Directed Graphical Models RNNs as Directed Graphical Models Sargur Srihari srihari@buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 10. Topics in Sequence Modeling Overview

More information

Hierarchical Clustering 4/5/17

Hierarchical Clustering 4/5/17 Hierarchical Clustering 4/5/17 Hypothesis Space Continuous inputs Output is a binary tree with data points as leaves. Useful for explaining the training data. Not useful for making new predictions. Direction

More information

Clipping Lines. Dr. Scott Schaefer

Clipping Lines. Dr. Scott Schaefer Clipping Lines Dr. Scott Schaefer Why Clip? We do not want to waste time drawing objects that are outside of viewing window (or clipping window) 2/94 Clipping Points Given a point (x, y) and clipping window

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University April 1, 2019 Today: Inference in graphical models Learning graphical models Readings: Bishop chapter 8 Bayesian

More information

Partitioning Data. IRDS: Evaluation, Debugging, and Diagnostics. Cross-Validation. Cross-Validation for parameter tuning

Partitioning Data. IRDS: Evaluation, Debugging, and Diagnostics. Cross-Validation. Cross-Validation for parameter tuning Partitioning Data IRDS: Evaluation, Debugging, and Diagnostics Charles Sutton University of Edinburgh Training Validation Test Training : Running learning algorithms Validation : Tuning parameters of learning

More information

CS 188: Artificial Intelligence

CS 188: Artificial Intelligence CS 188: Artificial Intelligence Bayes Nets: Inference Instructors: Dan Klein and Pieter Abbeel --- University of California, Berkeley [These slides were created by Dan Klein and Pieter Abbeel for CS188

More information

Mondrian Forests: Efficient Online Random Forests

Mondrian Forests: Efficient Online Random Forests Mondrian Forests: Efficient Online Random Forests Balaji Lakshminarayanan Joint work with Daniel M. Roy and Yee Whye Teh 1 Outline Background and Motivation Mondrian Forests Randomization mechanism Online

More information

Local Probabilistic Models: Context-Specific CPDs. Sargur Srihari

Local Probabilistic Models: Context-Specific CPDs. Sargur Srihari Local Probabilistic Models: Context-Specific CPDs Sargur srihari@cedar.buffalo.edu 1 Context-Specific CPDs Topics 1. Regularity in parameters for different values of parents 2. Tree CPDs 3. Rule CPDs 4.

More information

Review I" CMPSCI 383 December 6, 2011!

Review I CMPSCI 383 December 6, 2011! Review I" CMPSCI 383 December 6, 2011! 1 General Information about the Final" Closed book closed notes! Includes midterm material too! But expect more emphasis on later material! 2 What you should know!

More information

Design and Analysis of Algorithms Prof. Madhavan Mukund Chennai Mathematical Institute. Module 02 Lecture - 45 Memoization

Design and Analysis of Algorithms Prof. Madhavan Mukund Chennai Mathematical Institute. Module 02 Lecture - 45 Memoization Design and Analysis of Algorithms Prof. Madhavan Mukund Chennai Mathematical Institute Module 02 Lecture - 45 Memoization Let us continue our discussion of inductive definitions. (Refer Slide Time: 00:05)

More information

4 Factor graphs and Comparing Graphical Model Types

4 Factor graphs and Comparing Graphical Model Types Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms for Inference Fall 2014 4 Factor graphs and Comparing Graphical Model Types We now introduce

More information

General Instructions. You can use QtSpim simulator to work on these assignments.

General Instructions. You can use QtSpim simulator to work on these assignments. General Instructions You can use QtSpim simulator to work on these assignments. Only one member of each group has to submit the assignment. Please Make sure that there is no duplicate submission from your

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 17 EM CS/CNS/EE 155 Andreas Krause Announcements Project poster session on Thursday Dec 3, 4-6pm in Annenberg 2 nd floor atrium! Easels, poster boards and cookies

More information

Biology 644: Bioinformatics

Biology 644: Bioinformatics A statistical Markov model in which the system being modeled is assumed to be a Markov process with unobserved (hidden) states in the training data. First used in speech and handwriting recognition In

More information

Hash Table and Hashing

Hash Table and Hashing Hash Table and Hashing The tree structures discussed so far assume that we can only work with the input keys by comparing them. No other operation is considered. In practice, it is often true that an input

More information

Machine Learning

Machine Learning Machine Learning 10-701 Tom M. Mitchell Machine Learning Department Carnegie Mellon University January 20, 2011 Today: Bayes Classifiers Naïve Bayes Gaussian Naïve Bayes Readings: Mitchell: Naïve Bayes

More information

Machine Learning (BSMC-GA 4439) Wenke Liu

Machine Learning (BSMC-GA 4439) Wenke Liu Machine Learning (BSMC-GA 4439) Wenke Liu 01-25-2018 Outline Background Defining proximity Clustering methods Determining number of clusters Other approaches Cluster analysis as unsupervised Learning Unsupervised

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction A Monte Carlo method is a compuational method that uses random numbers to compute (estimate) some quantity of interest. Very often the quantity we want to compute is the mean of

More information

Machine Learning. Supervised Learning. Manfred Huber

Machine Learning. Supervised Learning. Manfred Huber Machine Learning Supervised Learning Manfred Huber 2015 1 Supervised Learning Supervised learning is learning where the training data contains the target output of the learning system. Training data D

More information

ARC 088/ABC 083. A: Libra. DEGwer 2017/12/23. #include <s t d i o. h> i n t main ( )

ARC 088/ABC 083. A: Libra. DEGwer 2017/12/23. #include <s t d i o. h> i n t main ( ) ARC 088/ABC 083 DEGwer 2017/12/23 A: Libra A, B, C, D A + B C + D #include i n t main ( ) i n t a, b, c, d ; s c a n f ( %d%d%d%d, &a, &b, &c, &d ) ; i f ( a + b > c + d ) p r i n t f (

More information

Module 8: Range-Searching in Dictionaries for Points

Module 8: Range-Searching in Dictionaries for Points Module 8: Range-Searching in Dictionaries for Points CS 240 Data Structures and Data Management T. Biedl K. Lanctot M. Sepehri S. Wild Based on lecture notes by many previous cs240 instructors David R.

More information

Computer Vision Group Prof. Daniel Cremers. 6. Boosting

Computer Vision Group Prof. Daniel Cremers. 6. Boosting Prof. Daniel Cremers 6. Boosting Repetition: Regression We start with a set of basis functions (x) =( 0 (x), 1(x),..., M 1(x)) x 2 í d The goal is to fit a model into the data y(x, w) =w T (x) To do this,

More information

Mondrian Forests: Efficient Online Random Forests

Mondrian Forests: Efficient Online Random Forests Mondrian Forests: Efficient Online Random Forests Balaji Lakshminarayanan (Gatsby Unit, UCL) Daniel M. Roy (Cambridge Toronto) Yee Whye Teh (Oxford) September 4, 2014 1 Outline Background and Motivation

More information

Algorithms. Appendix B. B.1 Matrix Algorithms. Matrix/Matrix multiplication. Vector/Matrix multiplication. This appendix is about algorithms.

Algorithms. Appendix B. B.1 Matrix Algorithms. Matrix/Matrix multiplication. Vector/Matrix multiplication. This appendix is about algorithms. Appendix B Algorithms This appendix is about algorithms. B.1 Matrix Algorithms When describing algorithms for manipulating matrices, we will use the notation x[i] for the i-th element of a vector (row

More information

CS103 Handout 13 Fall 2012 May 4, 2012 Problem Set 5

CS103 Handout 13 Fall 2012 May 4, 2012 Problem Set 5 CS103 Handout 13 Fall 2012 May 4, 2012 Problem Set 5 This fifth problem set explores the regular languages, their properties, and their limits. This will be your first foray into computability theory,

More information

COMPSCI 311: Introduction to Algorithms First Midterm Exam, October 3, 2018

COMPSCI 311: Introduction to Algorithms First Midterm Exam, October 3, 2018 COMPSCI 311: Introduction to Algorithms First Midterm Exam, October 3, 2018 Name: ID: Answer the questions directly on the exam pages. Show all your work for each question. More detail including comments

More information

A Brief Introduction to Bayesian Networks. adapted from slides by Mitch Marcus

A Brief Introduction to Bayesian Networks. adapted from slides by Mitch Marcus A Brief Introduction to Bayesian Networks adapted from slides by Mitch Marcus Bayesian Networks A simple, graphical notation for conditional independence assertions and hence for compact specification

More information

1 ICS 161: Design and Analysis of Algorithms Lecture notes for January 23, Bucket Sorting

1 ICS 161: Design and Analysis of Algorithms Lecture notes for January 23, Bucket Sorting 1 ICS 161: Design and Analysis of Algorithms Lecture notes for January 23, 1996 2 Bucket Sorting We ve seen various algorithms for sorting in O(n log n) time and a lower bound showing that O(n log n) is

More information

Conceptual Data Modeling

Conceptual Data Modeling Conceptual Data odeling A data model is a way to describe the structure of the data. In models that are implemented it includes a set of operations that manipulate the data. A Data odel is a combination

More information

Sparse & Redundant Representations and Their Applications in Signal and Image Processing

Sparse & Redundant Representations and Their Applications in Signal and Image Processing Sparse & Redundant Representations and Their Applications in Signal and Image Processing Sparseland: An Estimation Point of View Michael Elad The Computer Science Department The Technion Israel Institute

More information

COMP4128 Programming Challenges

COMP4128 Programming Challenges Multi- COMP4128 Programming Challenges School of Computer Science and Engineering UNSW Australia Table of Contents 2 Multi- 1 2 Multi- 3 3 Multi- Given two strings, a text T and a pattern P, find the first

More information

8 Algorithms 8.1. Foundations of Computer Science Cengage Learning

8 Algorithms 8.1. Foundations of Computer Science Cengage Learning 8 Algorithms 8.1 Foundations of Computer Science Cengage Learning 8.2 Objectives After studying this chapter, the student should be able to: Define an algorithm and relate it to problem solving. Define

More information

The Relational Model 2. Week 3

The Relational Model 2. Week 3 The Relational Model 2 Week 3 1 We have seen how to create a database schema, how do we create an actual database on our computers? professor(pid : string, name : string) course(pid : string, number :

More information

Definition: A data structure is a way of organizing data in a computer so that it can be used efficiently.

Definition: A data structure is a way of organizing data in a computer so that it can be used efficiently. The Science of Computing I Lesson 4: Introduction to Data Structures Living with Cyber Pillar: Data Structures The need for data structures The algorithms we design to solve problems rarely do so without

More information

Context-Free Languages & Grammars (CFLs & CFGs) Reading: Chapter 5

Context-Free Languages & Grammars (CFLs & CFGs) Reading: Chapter 5 Context-Free Languages & Grammars (CFLs & CFGs) Reading: Chapter 5 1 Not all languages are regular So what happens to the languages which are not regular? Can we still come up with a language recognizer?

More information

Arrays. CSE 142 Programming I. Chapter 8. Another Motivation - Averaging Grades. Motivation: Sorting. Data Structures. Arrays

Arrays. CSE 142 Programming I. Chapter 8. Another Motivation - Averaging Grades. Motivation: Sorting. Data Structures. Arrays CSE 142 Programming I Chapter 8 8.1 Declaration and Referencing 8.2 Subscripts 8.3 Loop through arrays Arrays 8.4 & 8.5 Arrays arguments and parameters 8.6 Example 8.7 Multi-Dimensional Arrays 2000 UW

More information

Scene Grammars, Factor Graphs, and Belief Propagation

Scene Grammars, Factor Graphs, and Belief Propagation Scene Grammars, Factor Graphs, and Belief Propagation Pedro Felzenszwalb Brown University Joint work with Jeroen Chua Probabilistic Scene Grammars General purpose framework for image understanding and

More information

The Relational Model. Chapter 3

The Relational Model. Chapter 3 The Relational Model Chapter 3 Why Study the Relational Model? Most widely used model. Systems: IBM DB2, Informix, Microsoft (Access and SQL Server), Oracle, Sybase, MySQL, etc. Legacy systems in older

More information

CS 373: Combinatorial Algorithms, Spring 1999

CS 373: Combinatorial Algorithms, Spring 1999 CS 373: Combinatorial Algorithms, Spring 1999 Final Exam (May 7, 1999) Name: Net ID: Alias: This is a closed-book, closed-notes exam! If you brought anything with you besides writing instruments and your

More information

CS 188: Artificial Intelligence Fall Machine Learning

CS 188: Artificial Intelligence Fall Machine Learning CS 188: Artificial Intelligence Fall 2007 Lecture 23: Naïve Bayes 11/15/2007 Dan Klein UC Berkeley Machine Learning Up till now: how to reason or make decisions using a model Machine learning: how to select

More information

Scene Grammars, Factor Graphs, and Belief Propagation

Scene Grammars, Factor Graphs, and Belief Propagation Scene Grammars, Factor Graphs, and Belief Propagation Pedro Felzenszwalb Brown University Joint work with Jeroen Chua Probabilistic Scene Grammars General purpose framework for image understanding and

More information

The Relational Model. Chapter 3. Database Management Systems, R. Ramakrishnan and J. Gehrke 1

The Relational Model. Chapter 3. Database Management Systems, R. Ramakrishnan and J. Gehrke 1 The Relational Model Chapter 3 Database Management Systems, R. Ramakrishnan and J. Gehrke 1 Why Study the Relational Model? Most widely used model. Vendors: IBM, Informix, Microsoft, Oracle, Sybase, etc.

More information

Machine Learning (BSMC-GA 4439) Wenke Liu

Machine Learning (BSMC-GA 4439) Wenke Liu Machine Learning (BSMC-GA 4439) Wenke Liu 01-31-017 Outline Background Defining proximity Clustering methods Determining number of clusters Comparing two solutions Cluster analysis as unsupervised Learning

More information

Today. Logistic Regression. Decision Trees Redux. Graphical Models. Maximum Entropy Formulation. Now using Information Theory

Today. Logistic Regression. Decision Trees Redux. Graphical Models. Maximum Entropy Formulation. Now using Information Theory Today Logistic Regression Maximum Entropy Formulation Decision Trees Redux Now using Information Theory Graphical Models Representing conditional dependence graphically 1 Logistic Regression Optimization

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Lecture 8 Junction Trees CS/CNS/EE 155 Andreas Krause Announcements Homework 2 due next Wednesday (Nov 4) in class Start early!!! Project milestones due Monday (Nov 9) 4

More information

Introduction to Databases

Introduction to Databases Introduction to Databases Data Retrival SELECT * FROM Students S WHERE S.age < 18 Data Retrival SELECT S.name, S.login FROM Students S WHERE S.age < 18 Entity sets to tables Entity sets to tables CREATE

More information

Data Structures and Algorithms Week 8

Data Structures and Algorithms Week 8 Data Structures and Algorithms Week 8 Dynamic programming Fibonacci numbers Optimization problems Matrix multiplication optimization Principles of dynamic programming Longest Common Subsequence Algorithm

More information

pointers + memory double x; string a; int x; main overhead int y; main overhead

pointers + memory double x; string a; int x; main overhead int y; main overhead pointers + memory computer have memory to store data. every program gets a piece of it to use as we create and use more variables, more space is allocated to a program memory int x; double x; string a;

More information

FREE CONCERTS IN PAVILIO N.

FREE CONCERTS IN PAVILIO N. - 8 -» * /«>»*? - - * 6 * * - > 8< * * 77 < * * ««* ( 7 98 * «9 «8 [ 6 8 - «(» «* z-- < * ( * -»- «-?-- - * ]«-

More information

S1) It's another form of peak finder problem that we discussed in class, We exploit the idea used in binary search.

S1) It's another form of peak finder problem that we discussed in class, We exploit the idea used in binary search. Q1) Given an array A which stores 0 and 1, such that each entry containing 0 appears before all those entries containing 1. In other words, it is like {0, 0, 0,..., 0, 0, 1, 1,..., 111}. Design an algorithm

More information

1 >> Lecture 3 2 >> 3 >> -- Functions 4 >> Zheng-Liang Lu 169 / 221

1 >> Lecture 3 2 >> 3 >> -- Functions 4 >> Zheng-Liang Lu 169 / 221 1 >> Lecture 3 2 >> 3 >> -- Functions 4 >> Zheng-Liang Lu 169 / 221 Functions Recall that an algorithm is a feasible solution to the specific problem. 1 A function is a piece of computer code that accepts

More information

Lecture 8. Divided Differences,Least-Squares Approximations. Ceng375 Numerical Computations at December 9, 2010

Lecture 8. Divided Differences,Least-Squares Approximations. Ceng375 Numerical Computations at December 9, 2010 Lecture 8, Ceng375 Numerical Computations at December 9, 2010 Computer Engineering Department Çankaya University 8.1 Contents 1 2 3 8.2 : These provide a more efficient way to construct an interpolating

More information

Searching Elements in an Array: Linear and Binary Search. Spring Semester 2007 Programming and Data Structure 1

Searching Elements in an Array: Linear and Binary Search. Spring Semester 2007 Programming and Data Structure 1 Searching Elements in an Array: Linear and Binary Search Spring Semester 2007 Programming and Data Structure 1 Searching Check if a given element (called key) occurs in the array. Example: array of student

More information

CS 188: Artificial Intelligence Fall Announcements

CS 188: Artificial Intelligence Fall Announcements CS 188: Artificial Intelligence Fall 2006 Lecture 22: Naïve Bayes 11/14/2006 Dan Klein UC Berkeley Announcements Optional midterm On Tuesday 11/21 in class Review session 11/19, 7-9pm, in 306 Soda Projects

More information

Announcements. CS 188: Artificial Intelligence Fall Machine Learning. Classification. Classification. Bayes Nets for Classification

Announcements. CS 188: Artificial Intelligence Fall Machine Learning. Classification. Classification. Bayes Nets for Classification CS 88: Artificial Intelligence Fall 00 Lecture : Naïve Bayes //00 Announcements Optional midterm On Tuesday / in class Review session /9, 7-9pm, in 0 Soda Projects. due /. due /7 Dan Klein UC Berkeley

More information

Department of Computer Science Admission Test for PhD Program. Part I Time : 30 min Max Marks: 15

Department of Computer Science Admission Test for PhD Program. Part I Time : 30 min Max Marks: 15 Department of Computer Science Admission Test for PhD Program Part I Time : 0 min Max Marks: 5 Each Q carries marks. ¼ mark will be deducted for every wrong answer. Part II of only those candidates will

More information

3. Probability 51. probability A numerical value between 0 and 1 assigned to an event to indicate how often the event occurs (in the long run).

3. Probability 51. probability A numerical value between 0 and 1 assigned to an event to indicate how often the event occurs (in the long run). 3. Probability 51 3 Probability 3.1 Key Definitions and Ideas random process A repeatable process that has multiple unpredictable potential outcomes. Although we sometimes use language that suggests that

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05010106 Set No. 1 1. (a) Draw a Flowchart for the following The average score for 3 tests has to be greater than 80 for a candidate to qualify for the interview. Representing the conditional

More information

EC500. Design of Secure and Reliable Hardware. Lecture 1 & 2

EC500. Design of Secure and Reliable Hardware. Lecture 1 & 2 EC500 Design of Secure and Reliable Hardware Lecture 1 & 2 Mark Karpovsky January 17 th, 2013 1 Security Errors injected by the attacker (active attacks) Reliability Errors injected by random sources e.g.

More information

Upper Bounds for Maximally Greedy Binary Search Trees

Upper Bounds for Maximally Greedy Binary Search Trees Upper Bounds for Maximally Greedy Binary Search Trees Kyle Fox -- University of Illinois at Urbana-Champaign Balanced Binary Search Trees Want data structures for dictionary, predecessor search, etc. Red-black

More information

Announcements. Project 5 is on the street. Second part is essay questions for CoS teaming requirements.

Announcements. Project 5 is on the street. Second part is essay questions for CoS teaming requirements. Announcements Project 5 is on the street. Second part is essay questions for CoS teaming requirements. The first part you do as a team The CoS essay gets individually answered and has separate submission

More information

1 Dynamic Programming

1 Dynamic Programming Recitation 13 Dynamic Programming Parallel and Sequential Data Structures and Algorithms, 15-210 (Spring 2013) April 17, 2013 1 Dynamic Programming Dynamic programming is a technique to avoid needless

More information

Graphical Models. David M. Blei Columbia University. September 17, 2014

Graphical Models. David M. Blei Columbia University. September 17, 2014 Graphical Models David M. Blei Columbia University September 17, 2014 These lecture notes follow the ideas in Chapter 2 of An Introduction to Probabilistic Graphical Models by Michael Jordan. In addition,

More information

Monte Carlo Integration and Random Numbers

Monte Carlo Integration and Random Numbers Monte Carlo Integration and Random Numbers Higher dimensional integration u Simpson rule with M evaluations in u one dimension the error is order M -4! u d dimensions the error is order M -4/d u In general

More information

Math 205 Test 3 Grading Guidelines Problem 1 Part a: 1 point for figuring out r, 2 points for setting up the equation P = ln 2 P and 1 point for the initial condition. Part b: All or nothing. This is really

More information

Arrays. CSE / ENGR 142 Programming I. Chapter 8. Another Motivation - Averaging Grades. Motivation: Sorting. Data Structures.

Arrays. CSE / ENGR 142 Programming I. Chapter 8. Another Motivation - Averaging Grades. Motivation: Sorting. Data Structures. CSE / ENGR 142 Programming I Arrays Chapter 8 8.1 Declaration and Referencing 8.2 Subscripts 8.3 Loop through arrays 8.4 & 8.5 Arrays arguments and parameters 8.6 Example 8.7 Multi-Dimensional Arrays 1998

More information

Overview. Monte Carlo Methods. Statistics & Bayesian Inference Lecture 3. Situation At End Of Last Week

Overview. Monte Carlo Methods. Statistics & Bayesian Inference Lecture 3. Situation At End Of Last Week Statistics & Bayesian Inference Lecture 3 Joe Zuntz Overview Overview & Motivation Metropolis Hastings Monte Carlo Methods Importance sampling Direct sampling Gibbs sampling Monte-Carlo Markov Chains Emcee

More information

Recursion. COMS W1007 Introduction to Computer Science. Christopher Conway 26 June 2003

Recursion. COMS W1007 Introduction to Computer Science. Christopher Conway 26 June 2003 Recursion COMS W1007 Introduction to Computer Science Christopher Conway 26 June 2003 The Fibonacci Sequence The Fibonacci numbers are: 1, 1, 2, 3, 5, 8, 13, 21, 34,... We can calculate the nth Fibonacci

More information

Clustering web search results

Clustering web search results Clustering K-means Machine Learning CSE546 Emily Fox University of Washington November 4, 2013 1 Clustering images Set of Images [Goldberger et al.] 2 1 Clustering web search results 3 Some Data 4 2 K-means

More information

Lecture 7: Decision Trees

Lecture 7: Decision Trees Lecture 7: Decision Trees Instructor: Outline 1 Geometric Perspective of Classification 2 Decision Trees Geometric Perspective of Classification Perspective of Classification Algorithmic Geometric Probabilistic...

More information

Graphical models are a lot like a circuit diagram they are written down to visualize and better understand a problem.

Graphical models are a lot like a circuit diagram they are written down to visualize and better understand a problem. Machine Learning (ML, F16) Lecture#15 (Tuesday, Nov. 1st) Lecturer: Byron Boots Graphical Models 1 Graphical Models Often, one is interested in representing a joint distribution P over a set of n random

More information

1 Definition of Reduction

1 Definition of Reduction 1 Definition of Reduction Problem A is reducible, or more technically Turing reducible, to problem B, denoted A B if there a main program M to solve problem A that lacks only a procedure to solve problem

More information

Research Students Lecture Series 2015

Research Students Lecture Series 2015 Research Students Lecture Series 215 Analyse your big data with this one weird probabilistic approach! Or: applied probabilistic algorithms in 5 easy pieces Advait Sarkar advait.sarkar@cl.cam.ac.uk Research

More information

Tree-Structured Indexes

Tree-Structured Indexes Tree-Structured Indexes Yanlei Diao UMass Amherst Slides Courtesy of R. Ramakrishnan and J. Gehrke Access Methods v File of records: Abstraction of disk storage for query processing (1) Sequential scan;

More information

Binary floating point encodings

Binary floating point encodings Week 1: Wednesday, Jan 25 Binary floating point encodings Binary floating point arithmetic is essentially scientific notation. Where in decimal scientific notation we write in floating point, we write

More information

COSC160: Data Structures Hashing Structures. Jeremy Bolton, PhD Assistant Teaching Professor

COSC160: Data Structures Hashing Structures. Jeremy Bolton, PhD Assistant Teaching Professor COSC160: Data Structures Hashing Structures Jeremy Bolton, PhD Assistant Teaching Professor Outline I. Hashing Structures I. Motivation and Review II. Hash Functions III. HashTables I. Implementations

More information

CS242: Probabilistic Graphical Models Lecture 3: Factor Graphs & Variable Elimination

CS242: Probabilistic Graphical Models Lecture 3: Factor Graphs & Variable Elimination CS242: Probabilistic Graphical Models Lecture 3: Factor Graphs & Variable Elimination Instructor: Erik Sudderth Brown University Computer Science September 11, 2014 Some figures and materials courtesy

More information

Tree-Structured Indexes

Tree-Structured Indexes Tree-Structured Indexes Chapter 9 Database Management Systems, R. Ramakrishnan and J. Gehrke 1 Introduction As for any index, 3 alternatives for data entries k*: Data record with key value k

More information

Access Methods. Basic Concepts. Index Evaluation Metrics. search key pointer. record. value. Value

Access Methods. Basic Concepts. Index Evaluation Metrics. search key pointer. record. value. Value Access Methods This is a modified version of Prof. Hector Garcia Molina s slides. All copy rights belong to the original author. Basic Concepts search key pointer Value record? value Search Key - set of

More information

Structure of Social Networks

Structure of Social Networks Structure of Social Networks Outline Structure of social networks Applications of structural analysis Social *networks* Twitter Facebook Linked-in IMs Email Real life Address books... Who Twitter #numbers

More information

Approximate (Monte Carlo) Inference in Bayes Nets. Monte Carlo (continued)

Approximate (Monte Carlo) Inference in Bayes Nets. Monte Carlo (continued) Approximate (Monte Carlo) Inference in Bayes Nets Basic idea: Let s repeatedly sample according to the distribution represented by the Bayes Net. If in 400/1000 draws, the variable X is true, then we estimate

More information

Homework /681: Artificial Intelligence (Fall 2017) Out: October 18, 2017 Due: October 29, 2017 at 11:59PM

Homework /681: Artificial Intelligence (Fall 2017) Out: October 18, 2017 Due: October 29, 2017 at 11:59PM Homework 2 15-381/681: Artificial Intelligence (Fall 2017) Out: October 18, 2017 Due: October 29, 2017 at 11:59PM Homework Policies Homework is due on Autolab by the posted deadline. Assignments submitted

More information