2 T. x + 2 T. , T( x, y = 0) = T 1

Size: px
Start display at page:

Download "2 T. x + 2 T. , T( x, y = 0) = T 1"

Transcription

1 LAB 2: Conduction with Finite Difference Method Objective: The objective of this laboratory is to introduce the basic steps needed to numerically solve a steady state two-dimensional conduction problem using the finite difference method. The impact of mesh refinement on accuracy will also be investigated by comparing to the analytical solution obtained in Lab 1. Background: We will write a simple code for solving two-dimensional conduction problems using the finite difference method to outline the basic steps required. In the following labs we will modify this code to handle more complicated boundary conditions, improve its performance, and include variable thermal conductivity. We will solve the same problem as the one for which we obtained an analytical solution last week in lab. Recall that we solved for the steady-state two-dimensional temperature distribution, T(x, y), in a solid where the governing equation is the 2-D heat diffusion equation (or Laplace s equation) and the boundary conditions are specified as follows 2 T x + 2 T 2 y = 0 (1) 2 T( x = 0,y) = T 1, T( x = L x, y) = T 1, T( x, y = 0) = T 1, and T( x, y = L y ) = T 2. (2) For our finite difference code there are three main steps to solve problems: 1. Define the mesh 2. Formulate the finite difference form of the governing equation 3. Solve the system of linear equations simultaneously y y = L y T (y = L y ) = T 2 T (x = 0) = T 1 T (x = L x ) = T 1 x T (y = 0) = T 1 x = L x Figure 1. Schematic of two-dimensional domain for conduction heat transfer.

2 For step 1, use a mesh with regular node spacing x = y and with nodes located on the boundaries. For the x-direction, let N x +1 be the number of nodes and i = 1, 2,..., N x + 1 be the index for nodes. For the y-direction, let N y +1 be the number of nodes and j = 1, 2,..., N y + 1 be the index for nodes. Thus, the x and y-coordinates can be evaluated using the following x i = ( i 1) Δx and y j = ( j 1) Δy (3) For step 2 for this problem, we only need to formulate a finite difference equation for interior nodes because temperature is constant on the boundaries. From our derivation in class, Equation (1) can be approximated using finite differences for x = y as T i, j = 1 ( 4 T + T + T + T i 1, j i+1, j i, j 1 i, j +1) (4) which states that the temperature at any interior node is the average of the surrounding nodes. For the boundary nodes, simply set temperature to apply each boundary condition: T 1, j = T 1, T Nx +1, j = T 1, T i,1 = T 1, and T i,ny +1 = T 2. (5) Note that the corners are called singularities where the temperature jumps from T 1 to T 2 and that its value can be set to T 1, T 2 or (T 1 + T 2 )/2. This will not influence your solution, but will affect the appearance of your contour plot. For our fixed temperature boundary conditions, we now have a set of (N x - 1)(N y - 1) linear equations to solve. If the boundary conditions involve specified heat transfer or convection then we would have a set of (N x + 1)(N y + 1) linear equations to solve. For step 3 we will use Gauss- Seidel iteration that consists of the following steps (where p is the iteration number): a. Assume an initial guess for each T p i, j (where p = 0 for initial iteration) For our example, a good initial guess would be either T 1, T 2, or 0 C. Picking a good initial guess will speed up convergence b. Set tolerance, tol, for convergence and maximum number of iterations, p max c. Solve for an updated T p+1 i, j at each node Always use most recently calculated values for each update Perform calculations in a systematic order to improve efficiency For increasing i and j in for loops, Equation (4) for interior nodes becomes +T p+1 +T p ( i, j 1 ) i, j+1 T p+1 i, j = 1 4 T p+1 p i 1, j +T i+1, j 2

3 d. Check for convergence Calculate normalized residual, Res, for the p + 1 iteration For increasing i and j in for loops, for interior nodes use Res p+1 = N y N x p+1 r i, j j=2 i=2 N y N x p+1 T i, j j=2 i=2, r p+1 i, j = 1 4 T p+1 i 1, j +T p+1 i+1, j +T p+1 p+1 p+1 ( i, j 1 +T i, j+1 ) T i, j Check if normalized residual drops below set tolerance, Res p+1 tol If this is false, return to step c If this is true or the maximum number of iterations has been reached, stop Once the temperature has converged, post-process the data by plotting out the solution and checking for agreement with the analytical solution. Laboratory: For this laboratory, you will write a MATLAB m-file to calculate the temperature using the finite-difference method, make a contour plot of the results, and compare your answer to an analytical solution for the same problem. Below are some general instructions on how to write your program. Please refer to the online MATLAB help files as needed for more complete information. 1. Open MATLAB and create an m-file named ME554_Lab_02.m (or anything else equally boring). Write a header for your program using % for comment lines. Your header should include the program name, description, your name, date created, date last modified, and a variable list with definitions. Continue to use many comment lines throughout your program to describe each subsequent set of commands. At the beginning of your code, include a clear statement to clear all previous variables and a clc statement to clear the display. 2. Set values for the geometry parameters: L x, L y, N x, N y, x, and y. Make sure x = y and that L x = N x x and L y = N y y, thus all of these parameters cannot be set indepently. Set them in such a way that it is impossible to input a value that is not correct. 3. Set values for the boundary condition parameters: T 1 and T Set a tolerance for convergence of the Gauss-Seidel iteration. Typically, a value of tol = 10-9 is sufficient for good accuracy. NOTE: recall that 10-9 = 1 x 10-9 = 1e-9 5. Set the maximum number of iterations for the Gauss-Seidel iteration to p max = 10 9 so that the program will quit eventually if there is a problem with convergence. You may need to increase this later for problems that take a large number of iterations to converge. 3

4 6. Initialize the temperature matrix to T 1 using the following code: T = T1*ones(Nx+1, Ny+1); 7. Set the fixed temperatures at the boundary nodes to the correct temperatures. Because all of the temperatures have been set to T1, the bottom and side boundaries are already specified correctly. The top boundary condition given by Equation (5) can be set using: T(2:Nx,Ny+1) = T2; T(1,Ny+1) = (T1 + T2)/2; T(Nx+1,Ny+1) = (T1 + T2)/2; 8. Begin the Gauss-Seidel iteration loop using either a for or while loop such as for p = 1:pmax Enter code outlined in steps 9, 10, and 11 inside this for loop. 9. Update the value of Τ i,j at each interior node. To do this, use two nested for loops: for j = 2:Ny for i = 2:Nx Insert Equation (4) here. Note that for Gauss-Seidel iteration since you always want to use the most recently calculated temperatures for your updated values, you only need a single two-dimensional matrix for Τ i,j. 10. Calculate the residual for each node, r i,j, after updating all the temperatures using two additional for loops similar to those in Step 9. Calculate the normalized residual using: Res = sum(sum(r(2:nx,2:ny)))/sum(sum(t(2:nx,2:ny))); 11. Print out the progress and check for conversion by comparing residual to tolerance using: fprintf( Iter = %8.0d - Res = %4.2e \n, p, Res); if (Res < tol) break % Exit iteration loop because of convergence 4

5 12. Check if the main iteration loop exited by reaching the maximum number of iterations: if (p == pmax) disp( Warning: code did not converge ) 13. Print out temperature data to the screen using fprintf to produce formatted output. The following lines work well: disp( Temperatures in brick in deg. C = ) for j = Ny+1:-1:1 fprintf('%7.2f', T(:,j)) fprintf('\n') These lines print out the temperatures in the order you expect for a xy-coordinate system with typical orientation. The %7.2f sets the format for the temperatures as floating point with seven spaces and two numbers after the decimal place. The \n adds a carriage return between lines. 14. Make a contour plot of the resulting temperatures. If you would like, you can add the plot within the main iteration loop allowing yourself to visualize how the temperatures converge. If you do this, put a pause(0.001) statement after the contourf statement to allow the plot to display properly. Assignment Submit your lab report as a single pdf file using PolyLearn that contains the items listed below. 1. Set the following values in your code: L x = L y = 1 m, T 1 = 0 C, and T 2 = 100 C (which are the same as for Lab 1). Include tables for temperature values at each location for N x = N y = 5 and N x = N y = 10. Label them Table 1 and Table 2 along with a descriptive caption above the table. Include x and y locations for each temperature on your table so you can determine which temperatures are evaluated at the same location. Use 4 decimal places for temperature data evaluated using double precision. 2. Compare the values for each case at the same coordinate locations. Are the temperatures the same or different (be quantitative) at each location where they overlap? Briefly explain why this result makes sense. 3. Include contour plots for the two cases in step 2. For each figure include Figure 1 and Figure 2 along with a descriptive caption below the figure. 4. Briefly explain the two reasons these contour plots are different and which one of these reasons has a more significant impact on the visual appearance of the contour plot. 5

6 5. Test the effect of mesh refinement on the accuracy of your results by comparing your numerical results to the analytical solution from Lab 1. In particular, for the same geometry and boundary conditions above, solve for the temperature at the node located at x = y = 0.4 m (add lines to your code to do this) for N x = N y = 5, 10, 20, 30, 40, and 50. Make a table and plot temperature at this location versus number of nodes. Add the analytical value to this plot as a horizontal line. Make sure you output the temperature data to four decimal places. Call these Table 3 and Figure 3 and include descriptive captions. Does the numerical solution appear to be converging to the analytical solution (be quantitative)? How many nodes are required for your mesh to achieve sufficient accuracy? How can you determine if your mesh has been sufficiently refined? 6. When will round-off error start to impact your solution? To help you answer this question use the MATLAB function eps() to determine the accuracy of both double and single precision floating point calculations and compare this to the magnitude of your residuals. 7. Include a copy of your final m-file. 6

Driven Cavity Example

Driven Cavity Example BMAppendixI.qxd 11/14/12 6:55 PM Page I-1 I CFD Driven Cavity Example I.1 Problem One of the classic benchmarks in CFD is the driven cavity problem. Consider steady, incompressible, viscous flow in a square

More information

LAB 4: Introduction to MATLAB PDE Toolbox and SolidWorks Simulation

LAB 4: Introduction to MATLAB PDE Toolbox and SolidWorks Simulation LAB 4: Introduction to MATLAB PDE Toolbox and SolidWorks Simulation Objective: The objective of this laboratory is to introduce how to use MATLAB PDE toolbox and SolidWorks Simulation to solve two-dimensional

More information

1 2 (3 + x 3) x 2 = 1 3 (3 + x 1 2x 3 ) 1. 3 ( 1 x 2) (3 + x(0) 3 ) = 1 2 (3 + 0) = 3. 2 (3 + x(0) 1 2x (0) ( ) = 1 ( 1 x(0) 2 ) = 1 3 ) = 1 3

1 2 (3 + x 3) x 2 = 1 3 (3 + x 1 2x 3 ) 1. 3 ( 1 x 2) (3 + x(0) 3 ) = 1 2 (3 + 0) = 3. 2 (3 + x(0) 1 2x (0) ( ) = 1 ( 1 x(0) 2 ) = 1 3 ) = 1 3 6 Iterative Solvers Lab Objective: Many real-world problems of the form Ax = b have tens of thousands of parameters Solving such systems with Gaussian elimination or matrix factorizations could require

More information

Essay 5 Tutorial for a Three-Dimensional Heat Conduction Problem Using ANSYS

Essay 5 Tutorial for a Three-Dimensional Heat Conduction Problem Using ANSYS Essay 5 Tutorial for a Three-Dimensional Heat Conduction Problem Using ANSYS 5.1 Introduction The problem selected to illustrate the use of ANSYS software for a three-dimensional steadystate heat conduction

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

This is the script for the TEMP/W tutorial movie. Please follow along with the movie, TEMP/W Getting Started.

This is the script for the TEMP/W tutorial movie. Please follow along with the movie, TEMP/W Getting Started. TEMP/W Tutorial This is the script for the TEMP/W tutorial movie. Please follow along with the movie, TEMP/W Getting Started. Introduction Here is a schematic diagram of the problem to be solved. An ice

More information

STEPS BY STEPS FOR THREE-DIMENSIONAL ANALYSIS USING ABAQUS STEADY-STATE HEAT TRANSFER ANALYSIS

STEPS BY STEPS FOR THREE-DIMENSIONAL ANALYSIS USING ABAQUS STEADY-STATE HEAT TRANSFER ANALYSIS UNIVERSITI MALAYSIA PERLIS FACULTY OF ENGINEERING TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING TECHNOLOGY PDT348 FINITE ELEMENT ANALYSIS Semester II 2017/2018 STEPS BY STEPS FOR THREE-DIMENSIONAL ANALYSIS

More information

f xx + f yy = F (x, y)

f xx + f yy = F (x, y) Application of the 2D finite element method to Laplace (Poisson) equation; f xx + f yy = F (x, y) M. R. Hadizadeh Computer Club, Department of Physics and Astronomy, Ohio University 4 Nov. 2013 Domain

More information

Compressible Flow in a Nozzle

Compressible Flow in a Nozzle SPC 407 Supersonic & Hypersonic Fluid Dynamics Ansys Fluent Tutorial 1 Compressible Flow in a Nozzle Ahmed M Nagib Elmekawy, PhD, P.E. Problem Specification Consider air flowing at high-speed through a

More information

An Investigation into Iterative Methods for Solving Elliptic PDE s Andrew M Brown Computer Science/Maths Session (2000/2001)

An Investigation into Iterative Methods for Solving Elliptic PDE s Andrew M Brown Computer Science/Maths Session (2000/2001) An Investigation into Iterative Methods for Solving Elliptic PDE s Andrew M Brown Computer Science/Maths Session (000/001) Summary The objectives of this project were as follows: 1) Investigate iterative

More information

Tutorial 1. Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

Tutorial 1. Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow Tutorial 1. Introduction to Using FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow Introduction This tutorial illustrates the setup and solution of the two-dimensional turbulent fluid flow and heat

More information

How TMG Uses Elements and Nodes

How TMG Uses Elements and Nodes Simulation: TMG Thermal Analysis User's Guide How TMG Uses Elements and Nodes Defining Boundary Conditions on Elements You create a TMG thermal model in exactly the same way that you create any finite

More information

Finite Element Analysis using ANSYS Mechanical APDL & ANSYS Workbench

Finite Element Analysis using ANSYS Mechanical APDL & ANSYS Workbench Finite Element Analysis using ANSYS Mechanical APDL & ANSYS Workbench Course Curriculum (Duration: 120 Hrs.) Section I: ANSYS Mechanical APDL Chapter 1: Before you start using ANSYS a. Introduction to

More information

Heat Transfer Analysis of a Pipe

Heat Transfer Analysis of a Pipe LESSON 25 Heat Transfer Analysis of a Pipe 3 Fluid 800 Ambient Temperture Temperture, C 800 500 2 Dia Fluid Ambient 10 20 30 40 Time, s Objectives: Transient Heat Transfer Analysis Model Convection, Conduction

More information

Middle East Technical University Mechanical Engineering Department ME 485 CFD with Finite Volume Method Fall 2017 (Dr. Sert)

Middle East Technical University Mechanical Engineering Department ME 485 CFD with Finite Volume Method Fall 2017 (Dr. Sert) Middle East Technical University Mechanical Engineering Department ME 485 CFD with Finite Volume Method Fall 2017 (Dr. Sert) ANSYS Fluent Tutorial Developing Laminar Flow in a 2D Channel 1 How to use This

More information

ANSYS Workbench Guide

ANSYS Workbench Guide ANSYS Workbench Guide Introduction This document serves as a step-by-step guide for conducting a Finite Element Analysis (FEA) using ANSYS Workbench. It will cover the use of the simulation package through

More information

Introduction to Finite Element Modelling in Geosciences

Introduction to Finite Element Modelling in Geosciences Spring Semester 2012 651-4144-00L Introduction to Finite Element Modelling in Geosciences August 5-9, 2013 Dave May (dave.may@erdw.ethz.ch) Marcel Frehner (marcel.frehner@erdw.ethz.ch) Thomas Philippe

More information

Solid Conduction Tutorial

Solid Conduction Tutorial SECTION 1 1 SECTION 1 The following is a list of files that will be needed for this tutorial. They can be found in the Solid_Conduction folder. Exhaust-hanger.tdf Exhaust-hanger.ntl 1.0.1 Overview The

More information

What is Multigrid? They have been extended to solve a wide variety of other problems, linear and nonlinear.

What is Multigrid? They have been extended to solve a wide variety of other problems, linear and nonlinear. AMSC 600/CMSC 760 Fall 2007 Solution of Sparse Linear Systems Multigrid, Part 1 Dianne P. O Leary c 2006, 2007 What is Multigrid? Originally, multigrid algorithms were proposed as an iterative method to

More information

Backward facing step Homework. Department of Fluid Mechanics. For Personal Use. Budapest University of Technology and Economics. Budapest, 2010 autumn

Backward facing step Homework. Department of Fluid Mechanics. For Personal Use. Budapest University of Technology and Economics. Budapest, 2010 autumn Backward facing step Homework Department of Fluid Mechanics Budapest University of Technology and Economics Budapest, 2010 autumn Updated: October 26, 2010 CONTENTS i Contents 1 Introduction 1 2 The problem

More information

An introduction to mesh generation Part IV : elliptic meshing

An introduction to mesh generation Part IV : elliptic meshing Elliptic An introduction to mesh generation Part IV : elliptic meshing Department of Civil Engineering, Université catholique de Louvain, Belgium Elliptic Curvilinear Meshes Basic concept A curvilinear

More information

Practice to Informatics for Energy and Environment

Practice to Informatics for Energy and Environment Practice to Informatics for Energy and Environment Part 3: Finite Elemente Method Example 1: 2-D Domain with Heat Conduction Tutorial by Cornell University https://confluence.cornell.edu/display/simulation/ansys+-+2d+steady+conduction

More information

Verification of Laminar and Validation of Turbulent Pipe Flows

Verification of Laminar and Validation of Turbulent Pipe Flows 1 Verification of Laminar and Validation of Turbulent Pipe Flows 1. Purpose ME:5160 Intermediate Mechanics of Fluids CFD LAB 1 (ANSYS 18.1; Last Updated: Aug. 1, 2017) By Timur Dogan, Michael Conger, Dong-Hwan

More information

Tutorial 2. Modeling Periodic Flow and Heat Transfer

Tutorial 2. Modeling Periodic Flow and Heat Transfer Tutorial 2. Modeling Periodic Flow and Heat Transfer Introduction: Many industrial applications, such as steam generation in a boiler or air cooling in the coil of an air conditioner, can be modeled as

More information

Assignment in The Finite Element Method, 2017

Assignment in The Finite Element Method, 2017 Assignment in The Finite Element Method, 2017 Division of Solid Mechanics The task is to write a finite element program and then use the program to analyse aspects of a surface mounted resistor. The problem

More information

2D Model For Steady State Temperature Distribution

2D Model For Steady State Temperature Distribution 2D Model For Steady State Temperature Distribution Finite Element Method Vinh University of Massachusetts Dartmouth December 14, 21 Introduction Advisor Dr. Nima Rahbar: Civil Engineering Project Objective

More information

AMath 483/583 Lecture 24. Notes: Notes: Steady state diffusion. Notes: Finite difference method. Outline:

AMath 483/583 Lecture 24. Notes: Notes: Steady state diffusion. Notes: Finite difference method. Outline: AMath 483/583 Lecture 24 Outline: Heat equation and discretization OpenMP and MPI for iterative methods Jacobi, Gauss-Seidel, SOR Notes and Sample codes: Class notes: Linear algebra software $UWHPSC/codes/openmp/jacobi1d_omp1.f90

More information

Introduction to ANSYS CFX

Introduction to ANSYS CFX Workshop 03 Fluid flow around the NACA0012 Airfoil 16.0 Release Introduction to ANSYS CFX 2015 ANSYS, Inc. March 13, 2015 1 Release 16.0 Workshop Description: The flow simulated is an external aerodynamics

More information

Melting Using Element Death

Melting Using Element Death Melting Using Element Death Introduction This tutorial was completed using ANSYS 7.0 The purpose of the tutorial is to outline the steps required to use element death to model melting of a material. Element

More information

AMath 483/583 Lecture 24

AMath 483/583 Lecture 24 AMath 483/583 Lecture 24 Outline: Heat equation and discretization OpenMP and MPI for iterative methods Jacobi, Gauss-Seidel, SOR Notes and Sample codes: Class notes: Linear algebra software $UWHPSC/codes/openmp/jacobi1d_omp1.f90

More information

ENGR 1181 MATLAB 09: For Loops 2

ENGR 1181 MATLAB 09: For Loops 2 ENGR 1181 MATLAB 09: For Loops Learning Objectives 1. Use more complex ways of setting the loop index. Construct nested loops in the following situations: a. For use with two dimensional arrays b. For

More information

Stream Function-Vorticity CFD Solver MAE 6263

Stream Function-Vorticity CFD Solver MAE 6263 Stream Function-Vorticity CFD Solver MAE 66 Charles O Neill April, 00 Abstract A finite difference CFD solver was developed for transient, two-dimensional Cartesian viscous flows. Flow parameters are solved

More information

Comparison of different solvers for two-dimensional steady heat conduction equation ME 412 Project 2

Comparison of different solvers for two-dimensional steady heat conduction equation ME 412 Project 2 Comparison of different solvers for two-dimensional steady heat conduction equation ME 412 Project 2 Jingwei Zhu March 19, 2014 Instructor: Surya Pratap Vanka 1 Project Description The purpose of this

More information

Short Version of Matlab Manual

Short Version of Matlab Manual Short Version of Matlab Manual This is an extract from the manual which was used in MA10126 in first year. Its purpose is to refamiliarise you with the matlab programming concepts. 1 Starting MATLAB 1.1.1.

More information

Using the Discrete Ordinates Radiation Model

Using the Discrete Ordinates Radiation Model Tutorial 6. Using the Discrete Ordinates Radiation Model Introduction This tutorial illustrates the set up and solution of flow and thermal modelling of a headlamp. The discrete ordinates (DO) radiation

More information

SIMULATION CAPABILITIES IN CREO

SIMULATION CAPABILITIES IN CREO SIMULATION CAPABILITIES IN CREO Enhance Your Product Design with Simulation & Using digital prototypes to understand how your designs perform in real-world conditions is vital to your product development

More information

In this problem, we will demonstrate the following topics:

In this problem, we will demonstrate the following topics: Z Periodic boundary condition 1 1 0.001 Periodic boundary condition 2 Y v V cos t, V 1 0 0 The second Stokes problem is 2D fluid flow above a plate that moves horizontally in a harmonic manner, schematically

More information

Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders

Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders Objective: The objective of this laboratory is to introduce how to use FLUENT to solve both transient and natural convection problems.

More information

EN 10211:2007 validation of Therm 6.3. Therm 6.3 validation according to EN ISO 10211:2007

EN 10211:2007 validation of Therm 6.3. Therm 6.3 validation according to EN ISO 10211:2007 Therm 6.3 validation according to EN ISO 10211:2007 Therm 6.3 validation according to NBN EN ISO 10211:2007 eneral considerations and requirements for validation of calculation methods according to NBN

More information

CSci 1113 Lab Exercise 6 (Week 7): Arrays & Strings

CSci 1113 Lab Exercise 6 (Week 7): Arrays & Strings CSci 1113 Lab Exercise 6 (Week 7): Arrays & Strings Strings Representing textual information using sequences of characters is common throughout computing. Names, sentences, text, prompts, etc. all need

More information

Flow and Heat Transfer in a Mixing Elbow

Flow and Heat Transfer in a Mixing Elbow Flow and Heat Transfer in a Mixing Elbow Objectives The main objectives of the project are to learn (i) how to set up and perform flow simulations with heat transfer and mixing, (ii) post-processing and

More information

CSci 1113, Fall 2015 Lab Exercise 7 (Week 8): Arrays! Strings! Recursion! Oh my!

CSci 1113, Fall 2015 Lab Exercise 7 (Week 8): Arrays! Strings! Recursion! Oh my! CSci 1113, Fall 2015 Lab Exercise 7 (Week 8): Arrays! Strings! Recursion! Oh my! Recursion Recursion is an abstraction that is defined in terms of itself. Examples include mathematical abstractions such

More information

Introduction to C omputational F luid Dynamics. D. Murrin

Introduction to C omputational F luid Dynamics. D. Murrin Introduction to C omputational F luid Dynamics D. Murrin Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat transfer, mass transfer, chemical reactions, and related phenomena

More information

Simulation of Turbulent Flow in an Asymmetric Diffuser

Simulation of Turbulent Flow in an Asymmetric Diffuser Simulation of Turbulent Flow in an Asymmetric Diffuser 1. Purpose 58:160 Intermediate Mechanics of Fluids CFD LAB 3 By Tao Xing and Fred Stern IIHR-Hydroscience & Engineering The University of Iowa C.

More information

Water seepage through a dam: A finite element approach

Water seepage through a dam: A finite element approach Water seepage through a dam: A finite element approach Ashley B. Pitcher Student Number 250098269 AM466b Final Project (Undergraduate) University of Western Ontario April 15, 2005 Abstract We consider

More information

Supersonic Flow Over a Wedge

Supersonic Flow Over a Wedge SPC 407 Supersonic & Hypersonic Fluid Dynamics Ansys Fluent Tutorial 2 Supersonic Flow Over a Wedge Ahmed M Nagib Elmekawy, PhD, P.E. Problem Specification A uniform supersonic stream encounters a wedge

More information

Middle East Technical University Mechanical Engineering Department ME 413 Introduction to Finite Element Analysis Spring 2015 (Dr.

Middle East Technical University Mechanical Engineering Department ME 413 Introduction to Finite Element Analysis Spring 2015 (Dr. Middle East Technical University Mechanical Engineering Department ME 413 Introduction to Finite Element Analysis Spring 2015 (Dr. Sert) COMSOL 1 Tutorial 2 Problem Definition Hot combustion gases of a

More information

µ = Pa s m 3 The Reynolds number based on hydraulic diameter, D h = 2W h/(w + h) = 3.2 mm for the main inlet duct is = 359

µ = Pa s m 3 The Reynolds number based on hydraulic diameter, D h = 2W h/(w + h) = 3.2 mm for the main inlet duct is = 359 Laminar Mixer Tutorial for STAR-CCM+ ME 448/548 March 30, 2014 Gerald Recktenwald gerry@pdx.edu 1 Overview Imagine that you are part of a team developing a medical diagnostic device. The device has a millimeter

More information

FLUENT Secondary flow in a teacup Author: John M. Cimbala, Penn State University Latest revision: 26 January 2016

FLUENT Secondary flow in a teacup Author: John M. Cimbala, Penn State University Latest revision: 26 January 2016 FLUENT Secondary flow in a teacup Author: John M. Cimbala, Penn State University Latest revision: 26 January 2016 Note: These instructions are based on an older version of FLUENT, and some of the instructions

More information

Advanced Computer Architecture Lab 3 Scalability of the Gauss-Seidel Algorithm

Advanced Computer Architecture Lab 3 Scalability of the Gauss-Seidel Algorithm Advanced Computer Architecture Lab 3 Scalability of the Gauss-Seidel Algorithm Andreas Sandberg 1 Introduction The purpose of this lab is to: apply what you have learned so

More information

MATLAB. Advanced Mathematics and Mechanics Applications Using. Third Edition. David Halpern University of Alabama CHAPMAN & HALL/CRC

MATLAB. Advanced Mathematics and Mechanics Applications Using. Third Edition. David Halpern University of Alabama CHAPMAN & HALL/CRC Advanced Mathematics and Mechanics Applications Using MATLAB Third Edition Howard B. Wilson University of Alabama Louis H. Turcotte Rose-Hulman Institute of Technology David Halpern University of Alabama

More information

ANSYS EXERCISE ANSYS 5.6 Temperature Distribution in a Turbine Blade with Cooling Channels

ANSYS EXERCISE ANSYS 5.6 Temperature Distribution in a Turbine Blade with Cooling Channels I. ANSYS EXERCISE ANSYS 5.6 Temperature Distribution in a Turbine Blade with Cooling Channels Copyright 2001-2005, John R. Baker John R. Baker; phone: 270-534-3114; email: jbaker@engr.uky.edu This exercise

More information

Introduction to Computational Fluid Dynamics Mech 122 D. Fabris, K. Lynch, D. Rich

Introduction to Computational Fluid Dynamics Mech 122 D. Fabris, K. Lynch, D. Rich Introduction to Computational Fluid Dynamics Mech 122 D. Fabris, K. Lynch, D. Rich 1 Computational Fluid dynamics Computational fluid dynamics (CFD) is the analysis of systems involving fluid flow, heat

More information

Numerical Modelling in Fortran: day 6. Paul Tackley, 2017

Numerical Modelling in Fortran: day 6. Paul Tackley, 2017 Numerical Modelling in Fortran: day 6 Paul Tackley, 2017 Today s Goals 1. Learn about pointers, generic procedures and operators 2. Learn about iterative solvers for boundary value problems, including

More information

Investigation of a Robust Method for Connecting Dissimilar 3D Finite Element Models. David M. Trujillo 1. December 2005

Investigation of a Robust Method for Connecting Dissimilar 3D Finite Element Models. David M. Trujillo 1. December 2005 Investigation of a Robust Method for Connecting Dissimilar 3D Finite Element Models by David M. Trujillo 1 December 2005 1 Consultant, TRUCOMP, Fountain Valley, California trucomp@earthlink.net Abstract

More information

FOURTH ORDER COMPACT FORMULATION OF STEADY NAVIER-STOKES EQUATIONS ON NON-UNIFORM GRIDS

FOURTH ORDER COMPACT FORMULATION OF STEADY NAVIER-STOKES EQUATIONS ON NON-UNIFORM GRIDS International Journal of Mechanical Engineering and Technology (IJMET Volume 9 Issue 10 October 2018 pp. 179 189 Article ID: IJMET_09_10_11 Available online at http://www.iaeme.com/ijmet/issues.asp?jtypeijmet&vtype9&itype10

More information

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil Verification and Validation of Turbulent Flow around a Clark-Y Airfoil 1. Purpose 58:160 Intermediate Mechanics of Fluids CFD LAB 2 By Tao Xing and Fred Stern IIHR-Hydroscience & Engineering The University

More information

The Finite Element Method

The Finite Element Method The Finite Element Method A Practical Course G. R. Liu and S. S. Quek Chapter 1: Computational modeling An overview 1 CONTENTS INTRODUCTION PHYSICAL PROBLEMS IN ENGINEERING COMPUTATIONAL MODELLING USING

More information

Determination of Free Surface in Steady-State Seepage through a Dam with Toe Drain by the Boundary Element Method

Determination of Free Surface in Steady-State Seepage through a Dam with Toe Drain by the Boundary Element Method Determination of Free Surface in Steady-State Seepage through a Dam with Toe Drain by the Boundary Element Method Somchart Chantasiriwan Faculty of Engineering, Thammasat University, Rangsit Campus, Pathum

More information

Instruction Manual: Relaxation Algorithm

Instruction Manual: Relaxation Algorithm Instruction Manual: Relaxation Algorithm Supplement to Trimborn, Koch and Steger (2008) Version 3.1 Timo Trimborn June 2008 1 Introduction This instruction describes how to simulate the transition process

More information

c Fluent Inc. May 16,

c Fluent Inc. May 16, Tutorial 1. Office Ventilation Introduction: This tutorial demonstrates how to model an office shared by two people working at computers, using Airpak. In this tutorial, you will learn how to: Open a new

More information

Simulation of Turbulent Flow around an Airfoil

Simulation of Turbulent Flow around an Airfoil 1. Purpose Simulation of Turbulent Flow around an Airfoil ENGR:2510 Mechanics of Fluids and Transfer Processes CFD Lab 2 (ANSYS 17.1; Last Updated: Nov. 7, 2016) By Timur Dogan, Michael Conger, Andrew

More information

SIMULATION CAPABILITIES IN CREO. Enhance Your Product Design with Simulation & Analysis

SIMULATION CAPABILITIES IN CREO. Enhance Your Product Design with Simulation & Analysis SIMULATION CAPABILITIES IN CREO Enhance Your Product Design with Simulation & Using digital prototypes to understand how your designs perform in real-world conditions is vital to your product development

More information

Finite Element Methods for the Poisson Equation and its Applications

Finite Element Methods for the Poisson Equation and its Applications Finite Element Methods for the Poisson Equation and its Applications Charles Crook July 30, 2013 Abstract The finite element method is a fast computational method that also has a solid mathematical theory

More information

A High-Order Accurate Unstructured GMRES Solver for Poisson s Equation

A High-Order Accurate Unstructured GMRES Solver for Poisson s Equation A High-Order Accurate Unstructured GMRES Solver for Poisson s Equation Amir Nejat * and Carl Ollivier-Gooch Department of Mechanical Engineering, The University of British Columbia, BC V6T 1Z4, Canada

More information

LASer Cavity Analysis and Design

LASer Cavity Analysis and Design The unique combination of simulation tools for LASer Cavity Analysis and Design During the last 15 years LASCAD has become industry-leading so ware for LASer Cavity Analysis and Design. The feedback from

More information

ME 442. Marc/Mentat-2011 Tutorial-1

ME 442. Marc/Mentat-2011 Tutorial-1 ME 442 Overview Marc/Mentat-2011 Tutorial-1 The purpose of this tutorial is to introduce the new user to the MSC/MARC/MENTAT finite element program. It should take about one hour to complete. The MARC/MENTAT

More information

Autodesk Moldflow Insight AMI Cool Analysis Products

Autodesk Moldflow Insight AMI Cool Analysis Products Autodesk Moldflow Insight 2012 AMI Cool Analysis Products Revision 1, 22 March 2012. This document contains Autodesk and third-party software license agreements/notices and/or additional terms and conditions

More information

Programming for Experimental Research. Flow Control

Programming for Experimental Research. Flow Control Programming for Experimental Research Flow Control FLOW CONTROL In a simple program, the commands are executed one after the other in the order they are typed. Many situations require more sophisticated

More information

AMath 483/583 Lecture 21 May 13, 2011

AMath 483/583 Lecture 21 May 13, 2011 AMath 483/583 Lecture 21 May 13, 2011 Today: OpenMP and MPI versions of Jacobi iteration Gauss-Seidel and SOR iterative methods Next week: More MPI Debugging and totalview GPU computing Read: Class notes

More information

Simulation of Turbulent Flow around an Airfoil

Simulation of Turbulent Flow around an Airfoil Simulation of Turbulent Flow around an Airfoil ENGR:2510 Mechanics of Fluids and Transfer Processes CFD Pre-Lab 2 (ANSYS 17.1; Last Updated: Nov. 7, 2016) By Timur Dogan, Michael Conger, Andrew Opyd, Dong-Hwan

More information

Abaqus/CAE Heat Transfer Tutorial

Abaqus/CAE Heat Transfer Tutorial Abaqus/CAE Heat Transfer Tutorial Problem Description The thin L shaped steel part shown above (lengths in meters) is exposed to a temperature of 20 o C on the two surfaces of the inner corner, and 120

More information

ANSYS 5.6 Tutorials Lecture # 2 - Static Structural Analysis

ANSYS 5.6 Tutorials Lecture # 2 - Static Structural Analysis R50 ANSYS 5.6 Tutorials Lecture # 2 - Static Structural Analysis Example 1 Static Analysis of a Bracket 1. Problem Description: The objective of the problem is to demonstrate the basic ANSYS procedures

More information

Journal of Engineering Research and Studies E-ISSN

Journal of Engineering Research and Studies E-ISSN Journal of Engineering Research and Studies E-ISS 0976-79 Research Article SPECTRAL SOLUTIO OF STEADY STATE CODUCTIO I ARBITRARY QUADRILATERAL DOMAIS Alavani Chitra R 1*, Joshi Pallavi A 1, S Pavitran

More information

Simulation and Validation of Turbulent Pipe Flows

Simulation and Validation of Turbulent Pipe Flows Simulation and Validation of Turbulent Pipe Flows ENGR:2510 Mechanics of Fluids and Transport Processes CFD LAB 1 (ANSYS 17.1; Last Updated: Oct. 10, 2016) By Timur Dogan, Michael Conger, Dong-Hwan Kim,

More information

Computational Fluid Dynamics (CFD) using Graphics Processing Units

Computational Fluid Dynamics (CFD) using Graphics Processing Units Computational Fluid Dynamics (CFD) using Graphics Processing Units Aaron F. Shinn Mechanical Science and Engineering Dept., UIUC Accelerators for Science and Engineering Applications: GPUs and Multicores

More information

A Prototype Finite Difference Model. Timothy H. Kaiser, Ph.D.

A Prototype Finite Difference Model. Timothy H. Kaiser, Ph.D. A Prototype Finite Difference Model Timothy H. Kaiser, Ph.D. tkaiser@mines.edu 1 Examples at http://hpc.mines.edu/examples or enter the commands: mkdir examples cd examples wget http://hpc.mines.edu/examples/examples.tgz

More information

Resistance and Propulsion

Resistance and Propulsion MASTERS DEGREE IN NAVAL ARCHITECTURE AND PROPULSION Resistance and Propulsion Calculation of the Potential Flow around a Ship with a panel method Program DAWSON0 1 Resistance and Propulsion Calculation

More information

Topology optimization of heat conduction problems

Topology optimization of heat conduction problems Topology optimization of heat conduction problems Workshop on industrial design optimization for fluid flow 23 September 2010 Misha Marie Gregersen Anton Evgrafov Mads Peter Sørensen Technical University

More information

For this week only, the TAs will be at the ACCEL facility, instead of their normal office hours.

For this week only, the TAs will be at the ACCEL facility, instead of their normal office hours. BEE 3500 Homework Assignment 5 Notes: For this assignment, you will use the computational software COMSOL Multiphysics 5.3, available in Academic Computing Center Engineering Library (ACCEL) at the Carpenter

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction Ibrahim Sezai Department of Mechanical Engineering Eastern Mediterranean University Fall 2009-2010 What is CFD? CFD is the simulation of fluids engineering systems using modeling

More information

A Comparison of the Computational Speed of 3DSIM versus ANSYS Finite Element Analyses for Simulation of Thermal History in Metal Laser Sintering

A Comparison of the Computational Speed of 3DSIM versus ANSYS Finite Element Analyses for Simulation of Thermal History in Metal Laser Sintering A Comparison of the Computational Speed of 3DSIM versus ANSYS Finite Element Analyses for Simulation of Thermal History in Metal Laser Sintering Kai Zeng a,b, Chong Teng a,b, Sally Xu b, Tim Sublette b,

More information

Transient Thermal Conduction Example

Transient Thermal Conduction Example Transient Thermal Conduction Example Introduction This tutorial was created using ANSYS 7.0 to solve a simple transient conduction problem. Special thanks to Jesse Arnold for the analytical solution shown

More information

CHAPTER 1. Introduction

CHAPTER 1. Introduction ME 475: Computer-Aided Design of Structures 1-1 CHAPTER 1 Introduction 1.1 Analysis versus Design 1.2 Basic Steps in Analysis 1.3 What is the Finite Element Method? 1.4 Geometrical Representation, Discretization

More information

Introduction to CFX. Workshop 2. Transonic Flow Over a NACA 0012 Airfoil. WS2-1. ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved.

Introduction to CFX. Workshop 2. Transonic Flow Over a NACA 0012 Airfoil. WS2-1. ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved. Workshop 2 Transonic Flow Over a NACA 0012 Airfoil. Introduction to CFX WS2-1 Goals The purpose of this tutorial is to introduce the user to modelling flow in high speed external aerodynamic applications.

More information

Sami Ilvonen Pekka Manninen. Introduction to High-Performance Computing with Fortran. September 19 20, 2016 CSC IT Center for Science Ltd, Espoo

Sami Ilvonen Pekka Manninen. Introduction to High-Performance Computing with Fortran. September 19 20, 2016 CSC IT Center for Science Ltd, Espoo Sami Ilvonen Pekka Manninen Introduction to High-Performance Computing with Fortran September 19 20, 2016 CSC IT Center for Science Ltd, Espoo All material (C) 2009-2016 by CSC IT Center for Science Ltd.

More information

TYPE 529: RADIANT SLAB

TYPE 529: RADIANT SLAB TYPE 529: RADIANT SLAB General Description This component is intended to model a radiant floor-heating slab, embedded in soil, and containing a number of fluid filled pipes. The heat transfer within the

More information

The Bisection Method versus Newton s Method in Maple (Classic Version for Windows)

The Bisection Method versus Newton s Method in Maple (Classic Version for Windows) The Bisection Method versus (Classic Version for Windows) Author: Barbara Forrest Contact: baforres@uwaterloo.ca Copyrighted/NOT FOR RESALE version 1.1 Contents 1 Objectives for this Lab i 2 Approximate

More information

Module D: Laminar Flow over a Flat Plate

Module D: Laminar Flow over a Flat Plate Module D: Laminar Flow over a Flat Plate Summary... Problem Statement Geometry and Mesh Creation Problem Setup Solution. Results Validation......... Mesh Refinement.. Summary This ANSYS FLUENT tutorial

More information

Fully-Coupled Thermo-Mechanical Analysis

Fully-Coupled Thermo-Mechanical Analysis Fully-Coupled Thermo-Mechanical Analysis Type of solver: ABAQUS CAE/Standard Adapted from: ABAQUS Example Problems Manual Extrusion of a Cylindrical Aluminium Bar with Frictional Heat Generation Problem

More information

Temperature Dependent Material Properties

Temperature Dependent Material Properties WORKSHOP 8 Temperature Dependent Material Properties Objective: You will create a 2D material slice consisting of two materials with temperature dependent material properties. You will visually and qualitatively

More information

Simulation of Laminar Pipe Flows

Simulation of Laminar Pipe Flows Simulation of Laminar Pipe Flows 57:020 Mechanics of Fluids and Transport Processes CFD PRELAB 1 By Timur Dogan, Michael Conger, Maysam Mousaviraad, Tao Xing and Fred Stern IIHR-Hydroscience & Engineering

More information

This tutorial illustrates how to set up and solve a problem involving solidification. This tutorial will demonstrate how to do the following:

This tutorial illustrates how to set up and solve a problem involving solidification. This tutorial will demonstrate how to do the following: Tutorial 22. Modeling Solidification Introduction This tutorial illustrates how to set up and solve a problem involving solidification. This tutorial will demonstrate how to do the following: Define a

More information

High Performance Computing: Tools and Applications

High Performance Computing: Tools and Applications High Performance Computing: Tools and Applications Edmond Chow School of Computational Science and Engineering Georgia Institute of Technology Lecture 15 Numerically solve a 2D boundary value problem Example:

More information

Free Convection Cookbook for StarCCM+

Free Convection Cookbook for StarCCM+ ME 448/548 February 28, 2012 Free Convection Cookbook for StarCCM+ Gerald Recktenwald gerry@me.pdx.edu 1 Overview Figure 1 depicts a two-dimensional fluid domain bounded by a cylinder of diameter D. Inside

More information

Numerical Methods for PDEs : Video 9: 2D Finite Difference February 14, Equations / 29

Numerical Methods for PDEs : Video 9: 2D Finite Difference February 14, Equations / 29 22.520 Numerical Methods for PDEs Video 9 2D Finite Difference Equations February 4, 205 22.520 Numerical Methods for PDEs Video 9 2D Finite Difference February 4, Equations 205 / 29 Thought Experiment

More information

Introduction to Computational Mathematics

Introduction to Computational Mathematics Introduction to Computational Mathematics Introduction Computational Mathematics: Concerned with the design, analysis, and implementation of algorithms for the numerical solution of problems that have

More information

Finite Element Method. Chapter 7. Practical considerations in FEM modeling

Finite Element Method. Chapter 7. Practical considerations in FEM modeling Finite Element Method Chapter 7 Practical considerations in FEM modeling Finite Element Modeling General Consideration The following are some of the difficult tasks (or decisions) that face the engineer

More information

Introduction to Multigrid and its Parallelization

Introduction to Multigrid and its Parallelization Introduction to Multigrid and its Parallelization! Thomas D. Economon Lecture 14a May 28, 2014 Announcements 2 HW 1 & 2 have been returned. Any questions? Final projects are due June 11, 5 pm. If you are

More information

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil 1 Verification and Validation of Turbulent Flow around a Clark-Y Airfoil 1. Purpose ME:5160 Intermediate Mechanics of Fluids CFD LAB 2 (ANSYS 19.1; Last Updated: Aug. 7, 2018) By Timur Dogan, Michael Conger,

More information