Optimizing Graphics Drivers with Streaming SIMD Extensions. Copyright 1999, Intel Corporation. All rights reserved.

Size: px
Start display at page:

Download "Optimizing Graphics Drivers with Streaming SIMD Extensions. Copyright 1999, Intel Corporation. All rights reserved."

Transcription

1 Optimizing Graphics Drivers with Streaming SIMD Extensions 1

2 Agenda Features of Pentium III processor Graphics Stack Overview Driver Architectures Streaming SIMD Impact on D3D Streaming SIMD Impact on OpenGL* Summary Other Tips Resources *Third-party brands and names are the property of their respective owners. 2

3 Features of Streaming SIMD Extensions SIMD FP instructions SIMD FP for basic math & square root Fast approximations for reciprocal and reciprocal square root Cache-ability instructions/features Pre-fetching Non-temporal storage cache Streaming stores New integer SIMD instructions 3

4 Graphics Stack DirectX* D3D Graphics Application D3D "Pipeline" Retained Mode API Immediate Mode API Transformation and Lighting OpenGL* Graphics Application OpenGL ICD HAL/HEL Hardware Hardware *Third-party brands and names are the property of their respective owners. 4

5 Online vs Offline Drivers Traditional "Offline" Driver has at least two passes D3D Pipeline Vertices in D3D "TL Format" Buffers in HAL/HEL Vertices in proprietary format Buffers in AGP "Online" Driver uses a single pass for each "batch" HAL/HEL D3D Pipeline Vertices in D3D "TL Format" Buffers in AGP This example uses DirectX*, but Online Driver is currently more applicable to OpenGL* and other pipelines *Third-party brands and names are the property of their respective owners. 5

6 On-line Driver Advantages Better bus utilization Interleaved read/process/store More CPU/Graphics concurrency Higher TPS (unless "setup bound") Greater efficiency Eliminates a copy operation. Less code to maintain HAL becomes smaller and simpler 6

7 On-line Driver Caveats 3D chip must support vertex format DX: TL_Vertex, flexible vertex formats DX 6.1: Clipping done after pipeline reads vertices back from memory AGP memory is fast to write to, but slow to read from (not cached) OpenGL*: Clip without AGP read re-transform vertices of clipped triangles save vertices in AGP + cached temp buf Don t use On-line Driver for DX 6.1 *Third-party brands and names are the property of their respective owners. 7

8 Streaming SIMD Impact on D3D Optimizations already in DX6.1 Geometry and lighting pipeline IHVs can only optimize in HAL/HEL 3D data setup (e.g., color conversions) Moving data Texture wrap HEL for missing HW feature emulation A thick HEL can greatly benefit 8

9 Streaming SIMD Impact on OpenGL* Optimize for CPU and graphics chip Use single-pass, small batch pipeline Run a batch of vertices through all steps Better SIMD, cache usage, less overhead Intel GE OpenGL add-on for Pentium II and III, Microsoft* or SGI You can optimize ICD for CPU and GC *Third-party brands and names are the property of their respective owners. 9

10 ICD Streaming SIMD Opportunities Transformation and lighting Triangle data setup Back-face culling Clipcode calculations Clipping Color conversions Moving data 10

11 Triangle Setup Division via RCPPS and/or Newton- Raphson Reciprocal area Reciprocal Z Float to Fixed point conversion e.g. XYZ or texture coordinates Other XY modifications e.g. add 0.5 to all X and Y coordinates 11

12 Back-face Culling Some 3D hardware can cull but HAL usually has time to do it Cross product of two triangle edges Sign indicates front/back facing Result is measure of area Often can discard zero area and tiny tri s Some apps often generate zero-area tri s! E.g. discard if area is under 1/16th pixel area E.g. discard if area is under 1/16th pixel area In theory could leave pinholes - rarely seen 12

13 Copying on Pentium III Processor 450Mhz system, BX chipset Copy TL_VERTEX - 32 bytes Memory to memory with MOVNTPS 50 CPU clocks L1 cache to memory using MOVNTPS CPU clocks Numbers should approximate writing to USWC 13

14 Impact of Prefetch Useful on large (many line) loops compute bound or poor CPU/Bus overlap Can prefetch input AND output buffers Usually won t benefit D3D HALs data often passed to HAL in cache might prefetch L2 to L1 for large buffers Can benefit OpenGL* pipeline prefetch vertices and normals prefetch large temp buffer *Third-party brands and names are the property of their respective owners. 14

15 Branches Bad, SIMD Good Cause stalling, not SIMD Some branches can be avoided Conditional move: CMOV, MASKMOVQ Average: PAVGx Sum Absolute Differences: PSADBW Clamp/Saturate: MINPS/MAXPS (FP), PMAXxx/PMINxx PMINxx (INT) Select values: CMPPS, MOVMASK, ANDNPS, ORPS (FP), PCMPxxx, MOVQ, PANDN, POR (INT) Reduce branching 15

16 Minimizing the Negative Effect of Branches Try to move branches outside loops Some branches OK Well predicted branches Know the static branch prediction rules Forward conditional branches are predicted as not taken Backward conditional branches are predicted as taken Branch to avoid large block of code SIMD condition check: MOVMSKPS and PMOVMSKPB Make necessary branches cheaper 16

17 Branch example: Culling Non-SIMD: Culling mode (CW, CCW, None) branch is well predicted (no need to avoid) Triangle facing is not so well predicted Test triangle facing, CMOV pointer to cached memory to replace pointer to AGP memory, CMOV zero to count of bytes written to AGP, Write using pointer, add count to total 17

18 Better Culling in OpenGL* Ordered primitives Test in model space (before transform) reduces transform/lighting work Indexed primitives Test after transform in view or screen space must transform all vertices but not as many as with ordered primitives *Third-party brands and names are the property of their respective owners. 18

19 Better Clipping in OpenGL* Clip code generation is often used gl_ext_clip_volume - useful optimization works especially well for indexed primitives only generate code once per vertex Implement clip-hint extension app hints when objs fully in view *Third-party brands and names are the property of their respective owners. 19

20 Clip-code generation for OpenGL* Test XY in screen space must transform all vertices but not as many as with ordered primitives works well for indexed primitives Test XYZ in model space vs. view frustum drop out-of-view triangles before Xform less transform/lighting to do best for ordered triangles *Third-party brands and names are the property of their respective owners. 20

21 ClipCode Generation Scaler Integer No prefetch 60 clocks/vert Scaler Integer Prefetch 30 clocks/vert SIMD Integer Prefetch 20 clocks/vert All timings from a transform/clip func measure full time per vertex disable clip codes to get Xform time clip code time = total - Xform 21

22 OpenGL* Geometry Vertex Transform: to swizzle, or not? For large vertex sets, transpose to SoA get four vertices into to xxxx, yyyy, zzzz Use MOVLPS/MOVHPS for faster transpose For smaller sets, use SIMD but AoS load xyz, shuffle to xxxx, yyyy, zzzz, MULPS by matrix rows, ADDPS to get XYZW result somewhat slower per vertex than SoA X87 and SIMD FP have different precision Use scalar & packed (SS/PS) 22

23 Fast Transposed-Load Macro #define AosLoad( in, stride, x, y, z, w ) \ { m128 tmp ; \ x = _mm_loadl_pi( x, ( m64 *)(in) ); \ x = _mm_loadh_pi( x, ( m64 *)(stride + (char *)in ) ); \ y = _mm_loadl_pi( y, ( m64 *)(2*stride + (char *)in ) ); \ y = _mm_loadh_pi( y, ( m64 *)(3*stride + (char *)in ) ); \ tmp = _mm_shuffle_ps( x, y, _MM_SHUFFLE( 2, 0, 2, 0 ) );\ y = _mm_shuffle_ps( x, y, _MM_SHUFFLE( 3, 1, 3, 1 ) ); \ x = tmp ; \ \ z = _mm_loadl_pi( z, ( m64 *)(8 + (char *)in ) ); \ z = _mm_loadh_pi( z, ( m64 *)(stride (char *)in ) ); \ w = _mm_loadl_pi( w, ( m64 *)(2*stride (char *)in ) ); \ w = _mm_loadh_pi( w, ( m64 *)(3*stride (char *)in ) ); \ tmp = _mm_shuffle_ps( z, w, _MM_SHUFFLE( 2, 0, 2, 0 ) );\ w = _mm_shuffle_ps( z, w, _MM_SHUFFLE( 3, 1, 3, 1 ) ); \ z = tmp ; } Note that this example uses intrinsics rather than assembler 23

24 Geometry on Pentium III Processor x87 to/from L2 copy to mem 155 clks/vert Graph shows only the transformation step When lighting and projection are considered, the improvement is even bigger x87 to/from L2 52 clks/vert SIMD FP to/from L2 45 clks/vert SIMD FP from NTPS to AGP 40 clocks/vert Accelerates T & L, L, improves cache usage 24

25 OpenGL* RGBA Color Packing Given single precision R,G, B and A, we want to convert to packed 8 bit ints MULPS - multiply all elements by MINPS/MAXPS - clamp/saturate CVTTPS2PI, MOVHLPS, CVTTPS2PI MMX pack to bytes, store pack RGBA EMMS when done with all vertices *Third-party brands and names are the property of their respective owners. 25

26 Summary You can use Pentium III processor s Streaming SIMD Extensions and AGP to deliver more triangles-per-second to the graphics subsystem Wherever there is... vectorizable math or logic or large amounts of data there are big opportunities to run faster with the Pentium III processor 26

27 More Tips Unaligned: use MOVHPS and MOVLPS Cache line split less often than MOVUPS May save values for you (colors) Measure improvement with: Time stamps, frame counters Intel tools: VTune performance tool and ipeak Geometry subtests of major benchmarks: ZD s WinBench 3D geometry subtest (D3D) Sunset s Indy 3D (OpenGL*) *Third-party brands and names are the property of their respective owners. 27

28 Resources Pentium III processor information on the web: Numega's* Softice* * debugger New version supports Pentium III processor *Third-party brands and names are the property of their respective owners. 28

29 More Information 29

30 Intrinsics Pros Does all the register management for you Compiler interprets them, continues to fully optimize Easier to read for some people Some replace several steps Cons About 6% less efficient than the best asm language Must use Intel compiler for now takes a little longer to compile better at some optimizations, worse at others critical code coach (pro?) 30

31 Intel IPEAK Graphics Performance Toolkit Can analyze DirectX* 6.1 apps for: frames/sec triangle usage (#, pixels, # by pixels) texture utilization Helps detect performance limiting factors OpenGL* and D3D supported on Windows* 9x and Windows NT* 4.0 (5.0 soon) *Third-party brands and names are the property of their respective owners. 31

Using Intel Streaming SIMD Extensions for 3D Geometry Processing

Using Intel Streaming SIMD Extensions for 3D Geometry Processing Using Intel Streaming SIMD Extensions for 3D Geometry Processing Wan-Chun Ma, Chia-Lin Yang Dept. of Computer Science and Information Engineering National Taiwan University firebird@cmlab.csie.ntu.edu.tw,

More information

Instruction Set Progression. from MMX Technology through Streaming SIMD Extensions 2

Instruction Set Progression. from MMX Technology through Streaming SIMD Extensions 2 Instruction Set Progression from MMX Technology through Streaming SIMD Extensions 2 This article summarizes the progression of change to the instruction set in the Intel IA-32 architecture, from MMX technology

More information

Intel Architecture Optimization

Intel Architecture Optimization Intel Architecture Optimization Reference Manual Copyright 1998, 1999 Intel Corporation All Rights Reserved Issued in U.S.A. Order Number: 245127-001 Intel Architecture Optimization Reference Manual Order

More information

1.2.3 The Graphics Hardware Pipeline

1.2.3 The Graphics Hardware Pipeline Figure 1-3. The Graphics Hardware Pipeline 1.2.3 The Graphics Hardware Pipeline A pipeline is a sequence of stages operating in parallel and in a fixed order. Each stage receives its input from the prior

More information

Application Note. November 28, Software Solutions Group

Application Note. November 28, Software Solutions Group )DVW&RORU&RQYHUVLRQ8VLQJ 6WUHDPLQJ6,0'([WHQVLRQVDQG 00;Œ7HFKQRORJ\ Application Note November 28, 2001 Software Solutions Group 7DEOHRI&RQWHQWV 1.0 INTRODUCTION... 3 2.0 BACKGROUND & BASICS... 3 2.1 A COMMON

More information

COSC 6385 Computer Architecture. - Memory Hierarchies (II)

COSC 6385 Computer Architecture. - Memory Hierarchies (II) COSC 6385 Computer Architecture - Memory Hierarchies (II) Fall 2008 Cache Performance Avg. memory access time = Hit time + Miss rate x Miss penalty with Hit time: time to access a data item which is available

More information

Real instruction set architectures. Part 2: a representative sample

Real instruction set architectures. Part 2: a representative sample Real instruction set architectures Part 2: a representative sample Some historical architectures VAX: Digital s line of midsize computers, dominant in academia in the 70s and 80s Characteristics: Variable-length

More information

Optimisation. CS7GV3 Real-time Rendering

Optimisation. CS7GV3 Real-time Rendering Optimisation CS7GV3 Real-time Rendering Introduction Talk about lower-level optimization Higher-level optimization is better algorithms Example: not using a spatial data structure vs. using one After that

More information

Martin Kruliš, v

Martin Kruliš, v Martin Kruliš 1 Optimizations in General Code And Compilation Memory Considerations Parallelism Profiling And Optimization Examples 2 Premature optimization is the root of all evil. -- D. Knuth Our goal

More information

LRU. Pseudo LRU A B C D E F G H A B C D E F G H H H C. Copyright 2012, Elsevier Inc. All rights reserved.

LRU. Pseudo LRU A B C D E F G H A B C D E F G H H H C. Copyright 2012, Elsevier Inc. All rights reserved. LRU A list to keep track of the order of access to every block in the set. The least recently used block is replaced (if needed). How many bits we need for that? 27 Pseudo LRU A B C D E F G H A B C D E

More information

ECE 574 Cluster Computing Lecture 16

ECE 574 Cluster Computing Lecture 16 ECE 574 Cluster Computing Lecture 16 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 26 March 2019 Announcements HW#7 posted HW#6 and HW#5 returned Don t forget project topics

More information

Modern Processor Architectures. L25: Modern Compiler Design

Modern Processor Architectures. L25: Modern Compiler Design Modern Processor Architectures L25: Modern Compiler Design The 1960s - 1970s Instructions took multiple cycles Only one instruction in flight at once Optimisation meant minimising the number of instructions

More information

Ultimate Graphics Performance for DirectX 10 Hardware

Ultimate Graphics Performance for DirectX 10 Hardware Ultimate Graphics Performance for DirectX 10 Hardware Nicolas Thibieroz European Developer Relations AMD Graphics Products Group nicolas.thibieroz@amd.com V1.01 Generic API Usage DX10 designed for performance

More information

Drawing Fast The Graphics Pipeline

Drawing Fast The Graphics Pipeline Drawing Fast The Graphics Pipeline CS559 Fall 2015 Lecture 9 October 1, 2015 What I was going to say last time How are the ideas we ve learned about implemented in hardware so they are fast. Important:

More information

10/16/2017. Miss Rate: ABC. Classifying Misses: 3C Model (Hill) Reducing Conflict Misses: Victim Buffer. Overlapping Misses: Lockup Free Cache

10/16/2017. Miss Rate: ABC. Classifying Misses: 3C Model (Hill) Reducing Conflict Misses: Victim Buffer. Overlapping Misses: Lockup Free Cache Classifying Misses: 3C Model (Hill) Divide cache misses into three categories Compulsory (cold): never seen this address before Would miss even in infinite cache Capacity: miss caused because cache is

More information

Graphics Performance Optimisation. John Spitzer Director of European Developer Technology

Graphics Performance Optimisation. John Spitzer Director of European Developer Technology Graphics Performance Optimisation John Spitzer Director of European Developer Technology Overview Understand the stages of the graphics pipeline Cherchez la bottleneck Once found, either eliminate or balance

More information

Challenges for GPU Architecture. Michael Doggett Graphics Architecture Group April 2, 2008

Challenges for GPU Architecture. Michael Doggett Graphics Architecture Group April 2, 2008 Michael Doggett Graphics Architecture Group April 2, 2008 Graphics Processing Unit Architecture CPUs vsgpus AMD s ATI RADEON 2900 Programming Brook+, CAL, ShaderAnalyzer Architecture Challenges Accelerated

More information

CUDA Performance Optimization. Patrick Legresley

CUDA Performance Optimization. Patrick Legresley CUDA Performance Optimization Patrick Legresley Optimizations Kernel optimizations Maximizing global memory throughput Efficient use of shared memory Minimizing divergent warps Intrinsic instructions Optimizations

More information

SSE/SSE2 Toolbox Solutions for Real-Life SIMD Problems

SSE/SSE2 Toolbox Solutions for Real-Life SIMD Problems SSE/SSE2 Toolbox Solutions for Real-Life SIMD Problems Alex.Klimovitski Klimovitski@intel.com Tools & Technologies Europe Intel Corporation Game Developer Conference 2001 Why SIMD? Why SSE? SIMD is the

More information

COSC 6385 Computer Architecture - Memory Hierarchy Design (III)

COSC 6385 Computer Architecture - Memory Hierarchy Design (III) COSC 6385 Computer Architecture - Memory Hierarchy Design (III) Fall 2006 Reducing cache miss penalty Five techniques Multilevel caches Critical word first and early restart Giving priority to read misses

More information

General Purpose Computation (CAD/CAM/CAE) on the GPU (a.k.a. Topics in Manufacturing)

General Purpose Computation (CAD/CAM/CAE) on the GPU (a.k.a. Topics in Manufacturing) ME 290-R: General Purpose Computation (CAD/CAM/CAE) on the GPU (a.k.a. Topics in Manufacturing) Sara McMains Spring 2009 Performance: Bottlenecks Sources of bottlenecks CPU Transfer Processing Rasterizer

More information

The Internet Streaming SIMD Extensions

The Internet Streaming SIMD Extensions The Internet Streaming SIMD Extensions Shreekant (Ticky) Thakkar, Microprocessor Products Group, Intel Corp. Tom Huff, Microprocessor Products Group, Intel Corp. ABSTRACT The paper describes the development

More information

Drawing Fast The Graphics Pipeline

Drawing Fast The Graphics Pipeline Drawing Fast The Graphics Pipeline CS559 Spring 2016 Lecture 10 February 25, 2016 1. Put a 3D primitive in the World Modeling Get triangles 2. Figure out what color it should be Do ligh/ng 3. Position

More information

Modern Processor Architectures (A compiler writer s perspective) L25: Modern Compiler Design

Modern Processor Architectures (A compiler writer s perspective) L25: Modern Compiler Design Modern Processor Architectures (A compiler writer s perspective) L25: Modern Compiler Design The 1960s - 1970s Instructions took multiple cycles Only one instruction in flight at once Optimisation meant

More information

Monday Morning. Graphics Hardware

Monday Morning. Graphics Hardware Monday Morning Department of Computer Engineering Graphics Hardware Ulf Assarsson Skärmen består av massa pixlar 3D-Rendering Objects are often made of triangles x,y,z- coordinate for each vertex Y X Z

More information

Memory Hierarchy Basics. Ten Advanced Optimizations. Small and Simple

Memory Hierarchy Basics. Ten Advanced Optimizations. Small and Simple Memory Hierarchy Basics Six basic cache optimizations: Larger block size Reduces compulsory misses Increases capacity and conflict misses, increases miss penalty Larger total cache capacity to reduce miss

More information

Fundamental CUDA Optimization. NVIDIA Corporation

Fundamental CUDA Optimization. NVIDIA Corporation Fundamental CUDA Optimization NVIDIA Corporation Outline! Fermi Architecture! Kernel optimizations! Launch configuration! Global memory throughput! Shared memory access! Instruction throughput / control

More information

Spring 2009 Prof. Hyesoon Kim

Spring 2009 Prof. Hyesoon Kim Spring 2009 Prof. Hyesoon Kim Application Geometry Rasterizer CPU Each stage cane be also pipelined The slowest of the pipeline stage determines the rendering speed. Frames per second (fps) Executes on

More information

Intel SIMD architecture. Computer Organization and Assembly Languages Yung-Yu Chuang 2006/12/25

Intel SIMD architecture. Computer Organization and Assembly Languages Yung-Yu Chuang 2006/12/25 Intel SIMD architecture Computer Organization and Assembly Languages Yung-Yu Chuang 2006/12/25 Reference Intel MMX for Multimedia PCs, CACM, Jan. 1997 Chapter 11 The MMX Instruction Set, The Art of Assembly

More information

Graphics Processing Unit Architecture (GPU Arch)

Graphics Processing Unit Architecture (GPU Arch) Graphics Processing Unit Architecture (GPU Arch) With a focus on NVIDIA GeForce 6800 GPU 1 What is a GPU From Wikipedia : A specialized processor efficient at manipulating and displaying computer graphics

More information

Real-Time Rendering (Echtzeitgraphik) Michael Wimmer

Real-Time Rendering (Echtzeitgraphik) Michael Wimmer Real-Time Rendering (Echtzeitgraphik) Michael Wimmer wimmer@cg.tuwien.ac.at Walking down the graphics pipeline Application Geometry Rasterizer What for? Understanding the rendering pipeline is the key

More information

Applications Tuning for Streaming SIMD Extensions

Applications Tuning for Streaming SIMD Extensions Applications Tuning for Streaming SIMD Extensions James Abel, Kumar Balasubramanian, Mike Bargeron, Tom Craver, Mike Phlipot, Microprocessor Products Group, Intel Corp. Index words: SIMD, streaming, MMX

More information

Today s Agenda. DirectX 9 Features Sim Dietrich, nvidia - Multisample antialising Jason Mitchell, ATI - Shader models and coding tips

Today s Agenda. DirectX 9 Features Sim Dietrich, nvidia - Multisample antialising Jason Mitchell, ATI - Shader models and coding tips Today s Agenda DirectX 9 Features Sim Dietrich, nvidia - Multisample antialising Jason Mitchell, ATI - Shader models and coding tips Optimization for DirectX 9 Graphics Mike Burrows, Microsoft - Performance

More information

Intel SIMD architecture. Computer Organization and Assembly Languages Yung-Yu Chuang

Intel SIMD architecture. Computer Organization and Assembly Languages Yung-Yu Chuang Intel SIMD architecture Computer Organization and Assembly Languages g Yung-Yu Chuang Overview SIMD MMX architectures MMX instructions examples SSE/SSE2 SIMD instructions are probably the best place to

More information

Automatic Tuning Matrix Multiplication Performance on Graphics Hardware

Automatic Tuning Matrix Multiplication Performance on Graphics Hardware Automatic Tuning Matrix Multiplication Performance on Graphics Hardware Changhao Jiang (cjiang@cs.uiuc.edu) Marc Snir (snir@cs.uiuc.edu) University of Illinois Urbana Champaign GPU becomes more powerful

More information

UNIT- 5. Chapter 12 Processor Structure and Function

UNIT- 5. Chapter 12 Processor Structure and Function UNIT- 5 Chapter 12 Processor Structure and Function CPU Structure CPU must: Fetch instructions Interpret instructions Fetch data Process data Write data CPU With Systems Bus CPU Internal Structure Registers

More information

SSE and SSE2. Timothy A. Chagnon 18 September All images from Intel 64 and IA 32 Architectures Software Developer's Manuals

SSE and SSE2. Timothy A. Chagnon 18 September All images from Intel 64 and IA 32 Architectures Software Developer's Manuals SSE and SSE2 Timothy A. Chagnon 18 September 2007 All images from Intel 64 and IA 32 Architectures Software Developer's Manuals Overview SSE: Streaming SIMD (Single Instruction Multiple Data) Extensions

More information

Real-Time Graphics Architecture

Real-Time Graphics Architecture Real-Time Graphics Architecture Kurt Akeley Pat Hanrahan http://www.graphics.stanford.edu/courses/cs448a-01-fall Geometry Outline Vertex and primitive operations System examples emphasis on clipping Primitive

More information

GPU Memory Model Overview

GPU Memory Model Overview GPU Memory Model Overview John Owens University of California, Davis Department of Electrical and Computer Engineering Institute for Data Analysis and Visualization SciDAC Institute for Ultrascale Visualization

More information

Programming Methods for the Pentium III Processor s Streaming SIMD Extensions Using the VTune Performance Enhancement Environment

Programming Methods for the Pentium III Processor s Streaming SIMD Extensions Using the VTune Performance Enhancement Environment Programming Methods for the Pentium III Processor s Streaming SIMD Extensions Using the VTune Performance Enhancement Environment Joe H. Wolf III, Microprocessor Products Group, Intel Corporation Index

More information

AMD Opteron TM & PGI: Enabling the Worlds Fastest LS-DYNA Performance

AMD Opteron TM & PGI: Enabling the Worlds Fastest LS-DYNA Performance 3. LS-DY Anwenderforum, Bamberg 2004 CAE / IT II AMD Opteron TM & PGI: Enabling the Worlds Fastest LS-DY Performance Tim Wilkens Ph.D. Member of Technical Staff tim.wilkens@amd.com October 4, 2004 Computation

More information

Hardware-driven Visibility Culling Jeong Hyun Kim

Hardware-driven Visibility Culling Jeong Hyun Kim Hardware-driven Visibility Culling Jeong Hyun Kim KAIST (Korea Advanced Institute of Science and Technology) Contents Introduction Background Clipping Culling Z-max (Z-min) Filter Programmable culling

More information

Spring 2011 Prof. Hyesoon Kim

Spring 2011 Prof. Hyesoon Kim Spring 2011 Prof. Hyesoon Kim Application Geometry Rasterizer CPU Each stage cane be also pipelined The slowest of the pipeline stage determines the rendering speed. Frames per second (fps) Executes on

More information

Optimizing for DirectX Graphics. Richard Huddy European Developer Relations Manager

Optimizing for DirectX Graphics. Richard Huddy European Developer Relations Manager Optimizing for DirectX Graphics Richard Huddy European Developer Relations Manager Also on today from ATI... Start & End Time: 12:00pm 1:00pm Title: Precomputed Radiance Transfer and Spherical Harmonic

More information

H.264 Decoding. University of Central Florida

H.264 Decoding. University of Central Florida 1 Optimization Example: H.264 inverse transform Interprediction Intraprediction In-Loop Deblocking Render Interprediction filter data from previously decoded frames Deblocking filter out block edges Today:

More information

Optimizing DirectX Graphics. Richard Huddy European Developer Relations Manager

Optimizing DirectX Graphics. Richard Huddy European Developer Relations Manager Optimizing DirectX Graphics Richard Huddy European Developer Relations Manager Some early observations Bear in mind that graphics performance problems are both commoner and rarer than you d think The most

More information

Vertex Shader Design I

Vertex Shader Design I The following content is extracted from the paper shown in next page. If any wrong citation or reference missing, please contact ldvan@cs.nctu.edu.tw. I will correct the error asap. This course used only

More information

SWAR: MMX, SSE, SSE 2 Multiplatform Programming

SWAR: MMX, SSE, SSE 2 Multiplatform Programming SWAR: MMX, SSE, SSE 2 Multiplatform Programming Relatore: dott. Matteo Roffilli roffilli@csr.unibo.it 1 What s SWAR? SWAR = SIMD Within A Register SIMD = Single Instruction Multiple Data MMX,SSE,SSE2,Power3DNow

More information

Storage I/O Summary. Lecture 16: Multimedia and DSP Architectures

Storage I/O Summary. Lecture 16: Multimedia and DSP Architectures Storage I/O Summary Storage devices Storage I/O Performance Measures» Throughput» Response time I/O Benchmarks» Scaling to track technological change» Throughput with restricted response time is normal

More information

ASSEMBLY LANGUAGE MACHINE ORGANIZATION

ASSEMBLY LANGUAGE MACHINE ORGANIZATION ASSEMBLY LANGUAGE MACHINE ORGANIZATION CHAPTER 3 1 Sub-topics The topic will cover: Microprocessor architecture CPU processing methods Pipelining Superscalar RISC Multiprocessing Instruction Cycle Instruction

More information

The Bifrost GPU architecture and the ARM Mali-G71 GPU

The Bifrost GPU architecture and the ARM Mali-G71 GPU The Bifrost GPU architecture and the ARM Mali-G71 GPU Jem Davies ARM Fellow and VP of Technology Hot Chips 28 Aug 2016 Introduction to ARM Soft IP ARM licenses Soft IP cores (amongst other things) to our

More information

Cell Programming Tips & Techniques

Cell Programming Tips & Techniques Cell Programming Tips & Techniques Course Code: L3T2H1-58 Cell Ecosystem Solutions Enablement 1 Class Objectives Things you will learn Key programming techniques to exploit cell hardware organization and

More information

Windowing System on a 3D Pipeline. February 2005

Windowing System on a 3D Pipeline. February 2005 Windowing System on a 3D Pipeline February 2005 Agenda 1.Overview of the 3D pipeline 2.NVIDIA software overview 3.Strengths and challenges with using the 3D pipeline GeForce 6800 220M Transistors April

More information

GeForce3 OpenGL Performance. John Spitzer

GeForce3 OpenGL Performance. John Spitzer GeForce3 OpenGL Performance John Spitzer GeForce3 OpenGL Performance John Spitzer Manager, OpenGL Applications Engineering jspitzer@nvidia.com Possible Performance Bottlenecks They mirror the OpenGL pipeline

More information

Working with Metal Overview

Working with Metal Overview Graphics and Games #WWDC14 Working with Metal Overview Session 603 Jeremy Sandmel GPU Software 2014 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission

More information

Software Optimization: Fixing Memory Problems

Software Optimization: Fixing Memory Problems Software Optimization: Fixing Memory Problems Abstract Improving memory performance is of paramount importance when attempting to optimize software speed. Luckily, there are a number of techniques that

More information

COSC 6385 Computer Architecture - Memory Hierarchies (II)

COSC 6385 Computer Architecture - Memory Hierarchies (II) COSC 6385 Computer Architecture - Memory Hierarchies (II) Edgar Gabriel Spring 2018 Types of cache misses Compulsory Misses: first access to a block cannot be in the cache (cold start misses) Capacity

More information

GRAPHICS PROCESSING UNITS

GRAPHICS PROCESSING UNITS GRAPHICS PROCESSING UNITS Slides by: Pedro Tomás Additional reading: Computer Architecture: A Quantitative Approach, 5th edition, Chapter 4, John L. Hennessy and David A. Patterson, Morgan Kaufmann, 2011

More information

Age nda. Intel PXA27x Processor Family: An Applications Processor for Phone and PDA applications

Age nda. Intel PXA27x Processor Family: An Applications Processor for Phone and PDA applications Intel PXA27x Processor Family: An Applications Processor for Phone and PDA applications N.C. Paver PhD Architect Intel Corporation Hot Chips 16 August 2004 Age nda Overview of the Intel PXA27X processor

More information

Chapter 12. CPU Structure and Function. Yonsei University

Chapter 12. CPU Structure and Function. Yonsei University Chapter 12 CPU Structure and Function Contents Processor organization Register organization Instruction cycle Instruction pipelining The Pentium processor The PowerPC processor 12-2 CPU Structures Processor

More information

Drawing Fast The Graphics Pipeline

Drawing Fast The Graphics Pipeline Drawing Fast The Graphics Pipeline CS559 Fall 2016 Lectures 10 & 11 October 10th & 12th, 2016 1. Put a 3D primitive in the World Modeling 2. Figure out what color it should be 3. Position relative to the

More information

Rendering Objects. Need to transform all geometry then

Rendering Objects. Need to transform all geometry then Intro to OpenGL Rendering Objects Object has internal geometry (Model) Object relative to other objects (World) Object relative to camera (View) Object relative to screen (Projection) Need to transform

More information

Chapter 5 Memory Hierarchy Design. In-Cheol Park Dept. of EE, KAIST

Chapter 5 Memory Hierarchy Design. In-Cheol Park Dept. of EE, KAIST Chapter 5 Memory Hierarchy Design In-Cheol Park Dept. of EE, KAIST Why cache? Microprocessor performance increment: 55% per year Memory performance increment: 7% per year Principles of locality Spatial

More information

Scene Management. Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development

Scene Management. Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development Video Game Technologies 11498: MSc in Computer Science and Engineering 11156: MSc in Game Design and Development Chap. 5 Scene Management Overview Scene Management vs Rendering This chapter is about rendering

More information

Double-precision General Matrix Multiply (DGEMM)

Double-precision General Matrix Multiply (DGEMM) Double-precision General Matrix Multiply (DGEMM) Parallel Computation (CSE 0), Assignment Andrew Conegliano (A0) Matthias Springer (A00) GID G-- January, 0 0. Assumptions The following assumptions apply

More information

Hardware Speculation Support

Hardware Speculation Support Hardware Speculation Support Conditional instructions Most common form is conditional move BNEZ R1, L ;if MOV R2, R3 ;then CMOVZ R2,R3, R1 L: ;else Other variants conditional loads and stores nullification

More information

Chapter 2 Lecture 1 Computer Systems Organization

Chapter 2 Lecture 1 Computer Systems Organization Chapter 2 Lecture 1 Computer Systems Organization This chapter provides an introduction to the components Processors: Primary Memory: Secondary Memory: Input/Output: Busses The Central Processing Unit

More information

Computer Organization & Assembly Language Programming

Computer Organization & Assembly Language Programming Computer Organization & Assembly Language Programming CSE 2312-002 (Fall 2011) Lecture 8 ISA & Data Types & Instruction Formats Junzhou Huang, Ph.D. Department of Computer Science and Engineering Fall

More information

Copyright 2012, Elsevier Inc. All rights reserved.

Copyright 2012, Elsevier Inc. All rights reserved. Computer Architecture A Quantitative Approach, Fifth Edition Chapter 2 Memory Hierarchy Design 1 Introduction Programmers want unlimited amounts of memory with low latency Fast memory technology is more

More information

Adapted from instructor s supplementary material from Computer. Patterson & Hennessy, 2008, MK]

Adapted from instructor s supplementary material from Computer. Patterson & Hennessy, 2008, MK] Lecture 17 Adapted from instructor s supplementary material from Computer Organization and Design, 4th Edition, Patterson & Hennessy, 2008, MK] SRAM / / Flash / RRAM / HDD SRAM / / Flash / RRAM/ HDD SRAM

More information

Memory Hierarchy Basics

Memory Hierarchy Basics Computer Architecture A Quantitative Approach, Fifth Edition Chapter 2 Memory Hierarchy Design 1 Memory Hierarchy Basics Six basic cache optimizations: Larger block size Reduces compulsory misses Increases

More information

Real - Time Rendering. Pipeline optimization. Michal Červeňanský Juraj Starinský

Real - Time Rendering. Pipeline optimization. Michal Červeňanský Juraj Starinský Real - Time Rendering Pipeline optimization Michal Červeňanský Juraj Starinský Motivation Resolution 1600x1200, at 60 fps Hw power not enough Acceleration is still necessary 3.3.2010 2 Overview Application

More information

Advanced optimizations of cache performance ( 2.2)

Advanced optimizations of cache performance ( 2.2) Advanced optimizations of cache performance ( 2.2) 30 1. Small and Simple Caches to reduce hit time Critical timing path: address tag memory, then compare tags, then select set Lower associativity Direct-mapped

More information

The x86 Microprocessors. Introduction. The 80x86 Microprocessors. 1.1 Assembly Language

The x86 Microprocessors. Introduction. The 80x86 Microprocessors. 1.1 Assembly Language The x86 Microprocessors Introduction 1.1 Assembly Language Numbering and Coding Systems Human beings use the decimal system (base 10) Decimal digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Computer systems use the

More information

CS451Real-time Rendering Pipeline

CS451Real-time Rendering Pipeline 1 CS451Real-time Rendering Pipeline JYH-MING LIEN DEPARTMENT OF COMPUTER SCIENCE GEORGE MASON UNIVERSITY Based on Tomas Akenine-Möller s lecture note You say that you render a 3D 2 scene, but what does

More information

Today. Rendering pipeline. Rendering pipeline. Object vs. Image order. Rendering engine Rendering engine (jtrt) Computergrafik. Rendering pipeline

Today. Rendering pipeline. Rendering pipeline. Object vs. Image order. Rendering engine Rendering engine (jtrt) Computergrafik. Rendering pipeline Computergrafik Today Rendering pipeline s View volumes, clipping Viewport Matthias Zwicker Universität Bern Herbst 2008 Rendering pipeline Rendering pipeline Hardware & software that draws 3D scenes on

More information

Squeezing Performance out of your Game with ATI Developer Performance Tools and Optimization Techniques

Squeezing Performance out of your Game with ATI Developer Performance Tools and Optimization Techniques Squeezing Performance out of your Game with ATI Developer Performance Tools and Optimization Techniques Jonathan Zarge, Team Lead Performance Tools Richard Huddy, European Developer Relations Manager ATI

More information

Final Lecture. A few minutes to wrap up and add some perspective

Final Lecture. A few minutes to wrap up and add some perspective Final Lecture A few minutes to wrap up and add some perspective 1 2 Instant replay The quarter was split into roughly three parts and a coda. The 1st part covered instruction set architectures the connection

More information

Graphics Hardware, Graphics APIs, and Computation on GPUs. Mark Segal

Graphics Hardware, Graphics APIs, and Computation on GPUs. Mark Segal Graphics Hardware, Graphics APIs, and Computation on GPUs Mark Segal Overview Graphics Pipeline Graphics Hardware Graphics APIs ATI s low-level interface for computation on GPUs 2 Graphics Hardware High

More information

Memory. From Chapter 3 of High Performance Computing. c R. Leduc

Memory. From Chapter 3 of High Performance Computing. c R. Leduc Memory From Chapter 3 of High Performance Computing c 2002-2004 R. Leduc Memory Even if CPU is infinitely fast, still need to read/write data to memory. Speed of memory increasing much slower than processor

More information

Profiling and Debugging Games on Mobile Platforms

Profiling and Debugging Games on Mobile Platforms Profiling and Debugging Games on Mobile Platforms Lorenzo Dal Col Senior Software Engineer, Graphics Tools Gamelab 2013, Barcelona 26 th June 2013 Agenda Introduction to Performance Analysis with ARM DS-5

More information

Mali Developer Resources. Kevin Ho ARM Taiwan FAE

Mali Developer Resources. Kevin Ho ARM Taiwan FAE Mali Developer Resources Kevin Ho ARM Taiwan FAE ARM Mali Developer Tools Software Development SDKs for OpenGL ES & OpenCL OpenGL ES Emulators Shader Development Studio Shader Library Asset Creation Texture

More information

CSE 591: GPU Programming. Introduction. Entertainment Graphics: Virtual Realism for the Masses. Computer games need to have: Klaus Mueller

CSE 591: GPU Programming. Introduction. Entertainment Graphics: Virtual Realism for the Masses. Computer games need to have: Klaus Mueller Entertainment Graphics: Virtual Realism for the Masses CSE 591: GPU Programming Introduction Computer games need to have: realistic appearance of characters and objects believable and creative shading,

More information

E.Order of Operations

E.Order of Operations Appendix E E.Order of Operations This book describes all the performed between initial specification of vertices and final writing of fragments into the framebuffer. The chapters of this book are arranged

More information

Computer Architecture Spring 2016

Computer Architecture Spring 2016 Computer Architecture Spring 2016 Lecture 08: Caches III Shuai Wang Department of Computer Science and Technology Nanjing University Improve Cache Performance Average memory access time (AMAT): AMAT =

More information

Optimization of Lattice QCD codes for the AMD Opteron processor

Optimization of Lattice QCD codes for the AMD Opteron processor Optimization of Lattice QCD codes for the AMD Opteron processor Miho Koma (DESY Hamburg) ACAT2005, DESY Zeuthen, 26 May 2005 We report the current status of the new Opteron cluster at DESY Hamburg, including

More information

Advanced d Instruction Level Parallelism. Computer Systems Laboratory Sungkyunkwan University

Advanced d Instruction Level Parallelism. Computer Systems Laboratory Sungkyunkwan University Advanced d Instruction ti Level Parallelism Jin-Soo Kim (jinsookim@skku.edu) Computer Systems Laboratory Sungkyunkwan University http://csl.skku.edu ILP Instruction-Level Parallelism (ILP) Pipelining:

More information

Lecture 25: Board Notes: Threads and GPUs

Lecture 25: Board Notes: Threads and GPUs Lecture 25: Board Notes: Threads and GPUs Announcements: - Reminder: HW 7 due today - Reminder: Submit project idea via (plain text) email by 11/24 Recap: - Slide 4: Lecture 23: Introduction to Parallel

More information

CUDA OPTIMIZATIONS ISC 2011 Tutorial

CUDA OPTIMIZATIONS ISC 2011 Tutorial CUDA OPTIMIZATIONS ISC 2011 Tutorial Tim C. Schroeder, NVIDIA Corporation Outline Kernel optimizations Launch configuration Global memory throughput Shared memory access Instruction throughput / control

More information

Convolution Soup: A case study in CUDA optimization. The Fairmont San Jose Joe Stam

Convolution Soup: A case study in CUDA optimization. The Fairmont San Jose Joe Stam Convolution Soup: A case study in CUDA optimization The Fairmont San Jose Joe Stam Optimization GPUs are very fast BUT Poor programming can lead to disappointing performance Squeaking out the most speed

More information

Processors, Performance, and Profiling

Processors, Performance, and Profiling Processors, Performance, and Profiling Architecture 101: 5-Stage Pipeline Fetch Decode Execute Memory Write-Back Registers PC FP ALU Memory Architecture 101 1. Fetch instruction from memory. 2. Decode

More information

Memory Hierarchy Computing Systems & Performance MSc Informatics Eng. Memory Hierarchy (most slides are borrowed)

Memory Hierarchy Computing Systems & Performance MSc Informatics Eng. Memory Hierarchy (most slides are borrowed) Computing Systems & Performance Memory Hierarchy MSc Informatics Eng. 2011/12 A.J.Proença Memory Hierarchy (most slides are borrowed) AJProença, Computer Systems & Performance, MEI, UMinho, 2011/12 1 2

More information

Maximizing Face Detection Performance

Maximizing Face Detection Performance Maximizing Face Detection Performance Paulius Micikevicius Developer Technology Engineer, NVIDIA GTC 2015 1 Outline Very brief review of cascaded-classifiers Parallelization choices Reducing the amount

More information

HPC VT Machine-dependent Optimization

HPC VT Machine-dependent Optimization HPC VT 2013 Machine-dependent Optimization Last time Choose good data structures Reduce number of operations Use cheap operations strength reduction Avoid too many small function calls inlining Use compiler

More information

CS 152 Computer Architecture and Engineering. Lecture 8 - Memory Hierarchy-III

CS 152 Computer Architecture and Engineering. Lecture 8 - Memory Hierarchy-III CS 152 Computer Architecture and Engineering Lecture 8 - Memory Hierarchy-III Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste

More information

Caches Concepts Review

Caches Concepts Review Caches Concepts Review What is a block address? Why not bring just what is needed by the processor? What is a set associative cache? Write-through? Write-back? Then we ll see: Block allocation policy on

More information

Memory Hierarchy Computing Systems & Performance MSc Informatics Eng. Memory Hierarchy (most slides are borrowed)

Memory Hierarchy Computing Systems & Performance MSc Informatics Eng. Memory Hierarchy (most slides are borrowed) Computing Systems & Performance Memory Hierarchy MSc Informatics Eng. 2012/13 A.J.Proença Memory Hierarchy (most slides are borrowed) AJProença, Computer Systems & Performance, MEI, UMinho, 2012/13 1 2

More information

! Readings! ! Room-level, on-chip! vs.!

! Readings! ! Room-level, on-chip! vs.! 1! 2! Suggested Readings!! Readings!! H&P: Chapter 7 especially 7.1-7.8!! (Over next 2 weeks)!! Introduction to Parallel Computing!! https://computing.llnl.gov/tutorials/parallel_comp/!! POSIX Threads

More information

Lecture 18: DRAM Technologies

Lecture 18: DRAM Technologies Lecture 18: DRAM Technologies Last Time: Cache and Virtual Memory Review Today DRAM organization or, why is DRAM so slow??? Lecture 18 1 Main Memory = DRAM Lecture 18 2 Basic DRAM Architecture Lecture

More information

Copyright 2012, Elsevier Inc. All rights reserved.

Copyright 2012, Elsevier Inc. All rights reserved. Computer Architecture A Quantitative Approach, Fifth Edition Chapter 2 Memory Hierarchy Design 1 Introduction Introduction Programmers want unlimited amounts of memory with low latency Fast memory technology

More information