Machine Learning: Basic Principles

Size: px
Start display at page:

Download "Machine Learning: Basic Principles"

Transcription

1 Machine Learning: Basic Principles Teaching demonstration Kalle Palomäki Department of Signal Processing and Acoustics Aalto University

2 Content 1. Goal 2. Machine learning: definition 3. Classification an important machine learning approach 4. A machine learning problem Hands on problem solving Demonstration 5. Summary

3 Goal Part of introductory sessions adjusted to 20 minutes 4 th year students with no background in machine learning Start building understanding of machine learning by Concrete examples Solving simple hands on problems

4 Machine learning - definition Wikipedia: Machine learning deals with the construction and study of systems that can learn from data, rather than follow only explicitly programmed instructions

5 Common sense definition: machines that learn a little like the brains

6 Internet and machine learning - far beyond the single brains capacity

7 Machine learning categories Supervised learning Classification Unsupervised learning Clustering Reinforcement learning

8 Classifier

9 Classifier

10 Problem Lisa is a tailor

11 Lisa makes uniforms Salvation army uniforms: men have trousers, women skirts

12 Sometimes she makes mistakes These should be skirts.

13 Once she made a skirt for prince Charles!

14 Hip Waist Hip Waist

15 Here is Lisa s data waist (cm) hip (cm) gender Female Female ??? Male ??? Male ???

16 Female samples: Red Missing gender information: * * * Male samples : Blue

17 Some help to Lisa? Discuss in pairs 2 min: How would you approach this problem? What kind of algorithm would you design? Try to come up with some ideas please! Use the picture provided to assist your discussion

18 K-nearest neighbours algorithm 1. Determine K = number of nearest neighbours 2. Calculate the distance between test sample all the training samples Use euclidean distance measure:, 3. Sort the distances and determine nearst neigbours 4. Gather the categories of the nearest neighbors 5. Use the majority voting to predict the test sample class

19 Female samples: Red Missing gender information: * * * Male samples : Blue

20 Female samples: Red K = 3 Missing gender information: * * * Male samples : Blue

21 K-nearest neighbours algorithm 1. Determine K = number of nearest neighbours 2. Calculate the distance between test sample all the training samples Use euclidean distance measure:, 3. Sort the distances and determine nearst neigbours 4. Gather the categories of the nearest neighbors 5. Use the majority voting to predict the test sample class

22 Euclidean distance Euclidean distance, Training samples Test sample

23 Euclidean distance Training samples Eucidean distance, Training sample index Test sample

24 Euclidean distance Data dimension Training samples Eucidean distance, Training sample index Test sample Dimension index

25 Euclidean distance Data dimension M=2 Training samples Eucidean distance Training sample index, Test sample Dimension index

26 Female samples of training data Euclidean distance: d 1 Test sample * Male samples of training data

27 Female samples of training data d 2 Test sample * Male samples of training data

28 Female samples of training data d 3 Test sample * Male samples of training data

29 Female samples of training data d 4 Test sample * Male samples of training data

30 Female samples of training data Test sample * d 5 Male samples of training data

31 Female samples of training data Test sample * d 6 Male samples of training data

32 K-nearest neighbours algorithm 1. Determine K = number of nearest neighbours 2. Calculate the distance between test sample all the training samples Use euclidean distance measure:, 3. Sort the distances and determine nearest neigbours 4. Gather the categories of the nearest neighbors 5. Use the majority voting to predict the test sample class

33 Female samples of training data Test sample * 3 nearest neighbors Male samples of training data

34 K-nearest neighbours algorithm 1. Determine K = number of nearest neighbours 2. Calculate the distance between test sample all the training samples Use euclidean distance measure:, 3. Sort the distances and determine nearest neigbours 4. Gather the categories of the nearest neighbors 5. Use the majority voting to predict the test sample class

35 Female samples of training data Test sample * 3 nearest neighbors Male samples of training data All 3 neighbors were Male Class was male

36 Female samples of training data Test sample * 3 nearest neighbors Male samples of training data

37 Female samples of training data Test sample * 3 nearest neighbors 2 neighbors Female 1 neighbor Male More Females than Males Class is Female Male samples of training data

38 Classification problem Lisa has lost gender information of one of her customers, and does not know whether to make skirt or trousers. She is planning to throw a coin. Can you help her to make a better decision? The customer who is missing gender information: Gender , Waist 28, Hip 34, waist gender (cm) hip (cm) Male Male Female Female Molarius A, Seidell JC, Sans S, Tuomilehto J, Kuulasmaa K. (1999) "Waist and hip circumferences, and waist-hip ratio in 19 populations of the WHO MONICA Project", International Journal of Obesity and Related Metabolic Disorders :J. Internat. Association Study Obesity, 23:

39 Solution Gender waist (cm) hip (cm) distance Male (28-28) 2 +(34-32) 2 =4 Male (28-33) 2 +(34-35) 2 =26 Female (28-27) 2 +(34-33) 2 =2 Female (28-31) 2 +(34-36) 2 =13 Test sample 28, 34

40 Solution Gender waist (cm) hip (cm) distance Male (28-28) 2 +(34-32) 2 =4 Male (28-33) 2 +(34-35) 2 =26 Female (28-27) 2 +(34-33) 2 =2 Female (28-31) 2 +(34-36) 2 =13 Test sample 28, 34

41 Solution Gender waist (cm) hip (cm) Distance rank Male (28-28) 2 +(34-32) 2 =4 2 Male (28-33) 2 +(34-35) 2 =26 4 Female (28-27) 2 +(34-33) 2 =2 1 Female (28-31) 2 +(34-36) 2 =13 3 Test sample 28, 34

42 Solution Gender waist (cm) hip (cm) Distance rank belongs to the neighborhood (Yes or No) Male (28-28) 2 +(34-32) 2 =4 2 Yes Male (28-33) 2 +(34-35) 2 =26 4 No Female (28-27) 2 +(34-33) 2 =2 1 Yes Female (28-31) 2 +(34-36) 2 =13 3 Yes Test sample 28, 34

43 Solution Gender waist (cm) hip (cm) Distance rank belongs to the neighborhood (Yes or No) gender if in neigborhood Male (28-28) 2 +(34-32) 2 =4 2Yes Male Male (28-33) 2 +(34-35) 2 =26 4No Female (28-27) 2 +(34-33) 2 =2 1Yes Female Female (28-31) 2 +(34-36) 2 =13 3Yes Female Test sample 28, 34 Male 1 Female 2 Number of Female > Number of Male Class: Female

44

45 Summary We addressed briefly principles of machine learning 1. First we defined the machine learning 2. Classification as an important machine learning task 3. Solved a hands on problem of classification utilizing K- nearest neighbour algorithm Check out my website for These slides Exercise The code on the decision border calculations in previous slides

46 What next Supervised learning Classification Unsupervised learning Clustering Reinforcement learning

47 Face recognition

48 Speech recognition Spectrum over time for cat k a t

49 Searches

Machine Learning - Clustering. CS102 Fall 2017

Machine Learning - Clustering. CS102 Fall 2017 Machine Learning - Fall 2017 Big Data Tools and Techniques Basic Data Manipulation and Analysis Performing well-defined computations or asking well-defined questions ( queries ) Data Mining Looking for

More information

Machine Learning. Classification

Machine Learning. Classification 10-701 Machine Learning Classification Inputs Inputs Inputs Where we are Density Estimator Probability Classifier Predict category Today Regressor Predict real no. Later Classification Assume we want to

More information

Introduction to Artificial Intelligence

Introduction to Artificial Intelligence Introduction to Artificial Intelligence COMP307 Machine Learning 2: 3-K Techniques Yi Mei yi.mei@ecs.vuw.ac.nz 1 Outline K-Nearest Neighbour method Classification (Supervised learning) Basic NN (1-NN)

More information

Overview. Non-Parametrics Models Definitions KNN. Ensemble Methods Definitions, Examples Random Forests. Clustering. k-means Clustering 2 / 8

Overview. Non-Parametrics Models Definitions KNN. Ensemble Methods Definitions, Examples Random Forests. Clustering. k-means Clustering 2 / 8 Tutorial 3 1 / 8 Overview Non-Parametrics Models Definitions KNN Ensemble Methods Definitions, Examples Random Forests Clustering Definitions, Examples k-means Clustering 2 / 8 Non-Parametrics Models Definitions

More information

k-nn classification & Statistical Pattern Recognition

k-nn classification & Statistical Pattern Recognition k-nn classification & Statistical Pattern Recognition Andreas C. Kapourani (Credit: Hiroshi Shimodaira) February 27 k-nn classification In classification, the data consist of a training set and a test

More information

The k-means Algorithm and Genetic Algorithm

The k-means Algorithm and Genetic Algorithm The k-means Algorithm and Genetic Algorithm k-means algorithm Genetic algorithm Rough set approach Fuzzy set approaches Chapter 8 2 The K-Means Algorithm The K-Means algorithm is a simple yet effective

More information

INTRODUCTION TO ARTIFICIAL INTELLIGENCE

INTRODUCTION TO ARTIFICIAL INTELLIGENCE v=1 v= 1 v= 1 v= 1 v= 1 v=1 optima 2) 3) 5) 6) 7) 8) 9) 12) 11) 13) INTRDUCTIN T ARTIFICIAL INTELLIGENCE DATA15001 EPISDE 7: MACHINE LEARNING TDAY S MENU 1. WHY MACHINE LEARNING? 2. KINDS F ML 3. NEAREST

More information

Case-Based Reasoning. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. Parametric / Non-parametric.

Case-Based Reasoning. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. Parametric / Non-parametric. CS 188: Artificial Intelligence Fall 2008 Lecture 25: Kernels and Clustering 12/2/2008 Dan Klein UC Berkeley Case-Based Reasoning Similarity for classification Case-based reasoning Predict an instance

More information

CS 188: Artificial Intelligence Fall 2008

CS 188: Artificial Intelligence Fall 2008 CS 188: Artificial Intelligence Fall 2008 Lecture 25: Kernels and Clustering 12/2/2008 Dan Klein UC Berkeley 1 1 Case-Based Reasoning Similarity for classification Case-based reasoning Predict an instance

More information

Topics in Machine Learning

Topics in Machine Learning Topics in Machine Learning Gilad Lerman School of Mathematics University of Minnesota Text/slides stolen from G. James, D. Witten, T. Hastie, R. Tibshirani and A. Ng Machine Learning - Motivation Arthur

More information

K Nearest Neighbor Wrap Up K- Means Clustering. Slides adapted from Prof. Carpuat

K Nearest Neighbor Wrap Up K- Means Clustering. Slides adapted from Prof. Carpuat K Nearest Neighbor Wrap Up K- Means Clustering Slides adapted from Prof. Carpuat K Nearest Neighbor classification Classification is based on Test instance with Training Data K: number of neighbors that

More information

CSE4334/5334 DATA MINING

CSE4334/5334 DATA MINING CSE4334/5334 DATA MINING Lecture 4: Classification (1) CSE4334/5334 Data Mining, Fall 2014 Department of Computer Science and Engineering, University of Texas at Arlington Chengkai Li (Slides courtesy

More information

k-nearest Neighbor (knn) Sept Youn-Hee Han

k-nearest Neighbor (knn) Sept Youn-Hee Han k-nearest Neighbor (knn) Sept. 2015 Youn-Hee Han http://link.koreatech.ac.kr ²Eager Learners Eager vs. Lazy Learning when given a set of training data, it will construct a generalization model before receiving

More information

Fall 09, Homework 5

Fall 09, Homework 5 5-38 Fall 09, Homework 5 Due: Wednesday, November 8th, beginning of the class You can work in a group of up to two people. This group does not need to be the same group as for the other homeworks. You

More information

Computational Statistics The basics of maximum likelihood estimation, Bayesian estimation, object recognitions

Computational Statistics The basics of maximum likelihood estimation, Bayesian estimation, object recognitions Computational Statistics The basics of maximum likelihood estimation, Bayesian estimation, object recognitions Thomas Giraud Simon Chabot October 12, 2013 Contents 1 Discriminant analysis 3 1.1 Main idea................................

More information

Jarek Szlichta

Jarek Szlichta Jarek Szlichta http://data.science.uoit.ca/ Approximate terminology, though there is some overlap: Data(base) operations Executing specific operations or queries over data Data mining Looking for patterns

More information

Chapter 6: Cluster Analysis

Chapter 6: Cluster Analysis Chapter 6: Cluster Analysis The major goal of cluster analysis is to separate individual observations, or items, into groups, or clusters, on the basis of the values for the q variables measured on each

More information

Kernels and Clustering

Kernels and Clustering Kernels and Clustering Robert Platt Northeastern University All slides in this file are adapted from CS188 UC Berkeley Case-Based Learning Non-Separable Data Case-Based Reasoning Classification from similarity

More information

Natural Language Processing

Natural Language Processing Natural Language Processing Machine Learning Potsdam, 26 April 2012 Saeedeh Momtazi Information Systems Group Introduction 2 Machine Learning Field of study that gives computers the ability to learn without

More information

Introduction to Machine Learning. Xiaojin Zhu

Introduction to Machine Learning. Xiaojin Zhu Introduction to Machine Learning Xiaojin Zhu jerryzhu@cs.wisc.edu Read Chapter 1 of this book: Xiaojin Zhu and Andrew B. Goldberg. Introduction to Semi- Supervised Learning. http://www.morganclaypool.com/doi/abs/10.2200/s00196ed1v01y200906aim006

More information

Intro to Artificial Intelligence

Intro to Artificial Intelligence Intro to Artificial Intelligence Ahmed Sallam { Lecture 5: Machine Learning ://. } ://.. 2 Review Probabilistic inference Enumeration Approximate inference 3 Today What is machine learning? Supervised

More information

Machine Learning with Python

Machine Learning with Python DEVNET-2163 Machine Learning with Python Dmitry Figol, SE WW Enterprise Sales @dmfigol Cisco Spark How Questions? Use Cisco Spark to communicate with the speaker after the session 1. Find this session

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Kernels and Clustering Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

More information

MIT 801. Machine Learning I. [Presented by Anna Bosman] 16 February 2018

MIT 801. Machine Learning I. [Presented by Anna Bosman] 16 February 2018 MIT 801 [Presented by Anna Bosman] 16 February 2018 Machine Learning What is machine learning? Artificial Intelligence? Yes as we know it. What is intelligence? The ability to acquire and apply knowledge

More information

Cluster Analysis: Agglomerate Hierarchical Clustering

Cluster Analysis: Agglomerate Hierarchical Clustering Cluster Analysis: Agglomerate Hierarchical Clustering Yonghee Lee Department of Statistics, The University of Seoul Oct 29, 2015 Contents 1 Cluster Analysis Introduction Distance matrix Agglomerative Hierarchical

More information

Cs445 Homework #1. Due 9/9/ :59 pm DRAFT

Cs445 Homework #1. Due 9/9/ :59 pm DRAFT Cs5 Homework #. Due 9/9/06 :59 pm DRAFT Instructions.. Solution may not be submitted by students in pairs.. You may submit a pdf of the homework, either printed or hand-written and scanned, as long as

More information

Supervised vs.unsupervised Learning

Supervised vs.unsupervised Learning Supervised vs.unsupervised Learning In supervised learning we train algorithms with predefined concepts and functions based on labeled data D = { ( x, y ) x X, y {yes,no}. In unsupervised learning we are

More information

KTH ROYAL INSTITUTE OF TECHNOLOGY. Lecture 14 Machine Learning. K-means, knn

KTH ROYAL INSTITUTE OF TECHNOLOGY. Lecture 14 Machine Learning. K-means, knn KTH ROYAL INSTITUTE OF TECHNOLOGY Lecture 14 Machine Learning. K-means, knn Contents K-means clustering K-Nearest Neighbour Power Systems Analysis An automated learning approach Understanding states in

More information

Database system. Régis Mollard

Database system. Régis Mollard Database system The use of an on-line anthropometric database system for morphotype analysis and sizing system adaptation for different world market apparel sportwear Régis Mollard Paris Descartes University

More information

Outlier Detection Using Unsupervised and Semi-Supervised Technique on High Dimensional Data

Outlier Detection Using Unsupervised and Semi-Supervised Technique on High Dimensional Data Outlier Detection Using Unsupervised and Semi-Supervised Technique on High Dimensional Data Ms. Gayatri Attarde 1, Prof. Aarti Deshpande 2 M. E Student, Department of Computer Engineering, GHRCCEM, University

More information

Applying Supervised Learning

Applying Supervised Learning Applying Supervised Learning When to Consider Supervised Learning A supervised learning algorithm takes a known set of input data (the training set) and known responses to the data (output), and trains

More information

Section 6.3: Measures of Position

Section 6.3: Measures of Position Section 6.3: Measures of Position Measures of position are numbers showing the location of data values relative to the other values within a data set. They can be used to compare values from different

More information

Classification: Feature Vectors

Classification: Feature Vectors Classification: Feature Vectors Hello, Do you want free printr cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just # free YOUR_NAME MISSPELLED FROM_FRIEND... : : : : 2 0 2 0 PIXEL 7,12

More information

Unsupervised Learning. Presenter: Anil Sharma, PhD Scholar, IIIT-Delhi

Unsupervised Learning. Presenter: Anil Sharma, PhD Scholar, IIIT-Delhi Unsupervised Learning Presenter: Anil Sharma, PhD Scholar, IIIT-Delhi Content Motivation Introduction Applications Types of clustering Clustering criterion functions Distance functions Normalization Which

More information

International Journal of Scientific Research & Engineering Trends Volume 4, Issue 6, Nov-Dec-2018, ISSN (Online): X

International Journal of Scientific Research & Engineering Trends Volume 4, Issue 6, Nov-Dec-2018, ISSN (Online): X Analysis about Classification Techniques on Categorical Data in Data Mining Assistant Professor P. Meena Department of Computer Science Adhiyaman Arts and Science College for Women Uthangarai, Krishnagiri,

More information

CP365 Artificial Intelligence

CP365 Artificial Intelligence CP365 Artificial Intelligence Example Problem Problem: Does a given image contain cats? Input vector: RGB/BW pixels of the image. Output: Yes or No. Example Problem Problem: What category is a news story?

More information

REMOVAL OF REDUNDANT AND IRRELEVANT DATA FROM TRAINING DATASETS USING SPEEDY FEATURE SELECTION METHOD

REMOVAL OF REDUNDANT AND IRRELEVANT DATA FROM TRAINING DATASETS USING SPEEDY FEATURE SELECTION METHOD Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320 088X IMPACT FACTOR: 5.258 IJCSMC,

More information

Dimension Reduction CS534

Dimension Reduction CS534 Dimension Reduction CS534 Why dimension reduction? High dimensionality large number of features E.g., documents represented by thousands of words, millions of bigrams Images represented by thousands of

More information

CSE 573: Artificial Intelligence Autumn 2010

CSE 573: Artificial Intelligence Autumn 2010 CSE 573: Artificial Intelligence Autumn 2010 Lecture 16: Machine Learning Topics 12/7/2010 Luke Zettlemoyer Most slides over the course adapted from Dan Klein. 1 Announcements Syllabus revised Machine

More information

CSE 152 : Introduction to Computer Vision, Spring 2018 Assignment 5

CSE 152 : Introduction to Computer Vision, Spring 2018 Assignment 5 CSE 152 : Introduction to Computer Vision, Spring 2018 Assignment 5 Instructor: Ben Ochoa Assignment Published On: Wednesday, May 23, 2018 Due On: Saturday, June 9, 2018, 11:59 PM Instructions Review the

More information

Problems 1 and 5 were graded by Amin Sorkhei, Problems 2 and 3 by Johannes Verwijnen and Problem 4 by Jyrki Kivinen. Entropy(D) = Gini(D) = 1

Problems 1 and 5 were graded by Amin Sorkhei, Problems 2 and 3 by Johannes Verwijnen and Problem 4 by Jyrki Kivinen. Entropy(D) = Gini(D) = 1 Problems and were graded by Amin Sorkhei, Problems and 3 by Johannes Verwijnen and Problem by Jyrki Kivinen.. [ points] (a) Gini index and Entropy are impurity measures which can be used in order to measure

More information

CS4445 Data Mining and Knowledge Discovery in Databases. A Term 2008 Exam 2 October 14, 2008

CS4445 Data Mining and Knowledge Discovery in Databases. A Term 2008 Exam 2 October 14, 2008 CS4445 Data Mining and Knowledge Discovery in Databases. A Term 2008 Exam 2 October 14, 2008 Prof. Carolina Ruiz Department of Computer Science Worcester Polytechnic Institute NAME: Prof. Ruiz Problem

More information

Basic Data Mining Technique

Basic Data Mining Technique Basic Data Mining Technique What is classification? What is prediction? Supervised and Unsupervised Learning Decision trees Association rule K-nearest neighbor classifier Case-based reasoning Genetic algorithm

More information

Introduction to Pattern Recognition and Machine Learning. Alexandros Iosifidis Academy of Finland Postdoctoral Research Fellow (term )

Introduction to Pattern Recognition and Machine Learning. Alexandros Iosifidis Academy of Finland Postdoctoral Research Fellow (term ) Introduction to Pattern Recognition and Machine Learning Alexandros Iosifidis Academy of Finland Postdoctoral Research Fellow (term 2016-2019) Tampere, August 2016 What do we observe here? Vector Spaces

More information

CHAPTER 4: CLUSTER ANALYSIS

CHAPTER 4: CLUSTER ANALYSIS CHAPTER 4: CLUSTER ANALYSIS WHAT IS CLUSTER ANALYSIS? A cluster is a collection of data-objects similar to one another within the same group & dissimilar to the objects in other groups. Cluster analysis

More information

Chuck Cartledge, PhD. 23 September 2017

Chuck Cartledge, PhD. 23 September 2017 Introduction K-Nearest Neighbors Na ıve Bayes Hands-on Q&A Conclusion References Files Misc. Big Data: Data Analysis Boot Camp Classification with K-Nearest Neighbors and Na ıve Bayes Chuck Cartledge,

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Isabelle Guyon Notes written by: Johann Leithon. Introduction The process of Machine Learning consist of having a big training data base, which is the input to some learning

More information

ELEC6910Q Analytics and Systems for Social Media and Big Data Applications Lecture 4. Prof. James She

ELEC6910Q Analytics and Systems for Social Media and Big Data Applications Lecture 4. Prof. James She ELEC6910Q Analytics and Systems for Social Media and Big Data Applications Lecture 4 Prof. James She james.she@ust.hk 1 Selected Works of Activity 4 2 Selected Works of Activity 4 3 Last lecture 4 Mid-term

More information

9 Classification: KNN and SVM

9 Classification: KNN and SVM CSE4334/5334 Data Mining 9 Classification: KNN and SVM Chengkai Li Department of Computer Science and Engineering University of Texas at Arlington Fall 2017 (Slides courtesy of Pang-Ning Tan, Michael Steinbach

More information

MS1b Statistical Data Mining Part 3: Supervised Learning Nonparametric Methods

MS1b Statistical Data Mining Part 3: Supervised Learning Nonparametric Methods MS1b Statistical Data Mining Part 3: Supervised Learning Nonparametric Methods Yee Whye Teh Department of Statistics Oxford http://www.stats.ox.ac.uk/~teh/datamining.html Outline Supervised Learning: Nonparametric

More information

Feature Extractors. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. The Perceptron Update Rule.

Feature Extractors. CS 188: Artificial Intelligence Fall Nearest-Neighbor Classification. The Perceptron Update Rule. CS 188: Artificial Intelligence Fall 2007 Lecture 26: Kernels 11/29/2007 Dan Klein UC Berkeley Feature Extractors A feature extractor maps inputs to feature vectors Dear Sir. First, I must solicit your

More information

Matchings, Ramsey Theory, And Other Graph Fun

Matchings, Ramsey Theory, And Other Graph Fun Matchings, Ramsey Theory, And Other Graph Fun Evelyne Smith-Roberge University of Waterloo April 5th, 2017 Recap... In the last two weeks, we ve covered: What is a graph? Eulerian circuits Hamiltonian

More information

Section 2 Comparing distributions - Worksheet

Section 2 Comparing distributions - Worksheet The data are from the paper: Exploring Relationships in Body Dimensions Grete Heinz and Louis J. Peterson San José State University Roger W. Johnson and Carter J. Kerk South Dakota School of Mines and

More information

SOCIAL MEDIA MINING. Data Mining Essentials

SOCIAL MEDIA MINING. Data Mining Essentials SOCIAL MEDIA MINING Data Mining Essentials Dear instructors/users of these slides: Please feel free to include these slides in your own material, or modify them as you see fit. If you decide to incorporate

More information

Machine Learning. Nonparametric methods for Classification. Eric Xing , Fall Lecture 2, September 12, 2016

Machine Learning. Nonparametric methods for Classification. Eric Xing , Fall Lecture 2, September 12, 2016 Machine Learning 10-701, Fall 2016 Nonparametric methods for Classification Eric Xing Lecture 2, September 12, 2016 Reading: 1 Classification Representing data: Hypothesis (classifier) 2 Clustering 3 Supervised

More information

Introduction to Clustering

Introduction to Clustering Introduction to Clustering Ref: Chengkai Li, Department of Computer Science and Engineering, University of Texas at Arlington (Slides courtesy of Vipin Kumar) What is Cluster Analysis? Finding groups of

More information

Gene Clustering & Classification

Gene Clustering & Classification BINF, Introduction to Computational Biology Gene Clustering & Classification Young-Rae Cho Associate Professor Department of Computer Science Baylor University Overview Introduction to Gene Clustering

More information

Supervised Learning: K-Nearest Neighbors and Decision Trees

Supervised Learning: K-Nearest Neighbors and Decision Trees Supervised Learning: K-Nearest Neighbors and Decision Trees Piyush Rai CS5350/6350: Machine Learning August 25, 2011 (CS5350/6350) K-NN and DT August 25, 2011 1 / 20 Supervised Learning Given training

More information

Robotics Programming Laboratory

Robotics Programming Laboratory Chair of Software Engineering Robotics Programming Laboratory Bertrand Meyer Jiwon Shin Lecture 8: Robot Perception Perception http://pascallin.ecs.soton.ac.uk/challenges/voc/databases.html#caltech car

More information

PROBLEM 4

PROBLEM 4 PROBLEM 2 PROBLEM 4 PROBLEM 5 PROBLEM 6 PROBLEM 7 PROBLEM 8 PROBLEM 9 PROBLEM 10 PROBLEM 11 PROBLEM 12 PROBLEM 13 PROBLEM 14 PROBLEM 16 PROBLEM 17 PROBLEM 22 PROBLEM 23 PROBLEM 24 PROBLEM 25

More information

ECE 5424: Introduction to Machine Learning

ECE 5424: Introduction to Machine Learning ECE 5424: Introduction to Machine Learning Topics: Supervised Learning Measuring performance Nearest Neighbor Distance Metrics Readings: Barber 14 (knn) Stefan Lee Virginia Tech Administrative Course add

More information

Clustering & Classification (chapter 15)

Clustering & Classification (chapter 15) Clustering & Classification (chapter 5) Kai Goebel Bill Cheetham RPI/GE Global Research goebel@cs.rpi.edu cheetham@cs.rpi.edu Outline k-means Fuzzy c-means Mountain Clustering knn Fuzzy knn Hierarchical

More information

DIGITAL IMAGE ANALYSIS. Image Classification: Object-based Classification

DIGITAL IMAGE ANALYSIS. Image Classification: Object-based Classification DIGITAL IMAGE ANALYSIS Image Classification: Object-based Classification Image classification Quantitative analysis used to automate the identification of features Spectral pattern recognition Unsupervised

More information

COMP33111: Tutorial and lab exercise 7

COMP33111: Tutorial and lab exercise 7 COMP33111: Tutorial and lab exercise 7 Guide answers for Part 1: Understanding clustering 1. Explain the main differences between classification and clustering. main differences should include being unsupervised

More information

Describable Visual Attributes for Face Verification and Image Search

Describable Visual Attributes for Face Verification and Image Search Advanced Topics in Multimedia Analysis and Indexing, Spring 2011, NTU. 1 Describable Visual Attributes for Face Verification and Image Search Kumar, Berg, Belhumeur, Nayar. PAMI, 2011. Ryan Lei 2011/05/05

More information

SYDE 372 Introduction to Pattern Recognition. Distance Measures for Pattern Classification: Part I

SYDE 372 Introduction to Pattern Recognition. Distance Measures for Pattern Classification: Part I SYDE 372 Introduction to Pattern Recognition Distance Measures for Pattern Classification: Part I Alexander Wong Department of Systems Design Engineering University of Waterloo Outline Distance Measures

More information

From dynamic classifier selection to dynamic ensemble selection Albert H.R. Ko, Robert Sabourin, Alceu Souza Britto, Jr.

From dynamic classifier selection to dynamic ensemble selection Albert H.R. Ko, Robert Sabourin, Alceu Souza Britto, Jr. From dynamic classifier selection to dynamic ensemble selection Albert H.R. Ko, Robert Sabourin, Alceu Souza Britto, Jr Eider Sánchez Contenidos 1. Introduction 2. Proposed dynamic ensemble selection KNORA

More information

The Grade 3 Common Core State Standards for Geometry specify that students should

The Grade 3 Common Core State Standards for Geometry specify that students should Students in third grade describe, analyze, and compare properties of two-dimensional shapes. They compare and classify shapes by their sides and angles, and they use these classifications to define shapes.

More information

1. Alicia tosses 3 fair coins. What is the probability that she gets at 1. least 1 head? Express your answer as a common fraction.

1. Alicia tosses 3 fair coins. What is the probability that she gets at 1. least 1 head? Express your answer as a common fraction. Blitz, Page 1 1. Alicia tosses 3 fair coins. What is the probability that she gets at 1. least 1 head? Express your answer as a common fraction. 2. It took Anita 2.25 hours to walk 12.5 km. At this rate,

More information

CS178: Machine Learning and Data Mining. Complexity & Nearest Neighbor Methods

CS178: Machine Learning and Data Mining. Complexity & Nearest Neighbor Methods + CS78: Machine Learning and Data Mining Complexity & Nearest Neighbor Methods Prof. Erik Sudderth Some materials courtesy Alex Ihler & Sameer Singh Machine Learning Complexity and Overfitting Nearest

More information

Manifold Learning for Video-to-Video Face Recognition

Manifold Learning for Video-to-Video Face Recognition Manifold Learning for Video-to-Video Face Recognition Abstract. We look in this work at the problem of video-based face recognition in which both training and test sets are video sequences, and propose

More information

Voronoi Region. K-means method for Signal Compression: Vector Quantization. Compression Formula 11/20/2013

Voronoi Region. K-means method for Signal Compression: Vector Quantization. Compression Formula 11/20/2013 Voronoi Region K-means method for Signal Compression: Vector Quantization Blocks of signals: A sequence of audio. A block of image pixels. Formally: vector example: (0.2, 0.3, 0.5, 0.1) A vector quantizer

More information

Overview of machine learning

Overview of machine learning Overview of machine learning Kevin P. Murphy Last updated November 26, 2007 1 Introduction In this Chapter, we provide a brief overview of the most commonly studied problems and solution methods within

More information

Using Machine Learning to Optimize Storage Systems

Using Machine Learning to Optimize Storage Systems Using Machine Learning to Optimize Storage Systems Dr. Kiran Gunnam 1 Outline 1. Overview 2. Building Flash Models using Logistic Regression. 3. Storage Object classification 4. Storage Allocation recommendation

More information

Lecture-17: Clustering with K-Means (Contd: DT + Random Forest)

Lecture-17: Clustering with K-Means (Contd: DT + Random Forest) Lecture-17: Clustering with K-Means (Contd: DT + Random Forest) Medha Vidyotma April 24, 2018 1 Contd. Random Forest For Example, if there are 50 scholars who take the measurement of the length of the

More information

(6.6) Geometry and spatial reasoning. The student uses geometric vocabulary to describe angles, polygons, and circles.

(6.6) Geometry and spatial reasoning. The student uses geometric vocabulary to describe angles, polygons, and circles. (6.6) Geometry and spatial reasoning. The student uses geometric vocabulary to describe angles, polygons, and circles. (6.6.a) Geometry and spatial reasoning. The student uses geometric vocabulary to describe

More information

Machine Learning 13. week

Machine Learning 13. week Machine Learning 13. week Deep Learning Convolutional Neural Network Recurrent Neural Network 1 Why Deep Learning is so Popular? 1. Increase in the amount of data Thanks to the Internet, huge amount of

More information

Announcements. CS 188: Artificial Intelligence Spring Classification: Feature Vectors. Classification: Weights. Learning: Binary Perceptron

Announcements. CS 188: Artificial Intelligence Spring Classification: Feature Vectors. Classification: Weights. Learning: Binary Perceptron CS 188: Artificial Intelligence Spring 2010 Lecture 24: Perceptrons and More! 4/20/2010 Announcements W7 due Thursday [that s your last written for the semester!] Project 5 out Thursday Contest running

More information

Robot Learning. There are generally three types of robot learning: Learning from data. Learning by demonstration. Reinforcement learning

Robot Learning. There are generally three types of robot learning: Learning from data. Learning by demonstration. Reinforcement learning Robot Learning 1 General Pipeline 1. Data acquisition (e.g., from 3D sensors) 2. Feature extraction and representation construction 3. Robot learning: e.g., classification (recognition) or clustering (knowledge

More information

The Entity-Relationship (ER) Model

The Entity-Relationship (ER) Model The Entity-Relationship (ER) Model Week 1-2 Professor Jessica Lin The E-R Model 2 The E-R Model The Entity-Relationship Model The E-R (entity-relationship) data model views the real world as a set of basic

More information

10/5/2017 MIST.6060 Business Intelligence and Data Mining 1. Nearest Neighbors. In a p-dimensional space, the Euclidean distance between two records,

10/5/2017 MIST.6060 Business Intelligence and Data Mining 1. Nearest Neighbors. In a p-dimensional space, the Euclidean distance between two records, 10/5/2017 MIST.6060 Business Intelligence and Data Mining 1 Distance Measures Nearest Neighbors In a p-dimensional space, the Euclidean distance between two records, a = a, a,..., a ) and b = b, b,...,

More information

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University DS 4400 Machine Learning and Data Mining I Alina Oprea Associate Professor, CCIS Northeastern University January 24 2019 Logistics HW 1 is due on Friday 01/25 Project proposal: due Feb 21 1 page description

More information

Jeff Howbert Introduction to Machine Learning Winter

Jeff Howbert Introduction to Machine Learning Winter Collaborative Filtering Nearest es Neighbor Approach Jeff Howbert Introduction to Machine Learning Winter 2012 1 Bad news Netflix Prize data no longer available to public. Just after contest t ended d

More information

Social Voting Techniques: A Comparison of the Methods Used for Explicit Feedback in Recommendation Systems

Social Voting Techniques: A Comparison of the Methods Used for Explicit Feedback in Recommendation Systems Special Issue on Computer Science and Software Engineering Social Voting Techniques: A Comparison of the Methods Used for Explicit Feedback in Recommendation Systems Edward Rolando Nuñez-Valdez 1, Juan

More information

Lecture 3. Oct

Lecture 3. Oct Lecture 3 Oct 3 2008 Review of last lecture A supervised learning example spam filter, and the design choices one need to make for this problem use bag-of-words to represent emails linear functions as

More information

k-nn classification with R QMMA

k-nn classification with R QMMA k-nn classification with R QMMA Emanuele Taufer file:///c:/users/emanuele.taufer/google%20drive/2%20corsi/5%20qmma%20-%20mim/0%20labs/l1-knn-eng.html#(1) 1/16 HW (Height and weight) of adults Statistics

More information

Heart Disease Detection using EKSTRAP Clustering with Statistical and Distance based Classifiers

Heart Disease Detection using EKSTRAP Clustering with Statistical and Distance based Classifiers IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-0661,p-ISSN: 2278-8727, Volume 18, Issue 3, Ver. IV (May-Jun. 2016), PP 87-91 www.iosrjournals.org Heart Disease Detection using EKSTRAP Clustering

More information

Lecture 12 Recognition

Lecture 12 Recognition Institute of Informatics Institute of Neuroinformatics Lecture 12 Recognition Davide Scaramuzza 1 Lab exercise today replaced by Deep Learning Tutorial Room ETH HG E 1.1 from 13:15 to 15:00 Optional lab

More information

K-means Clustering & k-nn classification

K-means Clustering & k-nn classification K-means Clustering & k-nn classification Andreas C. Kapourani (Credit: Hiroshi Shimodaira) 03 February 2016 1 Introduction In this lab session we will focus on K-means clustering and k-nearest Neighbour

More information

Search Engines. Information Retrieval in Practice

Search Engines. Information Retrieval in Practice Search Engines Information Retrieval in Practice All slides Addison Wesley, 2008 Classification and Clustering Classification and clustering are classical pattern recognition / machine learning problems

More information

Exploratory Data Analysis using Self-Organizing Maps. Madhumanti Ray

Exploratory Data Analysis using Self-Organizing Maps. Madhumanti Ray Exploratory Data Analysis using Self-Organizing Maps Madhumanti Ray Content Introduction Data Analysis methods Self-Organizing Maps Conclusion Visualization of high-dimensional data items Exploratory data

More information

MODULE 7 Nearest Neighbour Classifier and its variants LESSON 11. Nearest Neighbour Classifier. Keywords: K Neighbours, Weighted, Nearest Neighbour

MODULE 7 Nearest Neighbour Classifier and its variants LESSON 11. Nearest Neighbour Classifier. Keywords: K Neighbours, Weighted, Nearest Neighbour MODULE 7 Nearest Neighbour Classifier and its variants LESSON 11 Nearest Neighbour Classifier Keywords: K Neighbours, Weighted, Nearest Neighbour 1 Nearest neighbour classifiers This is amongst the simplest

More information

An Unsupervised Approach for Combining Scores of Outlier Detection Techniques, Based on Similarity Measures

An Unsupervised Approach for Combining Scores of Outlier Detection Techniques, Based on Similarity Measures An Unsupervised Approach for Combining Scores of Outlier Detection Techniques, Based on Similarity Measures José Ramón Pasillas-Díaz, Sylvie Ratté Presenter: Christoforos Leventis 1 Basic concepts Outlier

More information

INF4820 Algorithms for AI and NLP. Evaluating Classifiers Clustering

INF4820 Algorithms for AI and NLP. Evaluating Classifiers Clustering INF4820 Algorithms for AI and NLP Evaluating Classifiers Clustering Murhaf Fares & Stephan Oepen Language Technology Group (LTG) September 27, 2017 Today 2 Recap Evaluation of classifiers Unsupervised

More information

Chapter 6 Rational Numbers and Proportional Reasoning

Chapter 6 Rational Numbers and Proportional Reasoning Chapter 6 Rational Numbers and Proportional Reasoning Students should build their understanding of fractions as parts of a whole and as division. They will need to see and explore a variety of models of

More information

Topic 1 Classification Alternatives

Topic 1 Classification Alternatives Topic 1 Classification Alternatives [Jiawei Han, Micheline Kamber, Jian Pei. 2011. Data Mining Concepts and Techniques. 3 rd Ed. Morgan Kaufmann. ISBN: 9380931913.] 1 Contents 2. Classification Using Frequent

More information

A Computer Vision System for Graphical Pattern Recognition and Semantic Object Detection

A Computer Vision System for Graphical Pattern Recognition and Semantic Object Detection A Computer Vision System for Graphical Pattern Recognition and Semantic Object Detection Tudor Barbu Institute of Computer Science, Iaşi, Romania Abstract We have focused on a set of problems related to

More information

INF4820, Algorithms for AI and NLP: Evaluating Classifiers Clustering

INF4820, Algorithms for AI and NLP: Evaluating Classifiers Clustering INF4820, Algorithms for AI and NLP: Evaluating Classifiers Clustering Erik Velldal University of Oslo Sept. 18, 2012 Topics for today 2 Classification Recap Evaluating classifiers Accuracy, precision,

More information

Predictive Analytics: Demystifying Current and Emerging Methodologies. Tom Kolde, FCAS, MAAA Linda Brobeck, FCAS, MAAA

Predictive Analytics: Demystifying Current and Emerging Methodologies. Tom Kolde, FCAS, MAAA Linda Brobeck, FCAS, MAAA Predictive Analytics: Demystifying Current and Emerging Methodologies Tom Kolde, FCAS, MAAA Linda Brobeck, FCAS, MAAA May 18, 2017 About the Presenters Tom Kolde, FCAS, MAAA Consulting Actuary Chicago,

More information

Lecture 12 Recognition. Davide Scaramuzza

Lecture 12 Recognition. Davide Scaramuzza Lecture 12 Recognition Davide Scaramuzza Oral exam dates UZH January 19-20 ETH 30.01 to 9.02 2017 (schedule handled by ETH) Exam location Davide Scaramuzza s office: Andreasstrasse 15, 2.10, 8050 Zurich

More information