Learning with the Aid of an Oracle

Size: px
Start display at page:

Download "Learning with the Aid of an Oracle"

Transcription

1 ' Learning with the Aid of an Oracle (1996; Bshouty, Cleve, Gavaldà, Kannan, Tamon) CHRISTINO TAMON, Computer Science, Clarkson University, tino Exact Learning, Boolean Circuits, Disjunctive Normal Form, Com- Synonyms and Index Terms plexity Oracles 1 Problem Definition In the exact learning model of Angluin [1], a learning algorithm function must discover an unknown that is a member of a known class of Boolean functions. The learning algorithm can make at least one of the following types of queries about : Equivalence query, for a candidate function : The reply is either yes, if!, or a counterexample " with #$"&% Membership query () $", for some "+*, : The reply is the Boolean value $". Subset query -/.102, for a candidate function : The reply is yes, if 435, or a counterexample " with $"768#9", otherwise. Superset query -/.1:2 9, for a candidate function : The reply is yes, if ;35, or a counterexample " with #9"<6= >9", otherwise. $", otherwise. A Disjunctive Normal Formula ) is a depth-2 BDC circuit whose size is given by the number of its BDC gates. Likewise, a Conjunctive Normal Formula (E@7A ) is a - BDC circuit whose size is given by the number of gates. Any Boolean function can be represented as both or a G@FA formula. A H is where gate has a fan-in of at most H ; similarly, we may define a H -G@FA. Problem For a given class of Boolean functions, such as polynomial-size Boolean circuits or Disjunctive Normal Form ) formulas, the goal is to design polynomial-time learning algorithms for any unknown I*J and ask a polynomial number of queries. The output of the learning algorithm should be a function of polynomial size satisfying KL M. The polynomial functions bounding the running time, query complexity, and output size are defined in terms of the number of inputs N and the size of the smallest representation (Boolean circuit ) of the unknown function 1

2 2 Key Results One of the main results proved in [4] is that Boolean circuits and Disjunctive Normal Formulas are exactly learnable using equivalence queries and access to oracle. Theorem 1 The following tasks can be accomplished with probabilistic polynomial-time algorithms that have access to oracle and make polynomially many equivalence queries: The idea behind this result is simple. Any class of Boolean functions is exactly learnable with equivalence queries using the Halving algorithm of Littlestone [10]. This algorithm asks equivalence queries that are the majority of candidate functions from. These are functions in that are consistent with the counterexamples obtained so far by the learning algorithm. Since each such majority query eliminates at least half of the candidate functions, equivalence queries are sufficient to learn any function in. A problem with using the Halving algorithm here is that the majority query has exponential size. But, it can be shown that a majority of a polynomial number of uniformly random candidate functions is a good enough approximator to the majority of all candidate functions. Moreover, with access to oracle, there is a randomized polynomial time algorithm for generating random uniform candidate functions due to Jerrum, Valiant, and Vazirani [6]. This yields the result. The next observation is that subset and superset queries are apparently powerful enough to simulate both equivalence queries and oracle. This is easy to see since the tautology test! is equivalent to -/.102 I-/.102 9, for any unknown function ; and, 9 is equivalent to -/.102 -/.1:2. Thus, the following generalization of Theorem 1 is obtained. Theorem 2 The following tasks can be accomplished with probabilistic polynomial-time algorithms that make polynomially many subset and superset queries: Stronger deterministic results are obtained by allowing more powerful complexity-theoretic oracles. The first of these results employ techniques developed by Sipser and Stockmeyer [11, 12]. Theorem 3 The following tasks can be accomplished with deterministic polynomial-time algorithms that have access to an oracle and make polynomially many equivalence queries: 2

3 In the following result, is an infinite class of functions containing functions of the form 2 J. The class is -evaluatable if the following tasks can be performed in polynomial time: Given, is a valid representation for any function &*? Given a valid representation and *, 2, is / '? Theorem 4 Let be any -evaluatable class. The following statements are equivalent: is learnable from polynomially many equivalence queries of polynomial size (and unlimited computational power). is learnable in deterministic polynomial time with equivalence queries and access to a oracle. For exact learning with membership queries, the following results are proved. Theorem 5 The following tasks can be accomplished with deterministic polynomial-time algorithms that have access to oracle and make polynomially many membership queries (in and G@FA sizes of, where is the unknown function): Learning monotone Boolean functions. Learning L N -E@7A GN The ideas behind the above result use techniques from [1, 3]. For a monotone Boolean function, the standard closure algorithm uses both equivalence and membership queries to learn using candidate functions satisfying 3. The need for membership can be removed using the following observation. Viewing G as a monotone function on the inverted lattice, we can learn and G simultaneously using candidate functions, respectively, that satisfy 3. oracle is used to obtain an example " that either helps in learning or in learning E ; when no such example can be found, we have learned. Theorem 6 Any class of Boolean functions that is exactly learnable using a polynomial number of membership queries (and unlimited computational power) is exactly learnable in expected polynomial time using a polynomial number of membership queries and access to oracle. Moreover, any -evaluatable class that is exactly learnable from a polynomially number membership queries (and unlimited computational power), is also learnable in deterministic polynomial time using a polynomial number of membership queries and access to a oracle. Theorems 4 and 6 showed that information-theoretic learnability using equivalence and membership queries can be transformed into computational learnability at the expense of using the oracles, respectively. 3

4 3 Applications The learning algorithm for Boolean circuits using equivalence queries and access to oracle has found an application in complexity theory. Watanabe (see [9]) showed an improvement on a known theorem of Karp and Lipton [7]: has polynomial-size circuits, then the polynomialtime hierarchy collapses to. Some techniques developed in Theorem 5 for exact learning using membership queries of monotone Boolean functions have found applications in data mining [5]. 4 Open Problems It is unknown if there are polynomial-time learning algorithms for Boolean circuits formulas using equivalence queries (without complexity-theoretic oracles). There are strong cryptographic evidence that Boolean circuits are not learnable in polynomial-time (see [2] and the references therein). The best running time for formulas is as given by Klivans and Servedio [8]. It is unclear if membership queries help in this case. 5 Experimental Results 6 Data Sets 7 URL to Code 8 Cross References For related learning results, see Learning DNF Formulas (1997; Jackson) and Learning Automata (2000; Beimel, Bergadano, Bshouty, Kushilevitz, and Varricchio) in this encyclopedia. 9 Recommended Reading [1] D. ANGLUIN, Queries and Concept Learning, Machine Learning, 2 (1988), pp [2] D. ANGLUIN AND M. KHARITONOV, When Won t Membership Queries Help?, Journal of Computer and System Sciences, 50 (1995), pp

5 [3] N. H. BSHOUTY, Exact Learning Boolean Function via the Monotone Theory, Information and Computation, 123 (1995), pp [4] N. H. BSHOUTY, R. CLEVE, R. GAVALDÀ, S. KANNAN, AND C. TAMON, Oracles and Queries That Are Sufficient for Exact Learning, Journal of Computer and System Sciences, 52 (1996), pp [5] D. GUNOPOLOUS, R. KHARDON, H. MANNILA, S. SALUJA, H. TOIVONEN, AND R. S. SHARMA, Discovering All Most Specific Sentences, ACM Transaction on Database Systems, 28 (2003), pp [6] M. R. JERRUM, L. G. VALIANT, AND V. V. VAZIRANI, Random Generation of Combinatorial Structures from a Uniform Distribution, Theoretical Computer Science, 43 (1986), pp [7] R. M. KARP AND R. J. LIPTON, Some Connections Between Nonuniform and Uniform Complexity Classes, in Proceedings of the 12th Ann. ACM Symposium on Theory of Computing, ACM Press, 1980, pp , Journal of Com- [8] A. R. KLIVANS AND R. A. SERVEDIO, Learning DNF in Time puter and System Sciences, 68 (2004), pp [9] J. KÖBLER AND O. WATANABE, New Collapse Consequences of NP Having Small Circuits, SIAM Journal of Computing, 28 (1998), pp [10] N. LITTLESTONE, Learning Quickly When Irrelevant Attributes Abound: A New Linear- Threshold Algorithm, Machine Learning, 2 (1987), pp [11] M. SIPSER, A complexity theoretic approach to randomness, in Proceedings of the 15th Annual ACM Symposium on Theory of Computing, ACM Press, 1983, pp [12] L. J. STOCKMEYER, On approximation algorithms for, SIAM Journal of Computing, 14 (1985), pp

Efficiency versus Convergence of Boolean Kernels for On-Line Learning Algorithms

Efficiency versus Convergence of Boolean Kernels for On-Line Learning Algorithms NIPS 01 Efficiency versus Convergence of Boolean Kernels for On-Line Learning Algorithms oni Khardon Tufts University Medford, MA 02155 roni@eecs.tufts.edu Dan oth University of Illinois Urbana, IL 61801

More information

Algorithms for Learning and Teaching. Sets of Vertices in Graphs. Patricia A. Evans and Michael R. Fellows. University of Victoria

Algorithms for Learning and Teaching. Sets of Vertices in Graphs. Patricia A. Evans and Michael R. Fellows. University of Victoria Algorithms for Learning and Teaching Sets of Vertices in Graphs Patricia A. Evans and Michael R. Fellows Department of Computer Science University of Victoria Victoria, B.C. V8W 3P6, Canada Lane H. Clark

More information

Efficiency versus Convergence of Boolean Kernels for On-Line Learning Algorithms

Efficiency versus Convergence of Boolean Kernels for On-Line Learning Algorithms Efficiency versus Convergence of Boolean Kernels for On-Line Learning Algorithms Roni Khardon Tufts University Medford, MA 02155 roni@eecs.tufts.edu Dan Roth University of Illinois Urbana, IL 61801 danr@cs.uiuc.edu

More information

SERGEI OBIEDKOV LEARNING HORN FORMULAS WITH QUERIES

SERGEI OBIEDKOV LEARNING HORN FORMULAS WITH QUERIES SERGEI OBIEDKOV LEARNING HORN FORMULAS WITH QUERIES SUPERVISED LEARNING Input: a training set divided into (for example) two classes w.r.t. a certain target property. positive examples negative examples

More information

NP-Completeness of 3SAT, 1-IN-3SAT and MAX 2SAT

NP-Completeness of 3SAT, 1-IN-3SAT and MAX 2SAT NP-Completeness of 3SAT, 1-IN-3SAT and MAX 2SAT 3SAT The 3SAT problem is the following. INSTANCE : Given a boolean expression E in conjunctive normal form (CNF) that is the conjunction of clauses, each

More information

Efficient Read-Restricted Monotone CNF/DNF Dualization by Learning with Membership Queries

Efficient Read-Restricted Monotone CNF/DNF Dualization by Learning with Membership Queries Machine Learning, 37, 89 110 (1999) c 1999 Kluwer Academic Publishers. Manufactured in The Netherlands. Efficient Read-Restricted Monotone CNF/DNF Dualization by Learning with Membership Queries CARLOS

More information

Optimally Learning Social Networks with Activations and Suppressions

Optimally Learning Social Networks with Activations and Suppressions Optimally Learning Social Networks with Activations and Suppressions Dana Angluin a, James Aspnes a,1, Lev Reyzin a,,2 a Department of Computer Science, Yale University, New Haven, Connecticut, 06511 {angluin,aspnes}@cs.yale.edu,

More information

Clustering with Interactive Feedback

Clustering with Interactive Feedback Clustering with Interactive Feedback Maria-Florina Balcan and Avrim Blum Carnegie Mellon University Pittsburgh, PA 15213-3891 {ninamf,avrim}@cs.cmu.edu Abstract. In this paper, we initiate a theoretical

More information

CS 151 Complexity Theory Spring Final Solutions. L i NL i NC 2i P.

CS 151 Complexity Theory Spring Final Solutions. L i NL i NC 2i P. CS 151 Complexity Theory Spring 2017 Posted: June 9 Final Solutions Chris Umans 1. (a) The procedure that traverses a fan-in 2 depth O(log i n) circuit and outputs a formula runs in L i this can be done

More information

Definition: A context-free grammar (CFG) is a 4- tuple. variables = nonterminals, terminals, rules = productions,,

Definition: A context-free grammar (CFG) is a 4- tuple. variables = nonterminals, terminals, rules = productions,, CMPSCI 601: Recall From Last Time Lecture 5 Definition: A context-free grammar (CFG) is a 4- tuple, variables = nonterminals, terminals, rules = productions,,, are all finite. 1 ( ) $ Pumping Lemma for

More information

Communication Complexity and Parallel Computing

Communication Complexity and Parallel Computing Juraj Hromkovic Communication Complexity and Parallel Computing With 40 Figures Springer Table of Contents 1 Introduction 1 1.1 Motivation and Aims 1 1.2 Concept and Organization 4 1.3 How to Read the

More information

Learning Boolean Functions in an Infinite Attribute Space

Learning Boolean Functions in an Infinite Attribute Space Machine Learning, 9, 373-386 (1992) 1992 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands. Learning Boolean Functions in an Infinite Attribute Space AVRIM BLUM School of Computer Science,

More information

Randomness and Computation March 25, Lecture 5

Randomness and Computation March 25, Lecture 5 0368.463 Randomness and Computation March 25, 2009 Lecturer: Ronitt Rubinfeld Lecture 5 Scribe: Inbal Marhaim, Naama Ben-Aroya Today Uniform generation of DNF satisfying assignments Uniform generation

More information

Boolean Functions (Formulas) and Propositional Logic

Boolean Functions (Formulas) and Propositional Logic EECS 219C: Computer-Aided Verification Boolean Satisfiability Solving Part I: Basics Sanjit A. Seshia EECS, UC Berkeley Boolean Functions (Formulas) and Propositional Logic Variables: x 1, x 2, x 3,, x

More information

LEARNING CIRCUITS AND NETWORKS BY INJECTING VALUES. Lev Reyzin Yale University

LEARNING CIRCUITS AND NETWORKS BY INJECTING VALUES. Lev Reyzin Yale University LEARNING CIRCUITS AND NETWORKS BY INJECTING VALUES Lev Reyzin Yale University PAPERS Dana Angluin, James Aspnes, Jiang Chen, and Yinghua Wu. Learning a Circuit by Injecting Values. In Proceedings of the

More information

Satisfiability Coding Lemma

Satisfiability Coding Lemma ! Satisfiability Coding Lemma Ramamohan Paturi, Pavel Pudlák, and Francis Zane Abstract We present and analyze two simple algorithms for finding satisfying assignments of -CNFs (Boolean formulae in conjunctive

More information

Counting the Number of Eulerian Orientations

Counting the Number of Eulerian Orientations Counting the Number of Eulerian Orientations Zhenghui Wang March 16, 011 1 Introduction Consider an undirected Eulerian graph, a graph in which each vertex has even degree. An Eulerian orientation of the

More information

9.1 Cook-Levin Theorem

9.1 Cook-Levin Theorem CS787: Advanced Algorithms Scribe: Shijin Kong and David Malec Lecturer: Shuchi Chawla Topic: NP-Completeness, Approximation Algorithms Date: 10/1/2007 As we ve already seen in the preceding lecture, two

More information

NP-Hardness. We start by defining types of problem, and then move on to defining the polynomial-time reductions.

NP-Hardness. We start by defining types of problem, and then move on to defining the polynomial-time reductions. CS 787: Advanced Algorithms NP-Hardness Instructor: Dieter van Melkebeek We review the concept of polynomial-time reductions, define various classes of problems including NP-complete, and show that 3-SAT

More information

Online algorithms for clustering problems

Online algorithms for clustering problems University of Szeged Department of Computer Algorithms and Artificial Intelligence Online algorithms for clustering problems Summary of the Ph.D. thesis by Gabriella Divéki Supervisor Dr. Csanád Imreh

More information

CS 395T Computational Learning Theory. Scribe: Wei Tang

CS 395T Computational Learning Theory. Scribe: Wei Tang CS 395T Computational Learning Theory Lecture 1: September 5th, 2007 Lecturer: Adam Klivans Scribe: Wei Tang 1.1 Introduction Many tasks from real application domain can be described as a process of learning.

More information

W[1]-hardness. Dániel Marx. Recent Advances in Parameterized Complexity Tel Aviv, Israel, December 3, 2017

W[1]-hardness. Dániel Marx. Recent Advances in Parameterized Complexity Tel Aviv, Israel, December 3, 2017 1 W[1]-hardness Dániel Marx Recent Advances in Parameterized Complexity Tel Aviv, Israel, December 3, 2017 2 Lower bounds So far we have seen positive results: basic algorithmic techniques for fixed-parameter

More information

class. Moreover, so far, the problem of evaluating a Boolean formula [6] and the problem of multiplying permutations on ve points [3] (and some of the

class. Moreover, so far, the problem of evaluating a Boolean formula [6] and the problem of multiplying permutations on ve points [3] (and some of the A Note on the Hardness of Tree Isomorphism Birgit Jenner Tubingen and Ulm Pierre McKenzie Montreal and Tubingen December 5, 1997 Jacobo Toran Ulm Abstract In this note we prove that the tree isomorphism

More information

A Visualization Program for Subset Sum Instances

A Visualization Program for Subset Sum Instances A Visualization Program for Subset Sum Instances Thomas E. O Neil and Abhilasha Bhatia Computer Science Department University of North Dakota Grand Forks, ND 58202 oneil@cs.und.edu abhilasha.bhatia@my.und.edu

More information

An Empirical Comparison of Spectral Learning Methods for Classification

An Empirical Comparison of Spectral Learning Methods for Classification An Empirical Comparison of Spectral Learning Methods for Classification Adam Drake and Dan Ventura Computer Science Department Brigham Young University, Provo, UT 84602 USA Email: adam drake1@yahoo.com,

More information

Decision Procedures. An Algorithmic Point of View. Decision Procedures for Propositional Logic. D. Kroening O. Strichman.

Decision Procedures. An Algorithmic Point of View. Decision Procedures for Propositional Logic. D. Kroening O. Strichman. Decision Procedures An Algorithmic Point of View Decision Procedures for Propositional Logic D. Kroening O. Strichman ETH/Technion Version 1.0, 2007 Part I Decision Procedures for Propositional Logic Outline

More information

Learning Schema Mappings

Learning Schema Mappings Learning Schema Mappings Balder ten Cate UC Santa Cruz btencate@ucsc.edu Víctor Dalmau Universitat Pompeu Fabra victor.dalmau@upf.edu Phokion G. Kolaitis UC Santa Cruz & IBM Research Almaden kolaitis@cs.ucsc.edu

More information

A Practical Generalization of Fourier-based Learning

A Practical Generalization of Fourier-based Learning Adam Drake Dan Ventura Computer Science Department, Brigham Young University, Provo, UT 84602 USA acd2@cs.byu.edu ventura@cs.byu.edu Abstract This paper presents a search algorithm for finding functions

More information

USING QBF SOLVERS TO SOLVE GAMES AND PUZZLES. Zhihe Shen. Advisor: Howard Straubing

USING QBF SOLVERS TO SOLVE GAMES AND PUZZLES. Zhihe Shen. Advisor: Howard Straubing Boston College Computer Science Senior Thesis USING QBF SOLVERS TO SOLVE GAMES AND PUZZLES Zhihe Shen Advisor: Howard Straubing Abstract There are multiple types of games, such as board games and card

More information

SAT-CNF Is N P-complete

SAT-CNF Is N P-complete SAT-CNF Is N P-complete Rod Howell Kansas State University November 9, 2000 The purpose of this paper is to give a detailed presentation of an N P- completeness proof using the definition of N P given

More information

Ch9: Exact Inference: Variable Elimination. Shimi Salant, Barak Sternberg

Ch9: Exact Inference: Variable Elimination. Shimi Salant, Barak Sternberg Ch9: Exact Inference: Variable Elimination Shimi Salant Barak Sternberg Part 1 Reminder introduction (1/3) We saw two ways to represent (finite discrete) distributions via graphical data structures: Bayesian

More information

Parameterized Complexity - an Overview

Parameterized Complexity - an Overview Parameterized Complexity - an Overview 1 / 30 Parameterized Complexity - an Overview Ue Flarup 1 flarup@imada.sdu.dk 1 Department of Mathematics and Computer Science University of Southern Denmark, Odense,

More information

Propositional Calculus: Boolean Algebra and Simplification. CS 270: Mathematical Foundations of Computer Science Jeremy Johnson

Propositional Calculus: Boolean Algebra and Simplification. CS 270: Mathematical Foundations of Computer Science Jeremy Johnson Propositional Calculus: Boolean Algebra and Simplification CS 270: Mathematical Foundations of Computer Science Jeremy Johnson Propositional Calculus Topics Motivation: Simplifying Conditional Expressions

More information

Exercises Computational Complexity

Exercises Computational Complexity Exercises Computational Complexity March 22, 2017 Exercises marked with a are more difficult. 1 Chapter 7, P and NP Exercise 1. Suppose some pancakes are stacked on a surface such that no two pancakes

More information

The Resolution Width Problem is EXPTIME-Complete

The Resolution Width Problem is EXPTIME-Complete The Resolution Width Problem is EXPTIME-Complete Alexander Hertel & Alasdair Urquhart November 24, 2007 Abstract The importance of width as a resource in resolution theorem proving has been emphasized

More information

IN general setting, a combinatorial network is

IN general setting, a combinatorial network is JOURNAL OF L A TEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 1 Clustering without replication: approximation and inapproximability Zola Donovan, Vahan Mkrtchyan, and K. Subramani, arxiv:1412.4051v1 [cs.ds]

More information

Prove, where is known to be NP-complete. The following problems are NP-Complete:

Prove, where is known to be NP-complete. The following problems are NP-Complete: CMPSCI 601: Recall From Last Time Lecture 21 To prove is NP-complete: Prove NP. Prove, where is known to be NP-complete. The following problems are NP-Complete: SAT (Cook-Levin Theorem) 3-SAT 3-COLOR CLIQUE

More information

Understanding policy intent and misconfigurations from implementations: consistency and convergence

Understanding policy intent and misconfigurations from implementations: consistency and convergence Understanding policy intent and misconfigurations from implementations: consistency and convergence Prasad Naldurg 1, Ranjita Bhagwan 1, and Tathagata Das 2 1 Microsoft Research India, prasadn@microsoft.com,

More information

6.856 Randomized Algorithms

6.856 Randomized Algorithms 6.856 Randomized Algorithms David Karger Handout #4, September 21, 2002 Homework 1 Solutions Problem 1 MR 1.8. (a) The min-cut algorithm given in class works because at each step it is very unlikely (probability

More information

Linear Advice for Randomized Logarithmic Space

Linear Advice for Randomized Logarithmic Space Linear Advice for Randomized Logarithmic Space Lance Fortnow 1 and Adam R. Klivans 2 1 Department of Computer Science University of Chicago Chicago, IL 60637 fortnow@cs.uchicago.edu 2 Department of Computer

More information

Formal Model. Figure 1: The target concept T is a subset of the concept S = [0, 1]. The search agent needs to search S for a point in T.

Formal Model. Figure 1: The target concept T is a subset of the concept S = [0, 1]. The search agent needs to search S for a point in T. Although this paper analyzes shaping with respect to its benefits on search problems, the reader should recognize that shaping is often intimately related to reinforcement learning. The objective in reinforcement

More information

3 No-Wait Job Shops with Variable Processing Times

3 No-Wait Job Shops with Variable Processing Times 3 No-Wait Job Shops with Variable Processing Times In this chapter we assume that, on top of the classical no-wait job shop setting, we are given a set of processing times for each operation. We may select

More information

Logic and Computation

Logic and Computation Logic and Computation From Conceptualization to Formalization Here's what we do when we build a formal model (or do a computation): 0. Identify a collection of objects/events in the real world. This is

More information

VISUALIZING NP-COMPLETENESS THROUGH CIRCUIT-BASED WIDGETS

VISUALIZING NP-COMPLETENESS THROUGH CIRCUIT-BASED WIDGETS University of Portland Pilot Scholars Engineering Faculty Publications and Presentations Shiley School of Engineering 2016 VISUALIZING NP-COMPLETENESS THROUGH CIRCUIT-BASED WIDGETS Steven R. Vegdahl University

More information

W[1]-hardness. Dániel Marx 1. Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary

W[1]-hardness. Dániel Marx 1. Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary W[1]-hardness Dániel Marx 1 1 Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary School on Parameterized Algorithms and Complexity Będlewo, Poland

More information

Planar Point Location

Planar Point Location C.S. 252 Prof. Roberto Tamassia Computational Geometry Sem. II, 1992 1993 Lecture 04 Date: February 15, 1993 Scribe: John Bazik Planar Point Location 1 Introduction In range searching, a set of values,

More information

Report on article The Travelling Salesman Problem: A Linear Programming Formulation

Report on article The Travelling Salesman Problem: A Linear Programming Formulation Report on article The Travelling Salesman Problem: A Linear Programming Formulation Radosław Hofman, Poznań 2008 Abstract This article describes counter example prepared in order to prove that linear formulation

More information

Approximating the surface volume of convex bodies

Approximating the surface volume of convex bodies Approximating the surface volume of convex bodies Hariharan Narayanan Advisor: Partha Niyogi Department of Computer Science, University of Chicago Approximating the surface volume of convex bodies p. Surface

More information

On the Complexity of k-sat

On the Complexity of k-sat Journal of Computer and System Sciences 62, 367375 (2001) doi:10.1006jcss.2000.1727, available online at http:www.idealibrary.com on On the Complexity of k-sat Russell Impagliazzo 1 and Ramamohan Paturi

More information

The strong chromatic number of a graph

The strong chromatic number of a graph The strong chromatic number of a graph Noga Alon Abstract It is shown that there is an absolute constant c with the following property: For any two graphs G 1 = (V, E 1 ) and G 2 = (V, E 2 ) on the same

More information

Umans Complexity Theory Lectures

Umans Complexity Theory Lectures Introduction Umans Complexity Theory Lectures Lecture 5: Boolean Circuits & NP: - Uniformity and Advice, - NC hierarchy Power from an unexpected source? we know P EXP, which implies no polytime algorithm

More information

On the Recursion-Theoretic Complexity of Relative Succinctness of Representations of Languages

On the Recursion-Theoretic Complexity of Relative Succinctness of Representations of Languages INFORMATION AND CONTROL 52, 2--7 (1982) On the Recursion-Theoretic Complexity of Relative Succinctness of Representations of Languages Louise HAY Department of Mathematics, Statistics, and Computer Science,

More information

Lecture 9: Zero-Knowledge Proofs

Lecture 9: Zero-Knowledge Proofs Great Ideas in Theoretical Computer Science Summer 2013 Lecture 9: Zero-Knowledge Proofs Lecturer: Kurt Mehlhorn & He Sun A zero-knowledge proof is an interactive protocol (game) between two parties, a

More information

Parallel Computation: Many computations at once, we measure parallel time and amount of hardware. (time measure, hardware measure)

Parallel Computation: Many computations at once, we measure parallel time and amount of hardware. (time measure, hardware measure) CMPSCI 601: Recall From Last Time Lecture 24 Parallel Computation: Many computations at once, we measure parallel time and amount of hardware. Models: (time measure, hardware measure) Parallel RAM: number

More information

Unification in Maude. Steven Eker

Unification in Maude. Steven Eker Unification in Maude Steven Eker 1 Unification Unification is essentially solving equations in an abstract setting. Given a signature Σ, variables X and terms t 1, t 2 T (Σ) we want to find substitutions

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18 601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18 22.1 Introduction We spent the last two lectures proving that for certain problems, we can

More information

9 Bounds for the Knapsack Problem (March 6)

9 Bounds for the Knapsack Problem (March 6) 9 Bounds for the Knapsack Problem (March 6) In this lecture, I ll develop both upper and lower bounds in the linear decision tree model for the following version of the (NP-complete) Knapsack 1 problem:

More information

Roadmap. PCY Algorithm

Roadmap. PCY Algorithm 1 Roadmap Frequent Patterns A-Priori Algorithm Improvements to A-Priori Park-Chen-Yu Algorithm Multistage Algorithm Approximate Algorithms Compacting Results Data Mining for Knowledge Management 50 PCY

More information

On communication complexity of classification

On communication complexity of classification On communication complexity of classification Shay Moran (Princeton) Joint with Daniel Kane (UCSD), Roi Livni (TAU), and Amir Yehudayoff (Technion) Warmup (i): convex set disjointness Alice s input: n

More information

Learning Coni uiict ions of Horn Cla,uses

Learning Coni uiict ions of Horn Cla,uses Learning Coni uiict ions of Horn Cla,uses (extended abstract) Da.na Angluin* Computer Science Yale University New Haven, CT 06520 angluin@ cs. y ale. edu Michael F razier Computer Science University of

More information

1 Introduction. 1. Prove the problem lies in the class NP. 2. Find an NP-complete problem that reduces to it.

1 Introduction. 1. Prove the problem lies in the class NP. 2. Find an NP-complete problem that reduces to it. 1 Introduction There are hundreds of NP-complete problems. For a recent selection see http://www. csc.liv.ac.uk/ ped/teachadmin/comp202/annotated_np.html Also, see the book M. R. Garey and D. S. Johnson.

More information

arxiv: v2 [cs.cc] 29 Mar 2010

arxiv: v2 [cs.cc] 29 Mar 2010 On a variant of Monotone NAE-3SAT and the Triangle-Free Cut problem. arxiv:1003.3704v2 [cs.cc] 29 Mar 2010 Peiyush Jain, Microsoft Corporation. June 28, 2018 Abstract In this paper we define a restricted

More information

Unit 8: Coping with NP-Completeness. Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems. Y.-W.

Unit 8: Coping with NP-Completeness. Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems. Y.-W. : Coping with NP-Completeness Course contents: Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems Reading: Chapter 34 Chapter 35.1, 35.2 Y.-W. Chang 1 Complexity

More information

Lecture 14: Lower Bounds for Tree Resolution

Lecture 14: Lower Bounds for Tree Resolution IAS/PCMI Summer Session 2000 Clay Mathematics Undergraduate Program Advanced Course on Computational Complexity Lecture 14: Lower Bounds for Tree Resolution David Mix Barrington and Alexis Maciel August

More information

Static Analysis and Bugfinding

Static Analysis and Bugfinding Static Analysis and Bugfinding Alex Kantchelian 09/12/2011 Last week we talked about runtime checking methods: tools for detecting vulnerabilities being exploited in deployment. So far, these tools have

More information

fkautz, mkearns, Formal AI systems traditionally represent knowledge using logical formulas.

fkautz, mkearns, Formal AI systems traditionally represent knowledge using logical formulas. Horn Approximations of Empirical Data Henry Kautz, Michael Kearns, and Bart Selman AI Principles Research Dept., AT&T Bell Laboratories, Murray Hill, NJ 07974 email: fkautz, mkearns, selmang@research.att.com

More information

Parameterized Reductions

Parameterized Reductions 1 Fine-Grained Complexity and Algorithm Design Boot Camp Parameterized Reductions Dániel Marx Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary Simons

More information

Designing Views to Answer Queries under Set, Bag,and BagSet Semantics

Designing Views to Answer Queries under Set, Bag,and BagSet Semantics Designing Views to Answer Queries under Set, Bag,and BagSet Semantics Rada Chirkova Department of Computer Science, North Carolina State University Raleigh, NC 27695-7535 chirkova@csc.ncsu.edu Foto Afrati

More information

Search Techniques for Fourier-Based Learning

Search Techniques for Fourier-Based Learning Search Techniques for Fourier-Based Learning Adam Drake and Dan Ventura Computer Science Department Brigham Young University {acd2,ventura}@cs.byu.edu Abstract Fourier-based learning algorithms rely on

More information

Neural Networks: What can a network represent. Deep Learning, Fall 2018

Neural Networks: What can a network represent. Deep Learning, Fall 2018 Neural Networks: What can a network represent Deep Learning, Fall 2018 1 Recap : Neural networks have taken over AI Tasks that are made possible by NNs, aka deep learning 2 Recap : NNets and the brain

More information

Notes for Lecture 24

Notes for Lecture 24 U.C. Berkeley CS170: Intro to CS Theory Handout N24 Professor Luca Trevisan December 4, 2001 Notes for Lecture 24 1 Some NP-complete Numerical Problems 1.1 Subset Sum The Subset Sum problem is defined

More information

Neural Networks: What can a network represent. Deep Learning, Spring 2018

Neural Networks: What can a network represent. Deep Learning, Spring 2018 Neural Networks: What can a network represent Deep Learning, Spring 2018 1 Recap : Neural networks have taken over AI Tasks that are made possible by NNs, aka deep learning 2 Recap : NNets and the brain

More information

1 Definition of Reduction

1 Definition of Reduction 1 Definition of Reduction Problem A is reducible, or more technically Turing reducible, to problem B, denoted A B if there a main program M to solve problem A that lacks only a procedure to solve problem

More information

PCPs and Succinct Arguments

PCPs and Succinct Arguments COSC 544 Probabilistic Proof Systems 10/19/17 Lecturer: Justin Thaler PCPs and Succinct Arguments 1 PCPs: Definitions and Relationship to MIPs In an MIP, if a prover is asked multiple questions by the

More information

NP versus PSPACE. Frank Vega. To cite this version: HAL Id: hal https://hal.archives-ouvertes.fr/hal

NP versus PSPACE. Frank Vega. To cite this version: HAL Id: hal https://hal.archives-ouvertes.fr/hal NP versus PSPACE Frank Vega To cite this version: Frank Vega. NP versus PSPACE. Preprint submitted to Theoretical Computer Science 2015. 2015. HAL Id: hal-01196489 https://hal.archives-ouvertes.fr/hal-01196489

More information

Combinatorial Problems on Strings with Applications to Protein Folding

Combinatorial Problems on Strings with Applications to Protein Folding Combinatorial Problems on Strings with Applications to Protein Folding Alantha Newman 1 and Matthias Ruhl 2 1 MIT Laboratory for Computer Science Cambridge, MA 02139 alantha@theory.lcs.mit.edu 2 IBM Almaden

More information

New Upper Bounds for MAX-2-SAT and MAX-2-CSP w.r.t. the Average Variable Degree

New Upper Bounds for MAX-2-SAT and MAX-2-CSP w.r.t. the Average Variable Degree New Upper Bounds for MAX-2-SAT and MAX-2-CSP w.r.t. the Average Variable Degree Alexander Golovnev St. Petersburg University of the Russian Academy of Sciences, St. Petersburg, Russia alex.golovnev@gmail.com

More information

Learning languages with queries

Learning languages with queries Learning languages with queries Steffen Lange, Jochen Nessel, Sandra Zilles Deutsches Forschungszentrum für Künstliche Intelligenz, Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany, lange@dfki.de Medizinische

More information

Algorithmic Aspects of Acyclic Edge Colorings

Algorithmic Aspects of Acyclic Edge Colorings Algorithmic Aspects of Acyclic Edge Colorings Noga Alon Ayal Zaks Abstract A proper coloring of the edges of a graph G is called acyclic if there is no -colored cycle in G. The acyclic edge chromatic number

More information

Reducing Directed Max Flow to Undirected Max Flow and Bipartite Matching

Reducing Directed Max Flow to Undirected Max Flow and Bipartite Matching Reducing Directed Max Flow to Undirected Max Flow and Bipartite Matching Henry Lin Division of Computer Science University of California, Berkeley Berkeley, CA 94720 Email: henrylin@eecs.berkeley.edu Abstract

More information

More on Polynomial Time and Space

More on Polynomial Time and Space CpSc 8390 Goddard Fall15 More on Polynomial Time and Space 20.1 The Original NP-Completeness Proof A configuration/snapshot of a machine is a representation of its current state (what info would be needed

More information

Polynomial Time Approximation Schemes for the Euclidean Traveling Salesman Problem

Polynomial Time Approximation Schemes for the Euclidean Traveling Salesman Problem PROJECT FOR CS388G: ALGORITHMS: TECHNIQUES/THEORY (FALL 2015) Polynomial Time Approximation Schemes for the Euclidean Traveling Salesman Problem Shanshan Wu Vatsal Shah October 20, 2015 Abstract In this

More information

Parameterized graph separation problems

Parameterized graph separation problems Parameterized graph separation problems Dániel Marx Department of Computer Science and Information Theory, Budapest University of Technology and Economics Budapest, H-1521, Hungary, dmarx@cs.bme.hu Abstract.

More information

A Primal-Dual Approximation Algorithm for Partial Vertex Cover: Making Educated Guesses

A Primal-Dual Approximation Algorithm for Partial Vertex Cover: Making Educated Guesses A Primal-Dual Approximation Algorithm for Partial Vertex Cover: Making Educated Guesses Julián Mestre Department of Computer Science University of Maryland, College Park, MD 20742 jmestre@cs.umd.edu Abstract

More information

On Evasiveness, Kneser Graphs, and Restricted Intersections: Lecture Notes

On Evasiveness, Kneser Graphs, and Restricted Intersections: Lecture Notes Guest Lecturer on Evasiveness topics: Sasha Razborov (U. Chicago) Instructor for the other material: Andrew Drucker Scribe notes: Daniel Freed May 2018 [note: this document aims to be a helpful resource,

More information

Scribe from 2014/2015: Jessica Su, Hieu Pham Date: October 6, 2016 Editor: Jimmy Wu

Scribe from 2014/2015: Jessica Su, Hieu Pham Date: October 6, 2016 Editor: Jimmy Wu CS 267 Lecture 3 Shortest paths, graph diameter Scribe from 2014/2015: Jessica Su, Hieu Pham Date: October 6, 2016 Editor: Jimmy Wu Today we will talk about algorithms for finding shortest paths in a graph.

More information

A Virtual Laboratory for Study of Algorithms

A Virtual Laboratory for Study of Algorithms A Virtual Laboratory for Study of Algorithms Thomas E. O'Neil and Scott Kerlin Computer Science Department University of North Dakota Grand Forks, ND 58202-9015 oneil@cs.und.edu Abstract Empirical studies

More information

COMP260 Spring 2014 Notes: February 4th

COMP260 Spring 2014 Notes: February 4th COMP260 Spring 2014 Notes: February 4th Andrew Winslow In these notes, all graphs are undirected. We consider matching, covering, and packing in bipartite graphs, general graphs, and hypergraphs. We also

More information

Sequential Monte Carlo Method for counting vertex covers

Sequential Monte Carlo Method for counting vertex covers Sequential Monte Carlo Method for counting vertex covers Slava Vaisman Faculty of Industrial Engineering and Management Technion, Israel Institute of Technology Haifa, Israel May 18, 2013 Slava Vaisman

More information

Theory of Computations Spring 2016 Practice Final Exam Solutions

Theory of Computations Spring 2016 Practice Final Exam Solutions 1 of 8 Theory of Computations Spring 2016 Practice Final Exam Solutions Name: Directions: Answer the questions as well as you can. Partial credit will be given, so show your work where appropriate. Try

More information

arxiv: v1 [math.co] 7 Dec 2018

arxiv: v1 [math.co] 7 Dec 2018 SEQUENTIALLY EMBEDDABLE GRAPHS JACKSON AUTRY AND CHRISTOPHER O NEILL arxiv:1812.02904v1 [math.co] 7 Dec 2018 Abstract. We call a (not necessarily planar) embedding of a graph G in the plane sequential

More information

Complexity Results on Graphs with Few Cliques

Complexity Results on Graphs with Few Cliques Discrete Mathematics and Theoretical Computer Science DMTCS vol. 9, 2007, 127 136 Complexity Results on Graphs with Few Cliques Bill Rosgen 1 and Lorna Stewart 2 1 Institute for Quantum Computing and School

More information

PART 1 GRAPHICAL STRUCTURE

PART 1 GRAPHICAL STRUCTURE PART 1 GRAPHICAL STRUCTURE in this web service in this web service 1 Treewidth and Hypertree Width Georg Gottlob, Gianluigi Greco, Francesco Scarcello This chapter covers methods for identifying islands

More information

FINAL EXAM SOLUTIONS

FINAL EXAM SOLUTIONS COMP/MATH 3804 Design and Analysis of Algorithms I Fall 2015 FINAL EXAM SOLUTIONS Question 1 (12%). Modify Euclid s algorithm as follows. function Newclid(a,b) if a

More information

A Simplied NP-complete MAXSAT Problem. Abstract. It is shown that the MAX2SAT problem is NP-complete even if every variable

A Simplied NP-complete MAXSAT Problem. Abstract. It is shown that the MAX2SAT problem is NP-complete even if every variable A Simplied NP-complete MAXSAT Problem Venkatesh Raman 1, B. Ravikumar 2 and S. Srinivasa Rao 1 1 The Institute of Mathematical Sciences, C. I. T. Campus, Chennai 600 113. India 2 Department of Computer

More information

Interaction Between Input and Output-Sensitive

Interaction Between Input and Output-Sensitive Interaction Between Input and Output-Sensitive Really? Mamadou M. Kanté Université Blaise Pascal - LIMOS, CNRS Enumeration Algorithms Using Structure, Lorentz Institute, August 26 th, 2015 1 Introduction

More information

CS364A: Algorithmic Game Theory Lecture #19: Pure Nash Equilibria and PLS-Completeness

CS364A: Algorithmic Game Theory Lecture #19: Pure Nash Equilibria and PLS-Completeness CS364A: Algorithmic Game Theory Lecture #19: Pure Nash Equilibria and PLS-Completeness Tim Roughgarden December 2, 2013 1 The Big Picture We now have an impressive list of tractability results polynomial-time

More information

Expected Approximation Guarantees for the Demand Matching Problem

Expected Approximation Guarantees for the Demand Matching Problem Expected Approximation Guarantees for the Demand Matching Problem C. Boucher D. Loker September 2006 Abstract The objective of the demand matching problem is to obtain the subset M of edges which is feasible

More information

Blum axioms and nondeterministic computation of functions

Blum axioms and nondeterministic computation of functions CTIC - 35º Concurso de Trabalhos de Iniciação Científica Blum axioms and nondeterministic computation of functions Tiago Royer 1, Jerusa Marchi 1 1 Universidade Federal de Santa Catarina Departamento de

More information

Comparing the strength of query types in property testing: The case of testing k-colorability

Comparing the strength of query types in property testing: The case of testing k-colorability Comparing the strength of query types in property testing: The case of testing k-colorability Ido Ben-Eliezer Tali Kaufman Michael Krivelevich Dana Ron Abstract We study the power of four query models

More information