Alina Ene. From Minimum Cut to Submodular Minimization Leveraging the Decomposable Structure. Boston University

Size: px
Start display at page:

Download "Alina Ene. From Minimum Cut to Submodular Minimization Leveraging the Decomposable Structure. Boston University"

Transcription

1 From Minimum Cut to Submodular Minimization Leveraging the Decomposable Structure Alina Ene Boston University Joint work with Huy Nguyen (Northeastern University) Laszlo Vegh (London School of Economics)

2 Minimum s-t Cut Image Segmentation s t x x 1 Submodular Minimization min f(s) S V x x 4 x 3 x 5 Structured Sparsity [Bach 10] MAP Inference

3 Minimum s-t Cut Image Segmentation s Submodular Minimization t min f(s) S V x x 1 Submodular Minimization min f(s) S V x x 4 x 3 x 5 Structured Sparsity [Bach 10] MAP Inference

4 Minimum s-t Cut Image Segmentation s Submodular Minimization t min f(s) S V Solvable in polynomial time x Combinatorial, Submodular ellipsoid, Minimization cutting plane, x 1 min f(s) S V x x 4 x 3 x 5 Structured Sparsity [Bach 10] MAP Inference

5 Minimum s-t Cut Image Segmentation s Submodular Minimization t min f(s) S V Solvable in polynomial time x Combinatorial, Submodular ellipsoid, Minimization cutting plane, x 1 min f(s) S V Very high running times ( V 3 ) x x 4 Leverage structure to obtain faster algos x 3 x 5 Structured Sparsity [Bach 10] MAP Inference

6 Decomposable Functions min S V f i (S) Simple fi : fast subroutine for minimizing fi(s) + w(s) for any linear function w [Stobbe, Krause 10; Kolmogorov 1; Jegelka, Bach, Sra 13; Nishihara, Jegelka, Jordan 14]

7 Decomposable Structure = + + f(s) = X ee f e (S) Cut function of a single edge

8 Decomposable Structure = + + hyperedges, local functions,

9 This Talk Sum-of-Submodular / Decomposable SFM min S V f i (S) Continuous algos based on gradient descent Combinatorial algos based on max flow approaches Interplay between continuous optimization and combinatorial structure

10 Main Combinatorial Player Key concept underpinning submodular algorithms Base Polytope B(f) ={y hy, 1 S iapplef(s) 8S V, hy, 1 V i = f(v )} Think of y as a linear function on V

11 Continuous Algorithms

12 From Submodular to Convex Optimization [Edmonds 70, Lovasz 83, Fujishige 84] Submodular Minimization can be reduced to finding a point of minimum norm in the base polytope Discrete Problem min f(s) S V Exact Convex Formulation min yb(f) kyk

13 Discrete Problem min f(s) S V Exact Convex Formulation min yb(f) kyk Convex objective is very nice Constraint is very complicated

14 Discrete Problem min f(s) S V Exact Convex Formulation min yb(f) kyk Convex objective is very nice Constraint is very complicated Algorithms based on Ellipsoid/Cutting Plane [GLS 84, LSW 15] Provable polynomial running times Running time prohibitively large in applications

15 Discrete Problem min f(s) S V Exact Convex Formulation min yb(f) kyk Convex objective is very nice Constraint is very complicated Fujishige-Wolfe and Frank-Wolfe algorithms Suitable for some applications Pseudo-polynomial running times Known to require large number of iterations

16 In the decomposable setting, can leverage more of the convex optimization toolkit Lemma: If f = f i then B(f) = B(f i ) Discrete Problem f i (S) min S V Exact Convex Formulation min B(f i ) f i simple ) quadratic min over B(f i ) easy

17 Discrete Problem f i (S) min S V Exact Convex Formulation min B(f i ) Decomposition allows for fast and practical algorithms based on gradient descent [Stobbe, Krause 10; Jegelka, Bach, Sra 13; Nishihara, Jegelka, Jordan 14, E., Nguyen 15]

18 Discrete Problem f i (S) min S V Exact Convex Formulation min B(f i ) [E., Nguyen ICML 15] Minimize the convex formulation using Random Coordinate Gradient Descent Also accelerated algorithm Fastest running times currently known

19 Exact Convex Formulation min B(f i ) g(y) := Random Coordinate Descent Algorithm Start with y =(y 1,...,y r ), where B(f i ) In each iteration Pick an index i {1,,...,r} uniformly at random hhupdate block iii y 0 i g(y)+hr argmin i g(y),z i i + kz i k z i B(f i )

20 Smoothness g kr i g(y) r i g(z)k applek z i k y and z differ onln block i Random Coordinate Descent Algorithm Start with y =(y 1,...,y r ), where B(f i ) In each iteration Pick an index i {1,,...,r} uniformly at random hhupdate block iii y 0 i g(y)+hr argmin i g(y),z i i + kz i k z i B(f i )

21 g Smooth functions have quadratic upper bounds y Random Coordinate Descent Algorithm Start with y =(y 1,...,y r ), where B(f i ) In each iteration Pick an index i {1,,...,r} uniformly at random hhupdate block iii y 0 i g(y)+hr argmin i g(y),z i i + kz i k z i B(f i )

22 (z) =g(y)+hr i g(y),z i i + kz i k z and y differ onln block i g y Random Coordinate Descent Algorithm Start with y =(y 1,...,y r ), where B(f i ) In each iteration Pick an index i {1,,...,r} uniformly at random hhupdate block iii y 0 i g(y)+hr argmin i g(y),z i i + kz i k z i B(f i )

23 (z) =g(y)+hr i g(y),z i i + kz i k z and y differ onln block i g Minimize the upper bound y y Random Coordinate Descent Algorithm Start with y =(y 1,...,y r ), where B(f i ) In each iteration Pick an index i {1,,...,r} uniformly at random hhupdate block iii y 0 i g(y)+hr argmin i g(y),z i i + kz i k z i B(f i )

24 Exact Convex Formulation min B(f i ) g(y) := Random Coordinate Descent Algorithm Start with y =(y 1,...,y r ), where B(f i ) In each iteration Pick an index i {1,,...,r} uniformly at random hhupdate block iii y 0 i g(y)+hr argmin i g(y),z i i + kz i k z i B(f i ) Efficient update for simple functions

25 Exact Convex Formulation min B(f i ) g(y) := Random Coordinate Descent Algorithm Start with y =(y 1,...,y r ), where B(f i ) In each iteration Pick an index i {1,,...,r} uniformly at random hhupdate block iii y 0 i g(y)+hr argmin i g(y),z i i + kz i k z i B(f i ) Also accelerated version building on [Fercoq-Richtárik 13]

26 Discrete Problem f i (S) min S V Exact Convex Formulation min B(f i ) [E., Nguyen ICML 15] Minimize the convex formulation using Random Coordinate Gradient Descent

27 Discrete Problem f i (S) min S V Exact Convex Formulation min B(f i ) [E., Nguyen ICML 15] Minimize the convex formulation using Random Coordinate Gradient Descent Running time (with acceleration) [ENV 17] O nr log Fmax Q Q: time for one update via oracle for fi

28 Discrete Problem f i (S) min S V Exact Convex Formulation min B(f i ) [E., Nguyen ICML 15] Minimize the convex formulation using Random Coordinate Gradient Descent Running time (with acceleration) [ENV 17] O(nr log (nf max ) Q) Q: time for one update via oracle for fi

29 Discrete Algorithms

30 The quest for combinatorial algos for submodular min [Cunningham 85] It is an outstanding open problem to find a practical combinatorial algorithm to minimize a general submodular function, which also runs in polynomial time.

31 The quest for combinatorial algos for submodular min [Cunningham 85] It is an outstanding open problem to find a practical combinatorial algorithm to minimize a general submodular function, which also runs in polynomial time. [Bixby et al. 85, Cunningham 85] Framework for designing combinatorial algorithms for submodular minimization

32 Basic framework for all combinatorial algorithms Cunningham Framework Maintain a point n the base polytope Iteratively update y using flow-style updates How to represent a point in the base polytope?

33 Basic framework for all combinatorial algorithms Cunningham Framework Maintain a point n the base polytope Iteratively update y using flow-style updates How to represent a point in the base polytope? As a convex combination of vertices Pro: Very general (works for any submodular fn) Con: Difficult/expensive to maintain and update

34 For decomposable submodular functions simpler version of Cunningham s approach works! Recall: For f = we have f i B(f) = B(f i ) Can represent y B(f) as y = y y r where B(f i ) Verify B(f i ) using oracle for f i

35 From decomposable functions to graphs Maintain a point y = y y r y B(f) into points with a decomposition B(f i ) Update using auxiliary graph G =(V,[ i E i ) (u, v) E i if y i B(f i ) for some > 0 c(u, v) = max u v u y i + v For graph cut instance, the auxiliary graph is the usual residual graph for network flows

36 Translate classical maxflow toolkit to submodular Edmonds-Karp-Dinitz, Preflow-push, SUBMODULAR

37 Translate classical maxflow toolkit to submodular Edmonds-Karp-Dinitz, Preflow-push, Sample Result: If all f i O(n r) have small support preflow-push runs in oracle calls First shown by [Fujishige-Zhang 94] for r = [Fix et al. 13] adapt IBFS algo. of [Goldberg et al. 11]

38 Translate classical maxflow toolkit to submodular Edmonds-Karp-Dinitz, Preflow-push, [E., Nguyen, Vegh NIPS 17] Discrete to Continuous Tight running time analyses for the gradient descent algorithms Discrete vs Continuous Experimental comparison on computer vision tasks

39 Recall our problem: min 8 < : g(y) = : y ry 9 = B(f i ) ; optimal solutions ry B(f i ) Minimize objective using random coordinate descent Linear convergence rate despite lack of strong convexity Use combinatorial structure instead of strong convexity

40 min n f(x): x X o µ-strong Convexity X f( ) f( ) hrf( ), i + µ (d(, ) ) for any, X

41 min n f(x): x X o µ-strong Convexity X f( ) f( ) hrf( ), i + µ (d(, ) ) for any, X What we really need f( ) f( ) µ (min d(, ) ) where is an optimal point

42 Our problem: min 8 < : g(y) = : y ry 9 = B(f i ) ; ry B(f i ) optimal point arbitrary point Restricted µ -Strong Convexity g( ) g( ) µ (min d(, ) )

43 Our problem: min 8 < : g(y) = : y ry 9 = B(f i ) ; ry B(f i ) optimal point arbitrary point Restricted µ -Strong Convexity g( ) g( ) µ (min d(, ) ) Can show µ max n 1 nr, 1 n o

44 Our problem: min 8 < : g(y) = : y ry 9 = B(f i ) ; ry B(f i ) Want: g( ) - g( ) 1 n d(, )

45 Our problem: min 8 < : g(y) = : y ry 9 = B(f i ) ; ry B(f i ) B(f) sum of the blocks Want: g( ) - g( ) 1 n d(, )

46 Our problem: min 8 < : g(y) = : y ry 9 = B(f i ) ; min norm point ry B(f i ) B(f) sum of the blocks Want: g( ) - g( ) 1 n d(, )

47 Our problem: min 8 < : g(y) = : y ry 9 = B(f i ) ; min norm point ry B(f i ) B(f) sum of the blocks g( ) - g( ) d(, ) 1 n d(, )

48 Our problem: min 8 < : g(y) = : y ry 9 = B(f i ) ; min norm point ry B(f i ) B(f) sum of the blocks g( ) - g( ) 1 d(, ) d(, ) n

49 Our problem: min 8 < : g(y) = : y ry 9 = B(f i ) ; flow decomposition min norm point ry B(f i ) B(f) sum of the blocks g( ) - g( ) 1 d(, ) d(, ) n

50 demand 1 n demand 1 n ` of demand = 1 n n ` of flow = n ` of demand = 1 n (` of flow)

51 Summary Graph Min Cut Decomposable Submod Min Algorithms that leverage both convex optimization and the combinatorial structure (via graph max flow)

Inference in Higher Order MRF-MAP Problems with Small and Large Cliques

Inference in Higher Order MRF-MAP Problems with Small and Large Cliques Inference in Higher Order MRF-MAP Problems with Small and Large Cliques Ishant Shanu 1 Chetan Arora 1 S.N. Maheshwari 2 1 IIIT Delhi 2 IIT Delhi Abstract Higher Order MRF-MAP formulation has been a popular

More information

Conditional gradient algorithms for machine learning

Conditional gradient algorithms for machine learning 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

Structured Optimal Transport

Structured Optimal Transport Structured Optimal Transport David Alvarez-Melis, Tommi Jaakkola, Stefanie Jegelka CSAIL, MIT OTML Workshop @ NIPS, Dec 9th 2017 Motivation: Domain Adaptation c(x i,y j ) c(x k,y`) Labeled Source Domain

More information

Combinatorial Selection and Least Absolute Shrinkage via The CLASH Operator

Combinatorial Selection and Least Absolute Shrinkage via The CLASH Operator Combinatorial Selection and Least Absolute Shrinkage via The CLASH Operator Volkan Cevher Laboratory for Information and Inference Systems LIONS / EPFL http://lions.epfl.ch & Idiap Research Institute joint

More information

Optimization for Machine Learning

Optimization for Machine Learning Optimization for Machine Learning (Problems; Algorithms - C) SUVRIT SRA Massachusetts Institute of Technology PKU Summer School on Data Science (July 2017) Course materials http://suvrit.de/teaching.html

More information

The Min Norm Point on a Convex Polytope

The Min Norm Point on a Convex Polytope The Min Norm Point on a Convex Polytope Jamie Haddock January 13, 2018 Graduate Group in Applied Mathematics UC Davis joint with Jesús De Loera and Luis Rademacher https://arxiv.org/abs/1710.02608 1 Minimum

More information

A Brief Look at Optimization

A Brief Look at Optimization A Brief Look at Optimization CSC 412/2506 Tutorial David Madras January 18, 2018 Slides adapted from last year s version Overview Introduction Classes of optimization problems Linear programming Steepest

More information

Lecture 9: Pipage Rounding Method

Lecture 9: Pipage Rounding Method Recent Advances in Approximation Algorithms Spring 2015 Lecture 9: Pipage Rounding Method Lecturer: Shayan Oveis Gharan April 27th Disclaimer: These notes have not been subjected to the usual scrutiny

More information

Jessica Su (some parts copied from CLRS / last quarter s notes)

Jessica Su (some parts copied from CLRS / last quarter s notes) 1 Max flow Consider a directed graph G with positive edge weights c that define the capacity of each edge. We can identify two special nodes in G: the source node s and the sink node t. We want to find

More information

Combinatorial optimization - Structures and Algorithms, GeorgiaTech, Fall 2011 Lectures 1 4: Aug 23 Sep 1

Combinatorial optimization - Structures and Algorithms, GeorgiaTech, Fall 2011 Lectures 1 4: Aug 23 Sep 1 Combinatorial optimization - Structures and Algorithms, GeorgiaTech, Fall 011 Lectures 1 4: Aug 3 Sep 1 László Végh References are from the book Connections in Combinatorial Optimization by András Frank

More information

Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey. Chapter 4 : Optimization for Machine Learning

Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey. Chapter 4 : Optimization for Machine Learning Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey Chapter 4 : Optimization for Machine Learning Summary of Chapter 2 Chapter 2: Convex Optimization with Sparsity

More information

IE598 Big Data Optimization Summary Nonconvex Optimization

IE598 Big Data Optimization Summary Nonconvex Optimization IE598 Big Data Optimization Summary Nonconvex Optimization Instructor: Niao He April 16, 2018 1 This Course Big Data Optimization Explore modern optimization theories, algorithms, and big data applications

More information

MS&E 213 / CS 269O : Chapter 1 Introduction to Introduction to Optimization Theory

MS&E 213 / CS 269O : Chapter 1 Introduction to Introduction to Optimization Theory MS&E 213 / CS 269O : Chapter 1 Introduction to Introduction to Optimization Theory By Aaron Sidford (sidford@stanford.edu) April 29, 2017 1 What is this course about? The central problem we consider throughout

More information

Important separators and parameterized algorithms

Important separators and parameterized algorithms Important separators and parameterized algorithms Dániel Marx 1 1 Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI) Budapest, Hungary School on Parameterized Algorithms

More information

Combinatorial meets Convex Leveraging combinatorial structure to obtain faster algorithms, provably

Combinatorial meets Convex Leveraging combinatorial structure to obtain faster algorithms, provably Combinatorial meets Convex Leveraging combinatorial structure to obtain faster algorithms, provably Lorenzo Orecchia Department of Computer Science 6/30/15 Challenges in Optimization for Data Science 1

More information

/ Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang

/ Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang 600.469 / 600.669 Approximation Algorithms Lecturer: Michael Dinitz Topic: Linear Programming Date: 2/24/15 Scribe: Runze Tang 9.1 Linear Programming Suppose we are trying to approximate a minimization

More information

David G. Luenberger Yinyu Ye. Linear and Nonlinear. Programming. Fourth Edition. ö Springer

David G. Luenberger Yinyu Ye. Linear and Nonlinear. Programming. Fourth Edition. ö Springer David G. Luenberger Yinyu Ye Linear and Nonlinear Programming Fourth Edition ö Springer Contents 1 Introduction 1 1.1 Optimization 1 1.2 Types of Problems 2 1.3 Size of Problems 5 1.4 Iterative Algorithms

More information

IE521 Convex Optimization Introduction

IE521 Convex Optimization Introduction IE521 Convex Optimization Introduction Instructor: Niao He Jan 18, 2017 1 About Me Assistant Professor, UIUC, 2016 Ph.D. in Operations Research, M.S. in Computational Sci. & Eng. Georgia Tech, 2010 2015

More information

Alternating Direction Method of Multipliers

Alternating Direction Method of Multipliers Alternating Direction Method of Multipliers CS 584: Big Data Analytics Material adapted from Stephen Boyd (https://web.stanford.edu/~boyd/papers/pdf/admm_slides.pdf) & Ryan Tibshirani (http://stat.cmu.edu/~ryantibs/convexopt/lectures/21-dual-meth.pdf)

More information

An Introduction to LP Relaxations for MAP Inference

An Introduction to LP Relaxations for MAP Inference An Introduction to LP Relaxations for MAP Inference Adrian Weller MLSALT4 Lecture Feb 27, 2017 With thanks to David Sontag (NYU) for use of some of his slides and illustrations For more information, see

More information

Dynamic Planar-Cuts: Efficient Computation of Min-Marginals for Outer-Planar Models

Dynamic Planar-Cuts: Efficient Computation of Min-Marginals for Outer-Planar Models Dynamic Planar-Cuts: Efficient Computation of Min-Marginals for Outer-Planar Models Dhruv Batra 1 1 Carnegie Mellon University www.ece.cmu.edu/ dbatra Tsuhan Chen 2,1 2 Cornell University tsuhan@ece.cornell.edu

More information

Minimum-Cost Flow Network

Minimum-Cost Flow Network Minimum-Cost Flow Network Smoothed flow network: G = (V,E) balance values: b : V Z costs: c : E R capacities: u : E N 2 1/2 3/1-1 1/3 3/2 3/1 1 3/1 1/2-2 cost/capacity 2/ 17 Smoothed 2 1 1/2 3/1 1 1 11/3

More information

Lecture 10,11: General Matching Polytope, Maximum Flow. 1 Perfect Matching and Matching Polytope on General Graphs

Lecture 10,11: General Matching Polytope, Maximum Flow. 1 Perfect Matching and Matching Polytope on General Graphs CMPUT 675: Topics in Algorithms and Combinatorial Optimization (Fall 2009) Lecture 10,11: General Matching Polytope, Maximum Flow Lecturer: Mohammad R Salavatipour Date: Oct 6 and 8, 2009 Scriber: Mohammad

More information

Graph Cuts. Srikumar Ramalingam School of Computing University of Utah

Graph Cuts. Srikumar Ramalingam School of Computing University of Utah Graph Cuts Srikumar Ramalingam School o Computing University o Utah Outline Introduction Pseudo-Boolean Functions Submodularity Max-low / Min-cut Algorithm Alpha-Expansion Segmentation Problem [Boykov

More information

5 Machine Learning Abstractions and Numerical Optimization

5 Machine Learning Abstractions and Numerical Optimization Machine Learning Abstractions and Numerical Optimization 25 5 Machine Learning Abstractions and Numerical Optimization ML ABSTRACTIONS [some meta comments on machine learning] [When you write a large computer

More information

Bilinear Programming

Bilinear Programming Bilinear Programming Artyom G. Nahapetyan Center for Applied Optimization Industrial and Systems Engineering Department University of Florida Gainesville, Florida 32611-6595 Email address: artyom@ufl.edu

More information

Models for grids. Computer vision: models, learning and inference. Multi label Denoising. Binary Denoising. Denoising Goal.

Models for grids. Computer vision: models, learning and inference. Multi label Denoising. Binary Denoising. Denoising Goal. Models for grids Computer vision: models, learning and inference Chapter 9 Graphical Models Consider models where one unknown world state at each pixel in the image takes the form of a grid. Loops in the

More information

1 Overview. 2 Applications of submodular maximization. AM 221: Advanced Optimization Spring 2016

1 Overview. 2 Applications of submodular maximization. AM 221: Advanced Optimization Spring 2016 AM : Advanced Optimization Spring 06 Prof. Yaron Singer Lecture 0 April th Overview Last time we saw the problem of Combinatorial Auctions and framed it as a submodular maximization problem under a partition

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Theory of Variational Inference: Inner and Outer Approximation Eric Xing Lecture 14, February 29, 2016 Reading: W & J Book Chapters Eric Xing @

More information

Distributed Submodular Maximization in Massive Datasets. Alina Ene. Joint work with Rafael Barbosa, Huy L. Nguyen, Justin Ward

Distributed Submodular Maximization in Massive Datasets. Alina Ene. Joint work with Rafael Barbosa, Huy L. Nguyen, Justin Ward Distributed Submodular Maximization in Massive Datasets Alina Ene Joint work with Rafael Barbosa, Huy L. Nguyen, Justin Ward Combinatorial Optimization Given A set of objects V A function f on subsets

More information

CS 435, 2018 Lecture 2, Date: 1 March 2018 Instructor: Nisheeth Vishnoi. Convex Programming and Efficiency

CS 435, 2018 Lecture 2, Date: 1 March 2018 Instructor: Nisheeth Vishnoi. Convex Programming and Efficiency CS 435, 2018 Lecture 2, Date: 1 March 2018 Instructor: Nisheeth Vishnoi Convex Programming and Efficiency In this lecture, we formalize convex programming problem, discuss what it means to solve it efficiently

More information

Convex Optimization / Homework 2, due Oct 3

Convex Optimization / Homework 2, due Oct 3 Convex Optimization 0-725/36-725 Homework 2, due Oct 3 Instructions: You must complete Problems 3 and either Problem 4 or Problem 5 (your choice between the two) When you submit the homework, upload a

More information

Optimization of submodular functions

Optimization of submodular functions Optimization of submodular functions Law Of Diminishing Returns According to the Law of Diminishing Returns (also known as Diminishing Returns Phenomenon), the value or enjoyment we get from something

More information

arxiv: v1 [cs.cv] 5 Mar 2015

arxiv: v1 [cs.cv] 5 Mar 2015 Convex Optimization for Parallel Energy Minimization arxiv:1503.01563v1 [cs.cv] 5 Mar 2015 K. S. Sesh Kumar INRIA-Sierra project-team Département d Informatique de l Ecole Normale Supérieure Paris, France

More information

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University DS 4400 Machine Learning and Data Mining I Alina Oprea Associate Professor, CCIS Northeastern University September 20 2018 Review Solution for multiple linear regression can be computed in closed form

More information

Linear Regression and K-Nearest Neighbors 3/28/18

Linear Regression and K-Nearest Neighbors 3/28/18 Linear Regression and K-Nearest Neighbors 3/28/18 Linear Regression Hypothesis Space Supervised learning For every input in the data set, we know the output Regression Outputs are continuous A number,

More information

Introduction à la vision artificielle X

Introduction à la vision artificielle X Introduction à la vision artificielle X Jean Ponce Email: ponce@di.ens.fr Web: http://www.di.ens.fr/~ponce Planches après les cours sur : http://www.di.ens.fr/~ponce/introvis/lect10.pptx http://www.di.ens.fr/~ponce/introvis/lect10.pdf

More information

Selected Topics in Column Generation

Selected Topics in Column Generation Selected Topics in Column Generation February 1, 2007 Choosing a solver for the Master Solve in the dual space(kelly s method) by applying a cutting plane algorithm In the bundle method(lemarechal), a

More information

Graph Cuts. Srikumar Ramalingam School of Computing University of Utah

Graph Cuts. Srikumar Ramalingam School of Computing University of Utah Graph Cuts Srikumar Ramalingam School o Computing University o Utah Outline Introduction Pseudo-Boolean Functions Submodularity Max-low / Min-cut Algorithm Alpha-Expansion Segmentation Problem [Boykov

More information

Analyzing Stochastic Gradient Descent for Some Non- Convex Problems

Analyzing Stochastic Gradient Descent for Some Non- Convex Problems Analyzing Stochastic Gradient Descent for Some Non- Convex Problems Christopher De Sa Soon at Cornell University cdesa@stanford.edu stanford.edu/~cdesa Kunle Olukotun Christopher Ré Stanford University

More information

Monotone Closure of Relaxed Constraints in Submodular Optimization: Connections Between Minimization and Maximization: Extended Version

Monotone Closure of Relaxed Constraints in Submodular Optimization: Connections Between Minimization and Maximization: Extended Version Monotone Closure of Relaxed Constraints in Submodular Optimization: Connections Between Minimization and Maximization: Extended Version Rishabh Iyer Dept. of Electrical Engineering University of Washington

More information

Large Scale Density-friendly Graph Decomposition via Convex Programming

Large Scale Density-friendly Graph Decomposition via Convex Programming Large Scale Density-friendly Graph Decomposition via Convex Programming Maximilien Danisch LTCI, Télécom ParisTech, Université Paris-Saclay, 753, Paris, France danisch@telecomparistech.fr T-H. Hubert Chan

More information

Regularization and Markov Random Fields (MRF) CS 664 Spring 2008

Regularization and Markov Random Fields (MRF) CS 664 Spring 2008 Regularization and Markov Random Fields (MRF) CS 664 Spring 2008 Regularization in Low Level Vision Low level vision problems concerned with estimating some quantity at each pixel Visual motion (u(x,y),v(x,y))

More information

Conditional gradient algorithms for machine learning

Conditional gradient algorithms for machine learning Conditional gradient algorithms for machine learning Zaid Harchaoui LEAR-LJK, INRIA Grenoble Anatoli Juditsky LJK, Université de Grenoble Arkadi Nemirovski Georgia Tech Abstract We consider penalized formulations

More information

SpicyMKL Efficient multiple kernel learning method using dual augmented Lagrangian

SpicyMKL Efficient multiple kernel learning method using dual augmented Lagrangian SpicyMKL Efficient multiple kernel learning method using dual augmented Lagrangian Taiji Suzuki Ryota Tomioka The University of Tokyo Graduate School of Information Science and Technology Department of

More information

Recent Advances in Frank-Wolfe Optimization. Simon Lacoste-Julien

Recent Advances in Frank-Wolfe Optimization. Simon Lacoste-Julien Recent Advances in Frank-Wolfe Optimization Simon Lacoste-Julien OSL 2017 Les Houches April 13 th, 2017 Outline Frank-Wolfe algorithm review global linear convergence of FW optimization variants condition

More information

Network Flows. 1. Flows deal with network models where edges have capacity constraints. 2. Shortest paths deal with edge costs.

Network Flows. 1. Flows deal with network models where edges have capacity constraints. 2. Shortest paths deal with edge costs. Network Flows. Flows deal with network models where edges have capacity constraints. 2. Shortest paths deal with edge costs. 4 u v 2 5 s 6 5 t 4 x 2 y 3 3. Network flow formulation: A network G = (V, E).

More information

DC Programming: A brief tutorial. Andres Munoz Medina Courant Institute of Mathematical Sciences

DC Programming: A brief tutorial. Andres Munoz Medina Courant Institute of Mathematical Sciences DC Programming: A brief tutorial. Andres Munoz Medina Courant Institute of Mathematical Sciences munoz@cims.nyu.edu Difference of Convex Functions Definition: A function exists f is said to be DC if there

More information

CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm. Instructor: Shaddin Dughmi

CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm. Instructor: Shaddin Dughmi CS675: Convex and Combinatorial Optimization Spring 2018 The Simplex Algorithm Instructor: Shaddin Dughmi Algorithms for Convex Optimization We will look at 2 algorithms in detail: Simplex and Ellipsoid.

More information

s-t Graph Cuts for Binary Energy Minimization

s-t Graph Cuts for Binary Energy Minimization s-t Graph Cuts for Binary Energy Minimization E data term ( L) = D ( ) + ( ) P Lp λ Ι Lp Lq p prior term Now that we have an energy function, the big question is how do we minimize it? pq N n Exhaustive

More information

Outline of this Talk

Outline of this Talk Outline of this Talk Data Association associate common detections across frames matching up who is who Two frames: linear assignment problem Generalize to three or more frames increasing solution quality

More information

Learning Low-order Models for Enforcing High-order Statistics

Learning Low-order Models for Enforcing High-order Statistics Patrick Pletscher ETH Zurich Zurich, Switzerland Pushmeet Kohli Microsoft Research Cambridge, UK Abstract Models such as pairwise conditional random fields (CRFs) are extremely popular in computer vision

More information

CS261: Problem Set #1

CS261: Problem Set #1 CS261: Problem Set #1 Due by 11:59 PM on Tuesday, April 21, 2015 Instructions: (1) Form a group of 1-3 students. You should turn in only one write-up for your entire group. (2) Turn in your solutions by

More information

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg

MVE165/MMG630, Applied Optimization Lecture 8 Integer linear programming algorithms. Ann-Brith Strömberg MVE165/MMG630, Integer linear programming algorithms Ann-Brith Strömberg 2009 04 15 Methods for ILP: Overview (Ch. 14.1) Enumeration Implicit enumeration: Branch and bound Relaxations Decomposition methods:

More information

Lagrangian Relaxation: An overview

Lagrangian Relaxation: An overview Discrete Math for Bioinformatics WS 11/12:, by A. Bockmayr/K. Reinert, 22. Januar 2013, 13:27 4001 Lagrangian Relaxation: An overview Sources for this lecture: D. Bertsimas and J. Tsitsiklis: Introduction

More information

Divide and Conquer Kernel Ridge Regression

Divide and Conquer Kernel Ridge Regression Divide and Conquer Kernel Ridge Regression Yuchen Zhang John Duchi Martin Wainwright University of California, Berkeley COLT 2013 Yuchen Zhang (UC Berkeley) Divide and Conquer KRR COLT 2013 1 / 15 Problem

More information

Markov/Conditional Random Fields, Graph Cut, and applications in Computer Vision

Markov/Conditional Random Fields, Graph Cut, and applications in Computer Vision Markov/Conditional Random Fields, Graph Cut, and applications in Computer Vision Fuxin Li Slides and materials from Le Song, Tucker Hermans, Pawan Kumar, Carsten Rother, Peter Orchard, and others Recap:

More information

Introduction Optimization Geoff Gordon Ryan Tibshirani

Introduction Optimization Geoff Gordon Ryan Tibshirani Introduction 10-75 Optimization Geoff Gordon Ryan Tibshirani Administrivia http://www.cs.cmu.edu/~ggordon/1075-f1/ http://groups.google.com/group/1075-f1 Administrivia Prerequisites: no formal ones, but

More information

Week 5. Convex Optimization

Week 5. Convex Optimization Week 5. Convex Optimization Lecturer: Prof. Santosh Vempala Scribe: Xin Wang, Zihao Li Feb. 9 and, 206 Week 5. Convex Optimization. The convex optimization formulation A general optimization problem is

More information

Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1) Suvrit Sra Massachusetts Institute of Technology

Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1) Suvrit Sra Massachusetts Institute of Technology Aspects of Convex, Nonconvex, and Geometric Optimization (Lecture 1) Suvrit Sra Massachusetts Institute of Technology Hausdorff Institute for Mathematics (HIM) Trimester: Mathematics of Signal Processing

More information

DETERMINISTIC OPERATIONS RESEARCH

DETERMINISTIC OPERATIONS RESEARCH DETERMINISTIC OPERATIONS RESEARCH Models and Methods in Optimization Linear DAVID J. RADER, JR. Rose-Hulman Institute of Technology Department of Mathematics Terre Haute, IN WILEY A JOHN WILEY & SONS,

More information

Notes on Minimum Cuts and Modular Functions

Notes on Minimum Cuts and Modular Functions Notes on Minimum Cuts and Modular Functions 1 Introduction The following are my notes on Cunningham s paper [1]. Given a submodular function f and a set S, submodular minimisation is the problem of finding

More information

1. Introduction. performance of numerical methods. complexity bounds. structural convex optimization. course goals and topics

1. Introduction. performance of numerical methods. complexity bounds. structural convex optimization. course goals and topics 1. Introduction EE 546, Univ of Washington, Spring 2016 performance of numerical methods complexity bounds structural convex optimization course goals and topics 1 1 Some course info Welcome to EE 546!

More information

Chapter 5 Graph Algorithms Algorithm Theory WS 2012/13 Fabian Kuhn

Chapter 5 Graph Algorithms Algorithm Theory WS 2012/13 Fabian Kuhn Chapter 5 Graph Algorithms Algorithm Theory WS 2012/13 Fabian Kuhn Graphs Extremely important concept in computer science Graph, : node (or vertex) set : edge set Simple graph: no self loops, no multiple

More information

Data Mining Chapter 8: Search and Optimization Methods Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 8: Search and Optimization Methods Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 8: Search and Optimization Methods Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Search & Optimization Search and Optimization method deals with

More information

Natural Language Processing

Natural Language Processing Natural Language Processing Classification III Dan Klein UC Berkeley 1 Classification 2 Linear Models: Perceptron The perceptron algorithm Iteratively processes the training set, reacting to training errors

More information

Lecture 12: Feasible direction methods

Lecture 12: Feasible direction methods Lecture 12 Lecture 12: Feasible direction methods Kin Cheong Sou December 2, 2013 TMA947 Lecture 12 Lecture 12: Feasible direction methods 1 / 1 Feasible-direction methods, I Intro Consider the problem

More information

Column-Action Methods in Image Reconstruction

Column-Action Methods in Image Reconstruction Column-Action Methods in Image Reconstruction Per Christian Hansen joint work with Tommy Elfving Touraj Nikazad Overview of Talk Part 1: the classical row-action method = ART The advantage of algebraic

More information

Maximum flows & Maximum Matchings

Maximum flows & Maximum Matchings Chapter 9 Maximum flows & Maximum Matchings This chapter analyzes flows and matchings. We will define flows and maximum flows and present an algorithm that solves the maximum flow problem. Then matchings

More information

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18

/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18 601.433/633 Introduction to Algorithms Lecturer: Michael Dinitz Topic: Approximation algorithms Date: 11/27/18 22.1 Introduction We spent the last two lectures proving that for certain problems, we can

More information

Segmentation with non-linear constraints on appearance, complexity, and geometry

Segmentation with non-linear constraints on appearance, complexity, and geometry IPAM February 2013 Western Univesity Segmentation with non-linear constraints on appearance, complexity, and geometry Yuri Boykov Andrew Delong Lena Gorelick Hossam Isack Anton Osokin Frank Schmidt Olga

More information

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36

CS 473: Algorithms. Ruta Mehta. Spring University of Illinois, Urbana-Champaign. Ruta (UIUC) CS473 1 Spring / 36 CS 473: Algorithms Ruta Mehta University of Illinois, Urbana-Champaign Spring 2018 Ruta (UIUC) CS473 1 Spring 2018 1 / 36 CS 473: Algorithms, Spring 2018 LP Duality Lecture 20 April 3, 2018 Some of the

More information

Planar Cycle Covering Graphs

Planar Cycle Covering Graphs Planar Cycle Covering Graphs Julian Yarkony, Alexander T. Ihler, Charless C. Fowlkes Department of Computer Science University of California, Irvine {jyarkony,ihler,fowlkes}@ics.uci.edu Abstract We describe

More information

Speeding up MWU based Approximation Schemes and Some Applications

Speeding up MWU based Approximation Schemes and Some Applications Speeding up MWU based Approximation Schemes and Some Applications Chandra Chekuri Univ. of Illinois, Urbana-Champaign Joint work with Kent Quanrud Based on recent papers Near-linear-time approximation

More information

An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems

An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems Long Chen University of California, Irvine chenlong@math.uci.edu Joint work with: Huayi Wei (Xiangtan University),

More information

Energy Minimization Under Constraints on Label Counts

Energy Minimization Under Constraints on Label Counts Energy Minimization Under Constraints on Label Counts Yongsub Lim 1, Kyomin Jung 1, and Pushmeet Kohli 2 1 Korea Advanced Istitute of Science and Technology, Daejeon, Korea yongsub@kaist.ac.kr, kyomin@kaist.edu

More information

Submodularity Cuts and Applications

Submodularity Cuts and Applications Submodularity Cuts and Applications Yoshinobu Kawahara The Inst. of Scientific and Industrial Res. (ISIR), Osaka Univ., Japan kawahara@ar.sanken.osaka-u.ac.jp Koji Tsuda Comp. Bio. Research Center, AIST,

More information

Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction

Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction Marc Pollefeys Joined work with Nikolay Savinov, Christian Haene, Lubor Ladicky 2 Comparison to Volumetric Fusion Higher-order ray

More information

Submodularity Reading Group. Matroid Polytopes, Polymatroid. M. Pawan Kumar

Submodularity Reading Group. Matroid Polytopes, Polymatroid. M. Pawan Kumar Submodularity Reading Group Matroid Polytopes, Polymatroid M. Pawan Kumar http://www.robots.ox.ac.uk/~oval/ Outline Linear Programming Matroid Polytopes Polymatroid Polyhedron Ax b A : m x n matrix b:

More information

Lecture 2 - Introduction to Polytopes

Lecture 2 - Introduction to Polytopes Lecture 2 - Introduction to Polytopes Optimization and Approximation - ENS M1 Nicolas Bousquet 1 Reminder of Linear Algebra definitions Let x 1,..., x m be points in R n and λ 1,..., λ m be real numbers.

More information

Structured Learning. Jun Zhu

Structured Learning. Jun Zhu Structured Learning Jun Zhu Supervised learning Given a set of I.I.D. training samples Learn a prediction function b r a c e Supervised learning (cont d) Many different choices Logistic Regression Maximum

More information

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University

DS Machine Learning and Data Mining I. Alina Oprea Associate Professor, CCIS Northeastern University DS 4400 Machine Learning and Data Mining I Alina Oprea Associate Professor, CCIS Northeastern University January 24 2019 Logistics HW 1 is due on Friday 01/25 Project proposal: due Feb 21 1 page description

More information

Sequential and parallel deficit scaling algorithms for minimum flow in bipartite networks

Sequential and parallel deficit scaling algorithms for minimum flow in bipartite networks Sequential and parallel deficit scaling algorithms for minimum flow in bipartite networks LAURA CIUPALĂ Department of Computer Science University Transilvania of Braşov Iuliu Maniu Street 50, Braşov ROMANIA

More information

Memory Bandwidth and Low Precision Computation. CS6787 Lecture 9 Fall 2017

Memory Bandwidth and Low Precision Computation. CS6787 Lecture 9 Fall 2017 Memory Bandwidth and Low Precision Computation CS6787 Lecture 9 Fall 2017 Memory as a Bottleneck So far, we ve just been talking about compute e.g. techniques to decrease the amount of compute by decreasing

More information

Investigating Mixed-Integer Hulls using a MIP-Solver

Investigating Mixed-Integer Hulls using a MIP-Solver Investigating Mixed-Integer Hulls using a MIP-Solver Matthias Walter Otto-von-Guericke Universität Magdeburg Joint work with Volker Kaibel (OvGU) Aussois Combinatorial Optimization Workshop 2015 Outline

More information

Integral Geometry and the Polynomial Hirsch Conjecture

Integral Geometry and the Polynomial Hirsch Conjecture Integral Geometry and the Polynomial Hirsch Conjecture Jonathan Kelner, MIT Partially based on joint work with Daniel Spielman Introduction n A lot of recent work on Polynomial Hirsch Conjecture has focused

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 22, 2016 Course Information Website: http://www.stat.ucdavis.edu/~chohsieh/teaching/ ECS289G_Fall2016/main.html My office: Mathematical Sciences

More information

CS 435, 2018 Lecture 9, Date: 3 May 2018 Instructor: Nisheeth Vishnoi. Cutting Plane and Ellipsoid Methods for Linear Programming

CS 435, 2018 Lecture 9, Date: 3 May 2018 Instructor: Nisheeth Vishnoi. Cutting Plane and Ellipsoid Methods for Linear Programming CS 435, 2018 Lecture 9, Date: 3 May 2018 Instructor: Nisheeth Vishnoi Cutting Plane and Ellipsoid Methods for Linear Programming In this lecture we introduce the class of cutting plane methods for convex

More information

Structured Optimal Transport

Structured Optimal Transport David Alvarez-Melis Tommi S. Jaakkola Stefanie Jegelka MIT CSAIL MIT CSAIL MIT CSAIL Abstract Optimal Transport has recently gained interest in machine learning for applications ranging from domain adaptation

More information

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2017

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2017 CPSC 340: Machine Learning and Data Mining Principal Component Analysis Fall 2017 Assignment 3: 2 late days to hand in tonight. Admin Assignment 4: Due Friday of next week. Last Time: MAP Estimation MAP

More information

2 The Mixed Postman Problem with Restrictions on the Arcs

2 The Mixed Postman Problem with Restrictions on the Arcs Approximation Algorithms for the Mixed Postman Problem with Restrictions on the Arcs Francisco Javier Zaragoza Martínez Departamento de Sistemas, Universidad Autónoma Metropolitana Unidad Azcapotzalco

More information

On Distributed Submodular Maximization with Limited Information

On Distributed Submodular Maximization with Limited Information On Distributed Submodular Maximization with Limited Information Bahman Gharesifard Stephen L. Smith Abstract This paper considers a class of distributed submodular maximization problems in which each agent

More information

The convex geometry of inverse problems

The convex geometry of inverse problems The convex geometry of inverse problems Benjamin Recht Department of Computer Sciences University of Wisconsin-Madison Joint work with Venkat Chandrasekaran Pablo Parrilo Alan Willsky Linear Inverse Problems

More information

Online Submodular Minimization for Combinatorial Structures

Online Submodular Minimization for Combinatorial Structures Stefanie Jegelka Max Planck Institute for Intelligent Systems, Tübingen, Germany Jeff Bilmes University of Washington, Seattle, WA 98195, USA jegelka@tuebingen.mpg.de bilmes@u.washington.edu Abstract Most

More information

Sparse Optimization Lecture: Proximal Operator/Algorithm and Lagrange Dual

Sparse Optimization Lecture: Proximal Operator/Algorithm and Lagrange Dual Sparse Optimization Lecture: Proximal Operator/Algorithm and Lagrange Dual Instructor: Wotao Yin July 2013 online discussions on piazza.com Those who complete this lecture will know learn the proximal

More information

arxiv: v1 [cs.ds] 19 Nov 2018

arxiv: v1 [cs.ds] 19 Nov 2018 Towards Nearly-linear Time Algorithms for Submodular Maximization with a Matroid Constraint Alina Ene Huy L. Nguy ên arxiv:1811.07464v1 [cs.ds] 19 Nov 2018 Abstract We consider fast algorithms for monotone

More information

The Simplex Algorithm

The Simplex Algorithm The Simplex Algorithm Uri Feige November 2011 1 The simplex algorithm The simplex algorithm was designed by Danzig in 1947. This write-up presents the main ideas involved. It is a slight update (mostly

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 19: Graph Cuts source S sink T Readings Szeliski, Chapter 11.2 11.5 Stereo results with window search problems in areas of uniform texture Window-based matching

More information

Communication Complexity of Combinatorial Auctions with Submodular Valuations

Communication Complexity of Combinatorial Auctions with Submodular Valuations Communication Complexity of Combinatorial Auctions with Submodular Valuations Shahar Dobzinski Weizmann Institute of Science Jan Vondrák IBM Almaden Research ACM-SIAM SODA 2013, New Orleans Dobzinski-Vondrák

More information

What have we leaned so far?

What have we leaned so far? What have we leaned so far? Camera structure Eye structure Project 1: High Dynamic Range Imaging What have we learned so far? Image Filtering Image Warping Camera Projection Model Project 2: Panoramic

More information