Computational and Statistical Tradeoffs in VoI-Driven Learning

Size: px
Start display at page:

Download "Computational and Statistical Tradeoffs in VoI-Driven Learning"

Transcription

1 ARO ARO MURI MURI on on Value-centered Theory for for Adaptive Learning, Inference, Tracking, and and Exploitation Computational and Statistical Tradefs in VoI-Driven Learning Co-PI Michael Jordan University California, Berkeley

2

3 Four major axes progress Progress 1: Time/Data Tradefs: A new Gaussian squared complexity measure for VoI Opera?onal tradef curves linking?me and data resources for a class denoising problems Progress 2: Distributed Resampling Methods: A new, distributed version the bootstrap Terabyte- scale computa?on confidence intervals Progress 3: Theory Ranking and Theory Privacy Human- in- the- loop processing Progress 4: Streaming Varia?onal Inference Bayesian filtering with varia?onal updates Approximate Bayesian inference for large- scale data

4 1. Computation/Statistics More data generally means more computation in our current state understanding but statistically more data generally means less risk (i.e., error) and statistical inferences are ten simplified as the amount data grows somehow these facts should have algorithmic consequences I.e., somehow we should be able to get by with less computation as the amount data grows need a new notion controlled algorithm weakening Chandrasekaran, V. & Jordan, M. (2013). Computa?onal and sta?s?cal tradefs via convex relaxa?on. Proceedings the Na1onal Academy Sciences, 110, E1181- E1190.

5 Time-Data Tradefs Consider an inference problem with fixed risk Vertical lines Runtime Classical estimation theory well understood Number samples n

6 Time-Data Tradefs Consider an inference problem with fixed risk Horizontal lines Runtime Complexity theory lower bounds poorly understood depends on computational model Number samples n

7 Time-Data Tradefs Consider an inference problem with fixed risk Runtime o More data means smaller run?me upper bound o Need weaker algorithms for larger datasets Number samples n

8 A Denoising Problem Signal Noise from known (bounded) set Observation model Observe n i.i.d. samples

9 Convex Programming Estimator Sample mean statistic is sufficient Natural estimator Convex relaxation C is a convex set such that

10 Statistical Performance Estimator Consider cone feasible directions into C

11 Statistical Performance Estimator Theorem: The risk the estimator is Intuition: Only consider error in feasible cone Can be refined for better bias-variance tradefs

12 Value Corr: To obtain risk at most 1, Key point: If we have access to larger n, can use larger C

13 Hierarchy Convex Relaxations If we have access to larger n, can use larger C à Obtain weaker estimation algorithm

14 Hierarchy Relaxations If algebraic, then one can obtain family outer convex approximations polyhedral, semidefinite, hyperbolic relaxations (Sherali-Adams, Parrilo, Lasserre, Garding, Renegar) Sets ordered by computational complexity Central role played by lift-and-project

15 Example consists cut matrices E.g., collaborative filtering, clustering

16 Other Examples Estimation over the set that consists all adjacency matrices graphs with only a clique on square-root many nodes cf. sparse PCA Banding estimators for covariance matrices where we don t know a priori the ordering the variables, but must infer the ordering Estimation perfect matchings in a graph cf. network inference

17 2. Distributed Resampling Methods Critical need to obtain confidence intervals for VoI measures and other statistics in order to make reliable decisions Rarely are analytical confidence intervals available Resampling methods such as the bootstrap fer a solution but there is a major scalability issue Kleiner, A., Talwalkar, A., Sarkar, P., & Jordan, M. (in press). A scalable bootstrap for massive data. Journal the Royal Sta1s1cal Society, B.

18 The Bootstrap Use the observed data to simulate multiple datasets size n: Repeatedly resample n points with replacement from the original dataset size n. Compute θ * n on each resample. Compute ξ based on these multiple realizations θ * n as our estimate ξ for θ n. X (1) 1,...,Xn (1) ˆθ (1) n X 1,...,X n X (2) 1,...,Xn (2) ˆθ (2) n ξ(ˆθ n (1),...,ˆθ n (m) ).. X (m) 1,...,Xn (m) ˆθ (m) n

19 The Bootstrap: Computational Issues Seemingly a wonderful match to modern parallel and distributed computing platforms But the expected number distinct points in a bootstrap resample is ~ 0.632n e.g., if original dataset has size 1 TB, then expect resample to have size ~ 632 GB Can t feasibly send resampled datasets this size to distributed servers Even if one could, can t compute the estimate locally on datasets this large

20 The Bag Little Bootstraps X (1) 1,...,Xn (1) ˆθ (1) n ˇX (1) (1) 1,..., ˇX b(n) X (2) 1,...,Xn (2) ˆθ (2) n ξ(ˆθ (1) n,...,ˆθ (m 2) n )=ξ 1.. X (m 2) 1,...,X (m 2) n ˆθ (m 2) n X 1,...,X n. avg(ξ 1,...,ξ m 1 ) X (1) 1,...,Xn (1) ˆθ (1) n ˇX (m 1) 1,..., ˇX (m 1) b(n) X (2) 1,...,Xn (2) ˆθ (2) n ξ(ˆθ (1) n,...,ˆθ (m 2) n )=ξ m 1.. X (m 2) 1,...,X (m 2) n ˆθ (m 2) n

21 Empirical Results: Bag Little Bootstraps (BLB) BLB! 0.7 BOOT Relative Error Time (sec)

22 3. Theory Ranking and Theory Privacy Human operators ten prefer ranked alternatives to binary or multiway tests Human data-providers ten desire a controllable degree anonymity How do we develop VoI-based methods that permit statistical inference ranking losses and under privacy constraints? Duchi, J., Mackey, L., & Jordan, M. (in press). The asympto?cs ranking algorithms. Annals Sta1s1cs. Duchi, J., Jordan, M., & Wainwright, M. (in press). Local privacy and sta?s?cal minimax rates, Symposium on Founda1ons Computer Science (FOCS).

23 4. Streaming Varia?onal Bayes Large, streaming data sets are increasingly the norm Inference for Big Data has generally been non- Bayesian Advantages Bayes: complex models, coherent treatment uncertainty, etc. We deliver: SDA- Bayes, a framework for Streaming, Distributed, Asynchronous Bayesian inference Experiments demonstra?ng streaming topic discovery with comparable predic?ve performance to non- streaming algorithms (on Wikipedia and scien?fic journal Nature) Broderick, T., Boyd, N., Wibisono, A., Wilson, A., & Jordan, M. (in press). Streaming varia?onal Bayes. In Proceedings Neural Informa1on Processing Conference.

24 Streaming Varia?onal Bayes SDA performs at least as well as Stochas?c varia?onal inference (SVI), an algorithm not designed for the streaming seang (table shows SDA with 32 threads or one thread) More threads improves SDA performance and run?me

25 Future and ongoing focus areas Support recovery and?me/data tradefs Communica?on- complexity lower bounds for distributed es?ma?on Nonparametric streaming varia?onal Bayes Aggrega?on- based ranking algorithms Diagnos?cs for resampling- based confidence intervals Topological no?ons privacy

26 Publica?ons in Year 2 V. Chandrasekaran & M. Jordan, Computa?onal and sta?s?cal tradefs via convex relaxa?on, Proceedings the Na1onal Academy Sciences, 110, E1181- E1190, J. Duchi, L. Mackey, and M. Jordan, The asympto?cs ranking algorithms, Annals Sta1s1cs, in press. A. Kleiner, A. Talwalkar, P. Sarkar and M. Jordan, A scalable bootstrap for massive data, Journal the Royal Sta1s1cal Society, Series B, in press. M. Jordan, On sta?s?cs, computa?on and scalability, Bernoulli, 19, , J. Duchi, M. Jordan, & M. Wainwright, Local privacy and sta?s?cal minimax rates, Symposium on Founda1ons Computer Science (FOCS), Y. Zhang, J. Duchi, M. Jordan, & M. Wainwright, Informa?on- theore?c lower bounds for distributed sta?s?cal es?ma?on with communica?on constraints, In Proceedings NIPS, T. Broderick, N. Boyd, A. Wibisono, A. Wilson, & M. Jordan, Streaming varia?onal Bayes, In Proceedings NIPS, J. Duchi, M. Jordan, & M. Wainwright, Local privacy and minimax bounds: Sharp rates for probability es?ma?on, In Proceedings NIPS, A. Kleiner, A. Talwalkar, S. Agarwal, M. Jordan, & I. Stoica, A general bootstrap performance diagnos?c, ACM Conference on Knowledge Discovery and Data Mining (SIGKDD), X. Pan, J. Gonzalez, S. Jegelka, T. Broderick, & M. Jordan, Op?mis?c concurrency control for distributed unsupervised learning, In Proceedings NIPS, F. Wauthier, M. Jordan, & N. Jojic, Efficient ranking from pairwise comparisons, In Proceedings ICML, 2013.

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 22, 2016 Course Information Website: http://www.stat.ucdavis.edu/~chohsieh/teaching/ ECS289G_Fall2016/main.html My office: Mathematical Sciences

More information

Massive Data Analysis

Massive Data Analysis Professor, Department of Electrical and Computer Engineering Tennessee Technological University February 25, 2015 Big Data This talk is based on the report [1]. The growth of big data is changing that

More information

BOOT-TS: A Scalable Bootstrap for Massive Time-Series Data

BOOT-TS: A Scalable Bootstrap for Massive Time-Series Data BOOT-TS: A Scalable Bootstrap for Massive Time-Series Data Nikolay Laptev, Carlo Zaniolo UCLA Los Angeles, CA {nlaptev,zaniolo}@cs.ucla.edu Tsai-Ching Lu HRL Malibu, CA tlu@hrl.com Abstract We propose

More information

Computations with Bounded Errors and Response Times on Very Large Data

Computations with Bounded Errors and Response Times on Very Large Data Computations with Bounded Errors and Response Times on Very Large Data Ion Stoica UC Berkeley (joint work with: Sameer Agarwal, Ariel Kleiner, Henry Milner, Barzan Mozafari, Ameet Talwalkar, Purnamrita

More information

Time Complexity and Parallel Speedup to Compute the Gamma Summarization Matrix

Time Complexity and Parallel Speedup to Compute the Gamma Summarization Matrix Time Complexity and Parallel Speedup to Compute the Gamma Summarization Matrix Carlos Ordonez, Yiqun Zhang Department of Computer Science, University of Houston, USA Abstract. We study the serial and parallel

More information

Big Data Methods. Chapter 5: Machine learning. Big Data Methods, Chapter 5, Slide 1

Big Data Methods. Chapter 5: Machine learning. Big Data Methods, Chapter 5, Slide 1 Big Data Methods Chapter 5: Machine learning Big Data Methods, Chapter 5, Slide 1 5.1 Introduction to machine learning What is machine learning? Concerned with the study and development of algorithms that

More information

Slides for Data Mining by I. H. Witten and E. Frank

Slides for Data Mining by I. H. Witten and E. Frank Slides for Data Mining by I. H. Witten and E. Frank 7 Engineering the input and output Attribute selection Scheme-independent, scheme-specific Attribute discretization Unsupervised, supervised, error-

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! h0p://www.cs.toronto.edu/~rsalakhu/ Lecture 3 Parametric Distribu>ons We want model the probability

More information

Divide and Conquer Kernel Ridge Regression

Divide and Conquer Kernel Ridge Regression Divide and Conquer Kernel Ridge Regression Yuchen Zhang John Duchi Martin Wainwright University of California, Berkeley COLT 2013 Yuchen Zhang (UC Berkeley) Divide and Conquer KRR COLT 2013 1 / 15 Problem

More information

Towards Efficient Higher-Order Semidefinite Relaxations for Max-Cut

Towards Efficient Higher-Order Semidefinite Relaxations for Max-Cut Towards Efficient Higher-Order Semidefinite Relaxations for Max-Cut Miguel F. Anjos Professor and Canada Research Chair Director, Trottier Energy Institute Joint work with E. Adams (Poly Mtl), F. Rendl,

More information

Stability of Feature Selection Algorithms

Stability of Feature Selection Algorithms Stability of Feature Selection Algorithms Alexandros Kalousis, Jullien Prados, Phong Nguyen Melanie Hilario Artificial Intelligence Group Department of Computer Science University of Geneva Stability of

More information

Adaptive Dropout Training for SVMs

Adaptive Dropout Training for SVMs Department of Computer Science and Technology Adaptive Dropout Training for SVMs Jun Zhu Joint with Ning Chen, Jingwei Zhuo, Jianfei Chen, Bo Zhang Tsinghua University ShanghaiTech Symposium on Data Science,

More information

The convex geometry of inverse problems

The convex geometry of inverse problems The convex geometry of inverse problems Benjamin Recht Department of Computer Sciences University of Wisconsin-Madison Joint work with Venkat Chandrasekaran Pablo Parrilo Alan Willsky Linear Inverse Problems

More information

Research Interests Optimization:

Research Interests Optimization: Mitchell: Research interests 1 Research Interests Optimization: looking for the best solution from among a number of candidates. Prototypical optimization problem: min f(x) subject to g(x) 0 x X IR n Here,

More information

Applying Multi-Armed Bandit on top of content similarity recommendation engine

Applying Multi-Armed Bandit on top of content similarity recommendation engine Applying Multi-Armed Bandit on top of content similarity recommendation engine Andraž Hribernik andraz.hribernik@gmail.com Lorand Dali lorand.dali@zemanta.com Dejan Lavbič University of Ljubljana dejan.lavbic@fri.uni-lj.si

More information

The convex geometry of inverse problems

The convex geometry of inverse problems The convex geometry of inverse problems Benjamin Recht Department of Computer Sciences University of Wisconsin-Madison Joint work with Venkat Chandrasekaran Pablo Parrilo Alan Willsky Linear Inverse Problems

More information

Machine Learning Techniques for Data Mining

Machine Learning Techniques for Data Mining Machine Learning Techniques for Data Mining Eibe Frank University of Waikato New Zealand 10/25/2000 1 PART VII Moving on: Engineering the input and output 10/25/2000 2 Applying a learner is not all Already

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley U.C. Berkeley Division of Biostatistics Working Paper Series Year 2014 Paper 321 A Scalable Supervised Subsemble Prediction Algorithm Stephanie Sapp Mark J. van der Laan

More information

A scalable bootstrap for massive data

A scalable bootstrap for massive data J. R. Statist. Soc. B (24) 76, Part 4, pp. 795 86 A scalable bootstrap for massive data Ariel Kleiner, Ameet Talwalkar, Purnamrita Sarkar and Michael I. Jordan University of California, Berkeley, USA [Received

More information

Understanding Clustering Supervising the unsupervised

Understanding Clustering Supervising the unsupervised Understanding Clustering Supervising the unsupervised Janu Verma IBM T.J. Watson Research Center, New York http://jverma.github.io/ jverma@us.ibm.com @januverma Clustering Grouping together similar data

More information

The limits of adaptive sensing

The limits of adaptive sensing The limits of adaptive sensing Mark A. Davenport Stanford University Department of Statistics Sparse Estimation -sparse How well can we estimate? Background: Dantzig Selector Choose a random matrix fill

More information

Comparison of Optimization Methods for L1-regularized Logistic Regression

Comparison of Optimization Methods for L1-regularized Logistic Regression Comparison of Optimization Methods for L1-regularized Logistic Regression Aleksandar Jovanovich Department of Computer Science and Information Systems Youngstown State University Youngstown, OH 44555 aleksjovanovich@gmail.com

More information

Edge-exchangeable graphs and sparsity

Edge-exchangeable graphs and sparsity Edge-exchangeable graphs and sparsity Tamara Broderick Department of EECS Massachusetts Institute of Technology tbroderick@csail.mit.edu Diana Cai Department of Statistics University of Chicago dcai@uchicago.edu

More information

The Projected Dip-means Clustering Algorithm

The Projected Dip-means Clustering Algorithm Theofilos Chamalis Department of Computer Science & Engineering University of Ioannina GR 45110, Ioannina, Greece thchama@cs.uoi.gr ABSTRACT One of the major research issues in data clustering concerns

More information

Combinatorial Selection and Least Absolute Shrinkage via The CLASH Operator

Combinatorial Selection and Least Absolute Shrinkage via The CLASH Operator Combinatorial Selection and Least Absolute Shrinkage via The CLASH Operator Volkan Cevher Laboratory for Information and Inference Systems LIONS / EPFL http://lions.epfl.ch & Idiap Research Institute joint

More information

Machine Learning Techniques for Data Mining

Machine Learning Techniques for Data Mining Machine Learning Techniques for Data Mining Eibe Frank University of Waikato New Zealand 10/25/2000 1 PART V Credibility: Evaluating what s been learned 10/25/2000 2 Evaluation: the key to success How

More information

The Bootstrap and Jackknife

The Bootstrap and Jackknife The Bootstrap and Jackknife Summer 2017 Summer Institutes 249 Bootstrap & Jackknife Motivation In scientific research Interest often focuses upon the estimation of some unknown parameter, θ. The parameter

More information

Section 4 Matching Estimator

Section 4 Matching Estimator Section 4 Matching Estimator Matching Estimators Key Idea: The matching method compares the outcomes of program participants with those of matched nonparticipants, where matches are chosen on the basis

More information

Music Recommendation with Implicit Feedback and Side Information

Music Recommendation with Implicit Feedback and Side Information Music Recommendation with Implicit Feedback and Side Information Shengbo Guo Yahoo! Labs shengbo@yahoo-inc.com Behrouz Behmardi Criteo b.behmardi@criteo.com Gary Chen Vobile gary.chen@vobileinc.com Abstract

More information

Outlier Pursuit: Robust PCA and Collaborative Filtering

Outlier Pursuit: Robust PCA and Collaborative Filtering Outlier Pursuit: Robust PCA and Collaborative Filtering Huan Xu Dept. of Mechanical Engineering & Dept. of Mathematics National University of Singapore Joint w/ Constantine Caramanis, Yudong Chen, Sujay

More information

Distributed State Es.ma.on Algorithms for Electric Power Systems

Distributed State Es.ma.on Algorithms for Electric Power Systems Distributed State Es.ma.on Algorithms for Electric Power Systems Ariana Minot, Blue Waters Graduate Fellow Professor Na Li, Professor Yue M. Lu Harvard University, School of Engineering and Applied Sciences

More information

Loopy Belief Propagation

Loopy Belief Propagation Loopy Belief Propagation Research Exam Kristin Branson September 29, 2003 Loopy Belief Propagation p.1/73 Problem Formalization Reasoning about any real-world problem requires assumptions about the structure

More information

10-701/15-781, Fall 2006, Final

10-701/15-781, Fall 2006, Final -7/-78, Fall 6, Final Dec, :pm-8:pm There are 9 questions in this exam ( pages including this cover sheet). If you need more room to work out your answer to a question, use the back of the page and clearly

More information

Constrained Clustering with Interactive Similarity Learning

Constrained Clustering with Interactive Similarity Learning SCIS & ISIS 2010, Dec. 8-12, 2010, Okayama Convention Center, Okayama, Japan Constrained Clustering with Interactive Similarity Learning Masayuki Okabe Toyohashi University of Technology Tenpaku 1-1, Toyohashi,

More information

PSU Student Research Symposium 2017 Bayesian Optimization for Refining Object Proposals, with an Application to Pedestrian Detection Anthony D.

PSU Student Research Symposium 2017 Bayesian Optimization for Refining Object Proposals, with an Application to Pedestrian Detection Anthony D. PSU Student Research Symposium 2017 Bayesian Optimization for Refining Object Proposals, with an Application to Pedestrian Detection Anthony D. Rhodes 5/10/17 What is Machine Learning? Machine learning

More information

Multiresolution Motif Discovery in Time Series

Multiresolution Motif Discovery in Time Series Tenth SIAM International Conference on Data Mining Columbus, Ohio, USA Multiresolution Motif Discovery in Time Series NUNO CASTRO PAULO AZEVEDO Department of Informatics University of Minho Portugal April

More information

A Course in Convexity

A Course in Convexity A Course in Convexity Alexander Barvinok Graduate Studies in Mathematics Volume 54 American Mathematical Society Providence, Rhode Island Preface vii Chapter I. Convex Sets at Large 1 1. Convex Sets. Main

More information

Data Mining. Jeff M. Phillips. January 9, 2013

Data Mining. Jeff M. Phillips. January 9, 2013 Data Mining Jeff M. Phillips January 9, 2013 Data Mining What is Data Mining? Finding structure in data? Machine learning on large data? Unsupervised learning? Large scale computational statistics? Data

More information

Ranking and selection problem with 1,016,127 systems. requiring 95% probability of correct selection. solved in less than 40 minutes

Ranking and selection problem with 1,016,127 systems. requiring 95% probability of correct selection. solved in less than 40 minutes Ranking and selection problem with 1,016,127 systems requiring 95% probability of correct selection solved in less than 40 minutes with 600 parallel cores with near-linear scaling.. Wallclock time (sec)

More information

Analyzing Stochastic Gradient Descent for Some Non- Convex Problems

Analyzing Stochastic Gradient Descent for Some Non- Convex Problems Analyzing Stochastic Gradient Descent for Some Non- Convex Problems Christopher De Sa Soon at Cornell University cdesa@stanford.edu stanford.edu/~cdesa Kunle Olukotun Christopher Ré Stanford University

More information

Contents. Preface to the Second Edition

Contents. Preface to the Second Edition Preface to the Second Edition v 1 Introduction 1 1.1 What Is Data Mining?....................... 4 1.2 Motivating Challenges....................... 5 1.3 The Origins of Data Mining....................

More information

Data Mining. Jeff M. Phillips. January 8, 2014

Data Mining. Jeff M. Phillips. January 8, 2014 Data Mining Jeff M. Phillips January 8, 2014 Data Mining What is Data Mining? Finding structure in data? Machine learning on large data? Unsupervised learning? Large scale computational statistics? Data

More information

COMP 551 Applied Machine Learning Lecture 16: Deep Learning

COMP 551 Applied Machine Learning Lecture 16: Deep Learning COMP 551 Applied Machine Learning Lecture 16: Deep Learning Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551 Unless otherwise noted, all

More information

MLlib. Distributed Machine Learning on. Evan Sparks. UC Berkeley

MLlib. Distributed Machine Learning on. Evan Sparks.  UC Berkeley MLlib & ML base Distributed Machine Learning on Evan Sparks UC Berkeley January 31st, 2014 Collaborators: Ameet Talwalkar, Xiangrui Meng, Virginia Smith, Xinghao Pan, Shivaram Venkataraman, Matei Zaharia,

More information

Sum-Product Networks. STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 15, 2015

Sum-Product Networks. STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 15, 2015 Sum-Product Networks STAT946 Deep Learning Guest Lecture by Pascal Poupart University of Waterloo October 15, 2015 Introduction Outline What is a Sum-Product Network? Inference Applications In more depth

More information

Iterative random projections for high-dimensional data clustering

Iterative random projections for high-dimensional data clustering Iterative random projections for high-dimensional data clustering Ângelo Cardoso, Andreas Wichert INESC-ID Lisboa and Instituto Superior Técnico, Technical University of Lisbon Av. Prof. Dr. Aníbal Cavaco

More information

Markov Random Fields and Gibbs Sampling for Image Denoising

Markov Random Fields and Gibbs Sampling for Image Denoising Markov Random Fields and Gibbs Sampling for Image Denoising Chang Yue Electrical Engineering Stanford University changyue@stanfoed.edu Abstract This project applies Gibbs Sampling based on different Markov

More information

An Introduction to LP Relaxations for MAP Inference

An Introduction to LP Relaxations for MAP Inference An Introduction to LP Relaxations for MAP Inference Adrian Weller MLSALT4 Lecture Feb 27, 2017 With thanks to David Sontag (NYU) for use of some of his slides and illustrations For more information, see

More information

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1 Preface to the Second Edition Preface to the First Edition vii xi 1 Introduction 1 2 Overview of Supervised Learning 9 2.1 Introduction... 9 2.2 Variable Types and Terminology... 9 2.3 Two Simple Approaches

More information

Table Of Contents: xix Foreword to Second Edition

Table Of Contents: xix Foreword to Second Edition Data Mining : Concepts and Techniques Table Of Contents: Foreword xix Foreword to Second Edition xxi Preface xxiii Acknowledgments xxxi About the Authors xxxv Chapter 1 Introduction 1 (38) 1.1 Why Data

More information

Contents. Foreword to Second Edition. Acknowledgments About the Authors

Contents. Foreword to Second Edition. Acknowledgments About the Authors Contents Foreword xix Foreword to Second Edition xxi Preface xxiii Acknowledgments About the Authors xxxi xxxv Chapter 1 Introduction 1 1.1 Why Data Mining? 1 1.1.1 Moving toward the Information Age 1

More information

Introduc)on to Probabilis)c Latent Seman)c Analysis. NYP Predic)ve Analy)cs Meetup June 10, 2010

Introduc)on to Probabilis)c Latent Seman)c Analysis. NYP Predic)ve Analy)cs Meetup June 10, 2010 Introduc)on to Probabilis)c Latent Seman)c Analysis NYP Predic)ve Analy)cs Meetup June 10, 2010 PLSA A type of latent variable model with observed count data and nominal latent variable(s). Despite the

More information

Introduction to Computer Science

Introduction to Computer Science DM534 Introduction to Computer Science Clustering and Feature Spaces Richard Roettger: About Me Computer Science (Technical University of Munich and thesis at the ICSI at the University of California at

More information

Lecture 25: Review I

Lecture 25: Review I Lecture 25: Review I Reading: Up to chapter 5 in ISLR. STATS 202: Data mining and analysis Jonathan Taylor 1 / 18 Unsupervised learning In unsupervised learning, all the variables are on equal standing,

More information

Structured Learning. Jun Zhu

Structured Learning. Jun Zhu Structured Learning Jun Zhu Supervised learning Given a set of I.I.D. training samples Learn a prediction function b r a c e Supervised learning (cont d) Many different choices Logistic Regression Maximum

More information

Computer-based Tracking Protocols: Improving Communication between Databases

Computer-based Tracking Protocols: Improving Communication between Databases Computer-based Tracking Protocols: Improving Communication between Databases Amol Deshpande Database Group Department of Computer Science University of Maryland Overview Food tracking and traceability

More information

Limitations of Matrix Completion via Trace Norm Minimization

Limitations of Matrix Completion via Trace Norm Minimization Limitations of Matrix Completion via Trace Norm Minimization ABSTRACT Xiaoxiao Shi Computer Science Department University of Illinois at Chicago xiaoxiao@cs.uic.edu In recent years, compressive sensing

More information

1 INTRODUCTION 2 RELATED WORK. Usha.B.P ¹, Sushmitha.J², Dr Prashanth C M³

1 INTRODUCTION 2 RELATED WORK. Usha.B.P ¹, Sushmitha.J², Dr Prashanth C M³ International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May-2016 45 Classification of Big Data Stream usingensemble Classifier Usha.B.P ¹, Sushmitha.J², Dr Prashanth C M³ Abstract-

More information

Algebraic statistics for network models

Algebraic statistics for network models Algebraic statistics for network models Connecting statistics, combinatorics, and computational algebra Part One Sonja Petrović (Statistics Department, Pennsylvania State University) Applied Mathematics

More information

Robust Principal Component Analysis (RPCA)

Robust Principal Component Analysis (RPCA) Robust Principal Component Analysis (RPCA) & Matrix decomposition: into low-rank and sparse components Zhenfang Hu 2010.4.1 reference [1] Chandrasekharan, V., Sanghavi, S., Parillo, P., Wilsky, A.: Ranksparsity

More information

Text Modeling with the Trace Norm

Text Modeling with the Trace Norm Text Modeling with the Trace Norm Jason D. M. Rennie jrennie@gmail.com April 14, 2006 1 Introduction We have two goals: (1) to find a low-dimensional representation of text that allows generalization to

More information

Bayesian Methods. David Rosenberg. April 11, New York University. David Rosenberg (New York University) DS-GA 1003 April 11, / 19

Bayesian Methods. David Rosenberg. April 11, New York University. David Rosenberg (New York University) DS-GA 1003 April 11, / 19 Bayesian Methods David Rosenberg New York University April 11, 2017 David Rosenberg (New York University) DS-GA 1003 April 11, 2017 1 / 19 Classical Statistics Classical Statistics David Rosenberg (New

More information

Johnson-Lindenstrauss Lemma, Random Projection, and Applications

Johnson-Lindenstrauss Lemma, Random Projection, and Applications Johnson-Lindenstrauss Lemma, Random Projection, and Applications Hu Ding Computer Science and Engineering, Michigan State University JL-Lemma The original version: Given a set P of n points in R d, let

More information

Random Forests for Big Data

Random Forests for Big Data Random Forests for Big Data R. Genuer a, J.-M. Poggi b, C. Tuleau-Malot c, N. Villa-Vialaneix d a Bordeaux University c Nice University b Orsay University d INRA Toulouse October 27, 2017 CNAM, Paris Outline

More information

Change-Point Estimation of High-Dimensional Streaming Data via Sketching

Change-Point Estimation of High-Dimensional Streaming Data via Sketching Change-Point Estimation of High-Dimensional Streaming Data via Sketching Yuejie Chi and Yihong Wu Electrical and Computer Engineering, The Ohio State University, Columbus, OH Electrical and Computer Engineering,

More information

Machine Learning (BSMC-GA 4439) Wenke Liu

Machine Learning (BSMC-GA 4439) Wenke Liu Machine Learning (BSMC-GA 4439) Wenke Liu 01-25-2018 Outline Background Defining proximity Clustering methods Determining number of clusters Other approaches Cluster analysis as unsupervised Learning Unsupervised

More information

Clustering Documents in Large Text Corpora

Clustering Documents in Large Text Corpora Clustering Documents in Large Text Corpora Bin He Faculty of Computer Science Dalhousie University Halifax, Canada B3H 1W5 bhe@cs.dal.ca http://www.cs.dal.ca/ bhe Yongzheng Zhang Faculty of Computer Science

More information

Introduction to Pattern Recognition Part II. Selim Aksoy Bilkent University Department of Computer Engineering

Introduction to Pattern Recognition Part II. Selim Aksoy Bilkent University Department of Computer Engineering Introduction to Pattern Recognition Part II Selim Aksoy Bilkent University Department of Computer Engineering saksoy@cs.bilkent.edu.tr RETINA Pattern Recognition Tutorial, Summer 2005 Overview Statistical

More information

TerraSwarm. A Machine Learning and Op0miza0on Toolkit for the Swarm. Ilge Akkaya, Shuhei Emoto, Edward A. Lee. University of California, Berkeley

TerraSwarm. A Machine Learning and Op0miza0on Toolkit for the Swarm. Ilge Akkaya, Shuhei Emoto, Edward A. Lee. University of California, Berkeley TerraSwarm A Machine Learning and Op0miza0on Toolkit for the Swarm Ilge Akkaya, Shuhei Emoto, Edward A. Lee University of California, Berkeley TerraSwarm Tools Telecon 17 November 2014 Sponsored by the

More information

DATA SCIENCE INTRODUCTION QSHORE TECHNOLOGIES. About the Course:

DATA SCIENCE INTRODUCTION QSHORE TECHNOLOGIES. About the Course: DATA SCIENCE About the Course: In this course you will get an introduction to the main tools and ideas which are required for Data Scientist/Business Analyst/Data Analyst/Analytics Manager/Actuarial Scientist/Business

More information

A Deterministic Global Optimization Method for Variational Inference

A Deterministic Global Optimization Method for Variational Inference A Deterministic Global Optimization Method for Variational Inference Hachem Saddiki Mathematics and Statistics University of Massachusetts, Amherst saddiki@math.umass.edu Andrew C. Trapp Operations and

More information

Autoencoder. Representation learning (related to dictionary learning) Both the input and the output are x

Autoencoder. Representation learning (related to dictionary learning) Both the input and the output are x Deep Learning 4 Autoencoder, Attention (spatial transformer), Multi-modal learning, Neural Turing Machine, Memory Networks, Generative Adversarial Net Jian Li IIIS, Tsinghua Autoencoder Autoencoder Unsupervised

More information

Unsupervised learning in Vision

Unsupervised learning in Vision Chapter 7 Unsupervised learning in Vision The fields of Computer Vision and Machine Learning complement each other in a very natural way: the aim of the former is to extract useful information from visual

More information

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet.

The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. CS 189 Spring 2015 Introduction to Machine Learning Final You have 2 hours 50 minutes for the exam. The exam is closed book, closed notes except your one-page (two-sided) cheat sheet. No calculators or

More information

Measurements and Bits: Compressed Sensing meets Information Theory. Dror Baron ECE Department Rice University dsp.rice.edu/cs

Measurements and Bits: Compressed Sensing meets Information Theory. Dror Baron ECE Department Rice University dsp.rice.edu/cs Measurements and Bits: Compressed Sensing meets Information Theory Dror Baron ECE Department Rice University dsp.rice.edu/cs Sensing by Sampling Sample data at Nyquist rate Compress data using model (e.g.,

More information

Chapter 3. Bootstrap. 3.1 Introduction. 3.2 The general idea

Chapter 3. Bootstrap. 3.1 Introduction. 3.2 The general idea Chapter 3 Bootstrap 3.1 Introduction The estimation of parameters in probability distributions is a basic problem in statistics that one tends to encounter already during the very first course on the subject.

More information

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu FMA901F: Machine Learning Lecture 3: Linear Models for Regression Cristian Sminchisescu Machine Learning: Frequentist vs. Bayesian In the frequentist setting, we seek a fixed parameter (vector), with value(s)

More information

The Applicability of the Perturbation Model-based Privacy Preserving Data Mining for Real-world Data

The Applicability of the Perturbation Model-based Privacy Preserving Data Mining for Real-world Data The Applicability of the Perturbation Model-based Privacy Preserving Data Mining for Real-world Data Li Liu, Murat Kantarcioglu and Bhavani Thuraisingham Computer Science Department University of Texas

More information

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings On the Relationships between Zero Forcing Numbers and Certain Graph Coverings Fatemeh Alinaghipour Taklimi, Shaun Fallat 1,, Karen Meagher 2 Department of Mathematics and Statistics, University of Regina,

More information

Evaluation Measures. Sebastian Pölsterl. April 28, Computer Aided Medical Procedures Technische Universität München

Evaluation Measures. Sebastian Pölsterl. April 28, Computer Aided Medical Procedures Technische Universität München Evaluation Measures Sebastian Pölsterl Computer Aided Medical Procedures Technische Universität München April 28, 2015 Outline 1 Classification 1. Confusion Matrix 2. Receiver operating characteristics

More information

Automatic Domain Partitioning for Multi-Domain Learning

Automatic Domain Partitioning for Multi-Domain Learning Automatic Domain Partitioning for Multi-Domain Learning Di Wang diwang@cs.cmu.edu Chenyan Xiong cx@cs.cmu.edu William Yang Wang ww@cmu.edu Abstract Multi-Domain learning (MDL) assumes that the domain labels

More information

Expectation Propagation

Expectation Propagation Expectation Propagation Erik Sudderth 6.975 Week 11 Presentation November 20, 2002 Introduction Goal: Efficiently approximate intractable distributions Features of Expectation Propagation (EP): Deterministic,

More information

Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University

Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University NIPS 2008: E. Sudderth & M. Jordan, Shared Segmentation of Natural

More information

CS 229 Midterm Review

CS 229 Midterm Review CS 229 Midterm Review Course Staff Fall 2018 11/2/2018 Outline Today: SVMs Kernels Tree Ensembles EM Algorithm / Mixture Models [ Focus on building intuition, less so on solving specific problems. Ask

More information

Bayesian Spherical Wavelet Shrinkage: Applications to Shape Analysis

Bayesian Spherical Wavelet Shrinkage: Applications to Shape Analysis Bayesian Spherical Wavelet Shrinkage: Applications to Shape Analysis Xavier Le Faucheur a, Brani Vidakovic b and Allen Tannenbaum a a School of Electrical and Computer Engineering, b Department of Biomedical

More information

Gaussian Processes for Robotics. McGill COMP 765 Oct 24 th, 2017

Gaussian Processes for Robotics. McGill COMP 765 Oct 24 th, 2017 Gaussian Processes for Robotics McGill COMP 765 Oct 24 th, 2017 A robot must learn Modeling the environment is sometimes an end goal: Space exploration Disaster recovery Environmental monitoring Other

More information

Analytical model A structure and process for analyzing a dataset. For example, a decision tree is a model for the classification of a dataset.

Analytical model A structure and process for analyzing a dataset. For example, a decision tree is a model for the classification of a dataset. Glossary of data mining terms: Accuracy Accuracy is an important factor in assessing the success of data mining. When applied to data, accuracy refers to the rate of correct values in the data. When applied

More information

Graphical Models. Pradeep Ravikumar Department of Computer Science The University of Texas at Austin

Graphical Models. Pradeep Ravikumar Department of Computer Science The University of Texas at Austin Graphical Models Pradeep Ravikumar Department of Computer Science The University of Texas at Austin Useful References Graphical models, exponential families, and variational inference. M. J. Wainwright

More information

Statistics (STAT) Statistics (STAT) 1. Prerequisites: grade in C- or higher in STAT 1200 or STAT 1300 or STAT 1400

Statistics (STAT) Statistics (STAT) 1. Prerequisites: grade in C- or higher in STAT 1200 or STAT 1300 or STAT 1400 Statistics (STAT) 1 Statistics (STAT) STAT 1200: Introductory Statistical Reasoning Statistical concepts for critically evaluation quantitative information. Descriptive statistics, probability, estimation,

More information

A Classifica*on of Scien*fic Visualiza*on Algorithms for Massive Threading Kenneth Moreland Berk Geveci Kwan- Liu Ma Robert Maynard

A Classifica*on of Scien*fic Visualiza*on Algorithms for Massive Threading Kenneth Moreland Berk Geveci Kwan- Liu Ma Robert Maynard A Classifica*on of Scien*fic Visualiza*on Algorithms for Massive Threading Kenneth Moreland Berk Geveci Kwan- Liu Ma Robert Maynard Sandia Na*onal Laboratories Kitware, Inc. University of California at Davis

More information

Bioinformatics - Lecture 07

Bioinformatics - Lecture 07 Bioinformatics - Lecture 07 Bioinformatics Clusters and networks Martin Saturka http://www.bioplexity.org/lectures/ EBI version 0.4 Creative Commons Attribution-Share Alike 2.5 License Learning on profiles

More information

Linear & Conic Programming Reformulations of Two-Stage Robust Linear Programs

Linear & Conic Programming Reformulations of Two-Stage Robust Linear Programs 1 / 34 Linear & Conic Programming Reformulations of Two-Stage Robust Linear Programs Erick Delage CRC in decision making under uncertainty Department of Decision Sciences HEC Montreal (joint work with

More information

Homework. Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression Pod-cast lecture on-line. Next lectures:

Homework. Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression Pod-cast lecture on-line. Next lectures: Homework Gaussian, Bishop 2.3 Non-parametric, Bishop 2.5 Linear regression 3.0-3.2 Pod-cast lecture on-line Next lectures: I posted a rough plan. It is flexible though so please come with suggestions Bayes

More information

ALGORITHMS FOR DICTIONARY LEARNING

ALGORITHMS FOR DICTIONARY LEARNING ALGORITHMS FOR DICTIONARY LEARNING ANKUR MOITRA MASSACHUSETTS INSTITUTE OF TECHNOLOGY SPARSE REPRESENTATIONS SPARSE REPRESENTATIONS Many data- types are sparse in an appropriately chosen basis: SPARSE

More information

Generative and discriminative classification techniques

Generative and discriminative classification techniques Generative and discriminative classification techniques Machine Learning and Category Representation 2014-2015 Jakob Verbeek, November 28, 2014 Course website: http://lear.inrialpes.fr/~verbeek/mlcr.14.15

More information

Data Mining. Jeff M. Phillips. January 7, 2019 CS 5140 / CS 6140

Data Mining. Jeff M. Phillips. January 7, 2019 CS 5140 / CS 6140 Data Mining CS 5140 / CS 6140 Jeff M. Phillips January 7, 2019 What is Data Mining? What is Data Mining? Finding structure in data? Machine learning on large data? Unsupervised learning? Large scale computational

More information

Document Clustering: Comparison of Similarity Measures

Document Clustering: Comparison of Similarity Measures Document Clustering: Comparison of Similarity Measures Shouvik Sachdeva Bhupendra Kastore Indian Institute of Technology, Kanpur CS365 Project, 2014 Outline 1 Introduction The Problem and the Motivation

More information

Data Distortion for Privacy Protection in a Terrorist Analysis System

Data Distortion for Privacy Protection in a Terrorist Analysis System Data Distortion for Privacy Protection in a Terrorist Analysis System Shuting Xu, Jun Zhang, Dianwei Han, and Jie Wang Department of Computer Science, University of Kentucky, Lexington KY 40506-0046, USA

More information

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning

COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning COMP 551 Applied Machine Learning Lecture 13: Unsupervised learning Associate Instructor: Herke van Hoof (herke.vanhoof@mail.mcgill.ca) Slides mostly by: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551

More information

Lecture 27: Fast Laplacian Solvers

Lecture 27: Fast Laplacian Solvers Lecture 27: Fast Laplacian Solvers Scribed by Eric Lee, Eston Schweickart, Chengrun Yang November 21, 2017 1 How Fast Laplacian Solvers Work We want to solve Lx = b with L being a Laplacian matrix. Recall

More information