CS681 Computational Colorimetry

Size: px
Start display at page:

Download "CS681 Computational Colorimetry"

Transcription

1 9/14/17 CS681 Computational Colorimetry Min H. Kim KAIST School of Computing COLOR (3) 2 1

2 Color matching functions User can indeed succeed in obtaining a match for all visible wavelengths. So color space is 3D. We get so-called color matching functions (CMFs) of k 436, k 546 and k Color matching functions Notice that, at each of the wavelengths 436, 546 and 700, one of the matching functions is set to 1, while the other two are set to 0. In summary, k 436 c(l λ ) = c(l 436 ) c(l 546 ) c(l 700 ) k 546 Color vector Color basis vector k 700 And for mixed beams we get k 436 ldλ Ω c(l) = c(l 436 ) c(l 546 ) c(l 700 ) k 546 ldλ Ω And we can compute the k 700 ldλ Ω mapping from light to color 4 Coordinates 2

3 Bases We can insert any (non singular) 3-by-3 matrix M and its inverse to obtain: c(l) = Color vector = c(l ) c(l ) c(l ( ) M ) 1 M Color basis vector c 1 c2 c3 k 1 ldλ Ω k 2 ldλ Ω k 3 ldλ Ω k 436 ldλ Ω k 546 ldλ Ω k 700 ldλ Ω 5 Coordinates Bases Where the as c i c 1 c2 c3 describe a new color basis defined = c(l436 ) c(l 546 ) c(l 700 ) M 1 The k functions form the new associated matching functions, defined by: k 1 k 436 k 2 = M k 546 k 3 k

4 Basis specification Starting from any fixed basis for color space, such as c(l 436 ) c(l 546 ) c(l 700 ) 1: specify an invertible 3-by-3 matrix M. 2: specify three actual colors Each such c i can be specified by some light beam that generates it. Plug each such light beam into above calculation to obtain its 456 color coordinates, determining the matrix. c i l i 7 Basis specification Directly specify three new matching functions To be valid matching functions, they must arise from a basis change like the above equation, and so each matching function must be some linear combination of k 436, k 546 and k 700 else we will not respect metamerism Some cameras can mess this up 8 4

5 Basis specification 9 LMS revisited The LMS matching functions we saw originally describe a basis for color space. The coordinates of a color are called [L, M,S] t The actual basis is made up of three colors we can call [ c l, c m, c s ] The color c m is a very imaginary color. There is no real light beam with LMS color coordinates [0,1,0] t 10 5

6 Gamut Observe: we cannot find three vectors that both hit the lasso curve and contain the entire curve in their positive span. So if we want a basis where all actual colors have non-negative coordinates, at least one of the basis vectors defining this octant must lie outside of the cone of actual colors. Such a basis vector must be an imaginary color. Conversely, if all of our basis vectors are actual colors, and thus within the color cone, then there must be some actual colors that cannot be written with non-negative coordinates. In this basis, we say that such colors lie outside the gamut of this color space. 11 Remember This Color 6

7 Device Dependent Color Spaces Pros: Simple description of color for the device Natural, easy way to specify color to the user Cons: Cannot compare colors between devices Not perceptually uniform HSV Color Space Math Value: V = M = max(r,g, B). Saturation: m = min(r,g, B), Hue: C = M m, S = C /V, Jacob Rus H = (G B) / C if M = R (B R) / C (R G) / C if M = G if M = B 7

8 Device Independent Color Spaces Pros: Based on human visual perception Color specification independent of device Interchangeable color among devices Comparison, computation of small color differences Cons: CIEXYZ: not uniform CIELAB, CIELUV, CIEXYZ, Munsell: all dependent on the illuminant Perceptual Color Models Opponent primaries Three dimensions: lightness, colorfulness, and hue (L, C, H) Related to processes of human visual perception Meaningful way of describing color 8

9 9/14/17 Munsell System (1915) Five primary hues: Value range: Chroma range: Red Yellow Green Blue Purple RP 4/10 = a specific reddish purple hue of 10RP, a value of 4, and a chroma of 10 CIE Uniform Color Spaces (1976) Originated from Hunter Lab 1948 Perceptually uniform color definition Driven from CIEXYZ L*= a*= b*=

10 CIE LAB Math Simplified cone response (XYZ and a cubic root func.) Color opponent theory for computing chroma and hue Lightness: L * =116 f (Y /Y n ) 16, Color opponents: a * = 500[ f (X / X n ) f (Y /Y n )], b * = 200[ f (Y /Y n ) f (Z / Z n )], f (x) = x 1/3, x > x +16 /116, x Chroma: Hue: C * ab = (a * ) 2 + (b * ) 2, h ab = tan 1 (b * / a * ). Remember This Color 10

11 Color Differences * CIE ΔE ab Conventional Euclidean metric in a perceptually uniform color space (CIELAB) L* b* ΔE * ab = ( ΔL * ) 2 + ( Δa * ) 2 + ( Δb * ) 2 a* How does computation work? Illumination on a surface color (elementby-element product) Reflected color Three CMFs for XYZ Trichromatic response as scalar (sum of energy) 11

this is processed giving us: perceived color that we actually experience and base judgments upon.

this is processed giving us: perceived color that we actually experience and base judgments upon. color we have been using r, g, b.. why what is a color? can we get all colors this way? how does wavelength fit in here, what part is physics, what part is physiology can i use r, g, b for simulation of

More information

Color Vision. Spectral Distributions Various Light Sources

Color Vision. Spectral Distributions Various Light Sources Color Vision Light enters the eye Absorbed by cones Transmitted to brain Interpreted to perceive color Foundations of Vision Brian Wandell Spectral Distributions Various Light Sources Cones and Rods Cones:

More information

2003 Steve Marschner 7 Light detection discrete approx. Cone Responses S,M,L cones have broadband spectral sensitivity This sum is very clearly a dot

2003 Steve Marschner 7 Light detection discrete approx. Cone Responses S,M,L cones have broadband spectral sensitivity This sum is very clearly a dot 2003 Steve Marschner Color science as linear algebra Last time: historical the actual experiments that lead to understanding color strictly based on visual observations Color Science CONTD. concrete but

More information

Science of Appearance

Science of Appearance Science of Appearance Color Gloss Haze Opacity ppt00 1 1 Three Key Elements Object Observer Light Source ppt00 2 2 1 What happens when light interacts with an Object? Reflection Refraction Absorption Transmission

More information

Sources, Surfaces, Eyes

Sources, Surfaces, Eyes Sources, Surfaces, Eyes An investigation into the interaction of light sources, surfaces, eyes IESNA Annual Conference, 2003 Jefferey F. Knox David M. Keith, FIES Sources, Surfaces, & Eyes - Research *

More information

Spectral Adaptation. Chromatic Adaptation

Spectral Adaptation. Chromatic Adaptation Spectral Adaptation Mark D. Fairchild RIT Munsell Color Science Laboratory IS&T/SID 14th Color Imaging Conference Scottsdale 2006 Chromatic Adaptation Spectra-to-XYZ-to-LMS Chromatic adaptation models

More information

Fall 2015 Dr. Michael J. Reale

Fall 2015 Dr. Michael J. Reale CS 490: Computer Vision Color Theory: Color Models Fall 2015 Dr. Michael J. Reale Color Models Different ways to model color: XYZ CIE standard RB Additive Primaries Monitors, video cameras, etc. CMY/CMYK

More information

Using Trichromatic and Multi-channel Imaging

Using Trichromatic and Multi-channel Imaging Reconstructing Spectral and Colorimetric Data Using Trichromatic and Multi-channel Imaging Daniel Nyström Dept. of Science and Technology (ITN), Linköping University SE-674, Norrköping, Sweden danny@itn.liu.se

More information

CSE 167: Lecture #7: Color and Shading. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011

CSE 167: Lecture #7: Color and Shading. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 CSE 167: Introduction to Computer Graphics Lecture #7: Color and Shading Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 Announcements Homework project #3 due this Friday,

More information

CS635 Spring Department of Computer Science Purdue University

CS635 Spring Department of Computer Science Purdue University Color and Perception CS635 Spring 2010 Daniel G Aliaga Daniel G. Aliaga Department of Computer Science Purdue University Elements of Color Perception 2 Elements of Color Physics: Illumination Electromagnetic

More information

The Elements of Colour

The Elements of Colour Color science 1 The Elements of Colour Perceived light of different wavelengths is in approximately equal weights achromatic.

More information

Color Appearance in Image Displays. O Canada!

Color Appearance in Image Displays. O Canada! Color Appearance in Image Displays Mark D. Fairchild RIT Munsell Color Science Laboratory ISCC/CIE Expert Symposium 75 Years of the CIE Standard Colorimetric Observer Ottawa 26 O Canada Image Colorimetry

More information

Colour computer vision: fundamentals, applications and challenges. Dr. Ignacio Molina-Conde Depto. Tecnología Electrónica Univ.

Colour computer vision: fundamentals, applications and challenges. Dr. Ignacio Molina-Conde Depto. Tecnología Electrónica Univ. Colour computer vision: fundamentals, applications and challenges Dr. Ignacio Molina-Conde Depto. Tecnología Electrónica Univ. of Málaga (Spain) Outline Part 1: colorimetry and colour perception: What

More information

Colour Reading: Chapter 6. Black body radiators

Colour Reading: Chapter 6. Black body radiators Colour Reading: Chapter 6 Light is produced in different amounts at different wavelengths by each light source Light is differentially reflected at each wavelength, which gives objects their natural colours

More information

Reading. 2. Color. Emission spectra. The radiant energy spectrum. Watt, Chapter 15.

Reading. 2. Color. Emission spectra. The radiant energy spectrum. Watt, Chapter 15. Reading Watt, Chapter 15. Brian Wandell. Foundations of Vision. Chapter 4. Sinauer Associates, Sunderland, MA, pp. 69-97, 1995. 2. Color 1 2 The radiant energy spectrum We can think of light as waves,

More information

Module 3. Illumination Systems. Version 2 EE IIT, Kharagpur 1

Module 3. Illumination Systems. Version 2 EE IIT, Kharagpur 1 Module 3 Illumination Systems Version 2 EE IIT, Kharagpur 1 Lesson 14 Color Version 2 EE IIT, Kharagpur 2 Instructional Objectives 1. What are Primary colors? 2. How is color specified? 3. What is CRI?

More information

Meet icam: A Next-Generation Color Appearance Model

Meet icam: A Next-Generation Color Appearance Model Meet icam: A Next-Generation Color Appearance Model Why Are We Here? CIC X, 2002 Mark D. Fairchild & Garrett M. Johnson RIT Munsell Color Science Laboratory www.cis.rit.edu/mcsl Spatial, Temporal, & Image

More information

ELEC Dr Reji Mathew Electrical Engineering UNSW

ELEC Dr Reji Mathew Electrical Engineering UNSW ELEC 4622 Dr Reji Mathew Electrical Engineering UNSW Dynamic Range and Weber s Law HVS is capable of operating over an enormous dynamic range, However, sensitivity is far from uniform over this range Example:

More information

Digital Image Processing

Digital Image Processing Digital Image Processing 7. Color Transforms 15110191 Keuyhong Cho Non-linear Color Space Reflect human eye s characters 1) Use uniform color space 2) Set distance of color space has same ratio difference

More information

Introduction to color science

Introduction to color science Introduction to color science Trichromacy Spectral matching functions CIE XYZ color system xy-chromaticity diagram Color gamut Color temperature Color balancing algorithms Digital Image Processing: Bernd

More information

The Dark Side of CIELAB

The Dark Side of CIELAB The Dark Side of CIELAB Gaurav Sharma and Carlos Eduardo Rodríguez-Pardo ECE Dept. Univ. of Rochester, Rochester, NY, USA ABSTRACT Standardized in 1976 as a uniform color space, CIELAB is extensively utilized

More information

Colorimetric Quantities and Laws

Colorimetric Quantities and Laws Colorimetric Quantities and Laws A. Giannini and L. Mercatelli 1 Introduction The purpose of this chapter is to introduce the fundaments of colorimetry: It illustrates the most important and frequently

More information

Lecture 1 Image Formation.

Lecture 1 Image Formation. Lecture 1 Image Formation peimt@bit.edu.cn 1 Part 3 Color 2 Color v The light coming out of sources or reflected from surfaces has more or less energy at different wavelengths v The visual system responds

More information

When this experiment is performed, subjects find that they can always. test field. adjustable field

When this experiment is performed, subjects find that they can always. test field. adjustable field COLORIMETRY In photometry a lumen is a lumen, no matter what wavelength or wavelengths of light are involved. But it is that combination of wavelengths that produces the sensation of color, one of the

More information

Design & Use of the Perceptual Rendering Intent for v4 Profiles

Design & Use of the Perceptual Rendering Intent for v4 Profiles Design & Use of the Perceptual Rendering Intent for v4 Profiles Jack Holm Principal Color Scientist Hewlett Packard Company 19 March 2007 Chiba University Outline What is ICC v4 perceptual rendering? What

More information

Chapter 1. Light and color

Chapter 1. Light and color Chapter 1 Light and color 1.1 Light as color stimulus We live immersed in electromagnetic fields, surrounded by radiation of natural origin or produced by artifacts made by humans. This radiation has a

More information

Comparative Analysis of the Quantization of Color Spaces on the Basis of the CIELAB Color-Difference Formula

Comparative Analysis of the Quantization of Color Spaces on the Basis of the CIELAB Color-Difference Formula Comparative Analysis of the Quantization of Color Spaces on the Basis of the CIELAB Color-Difference Formula B. HILL, Th. ROGER, and F. W. VORHAGEN Aachen University of Technology This article discusses

More information

Image Processing. Color

Image Processing. Color Image Processing Color Material in this presentation is largely based on/derived from presentation(s) and book: The Digital Image by Dr. Donald House at Texas A&M University Brent M. Dingle, Ph.D. 2015

More information

New Media ICC Profiles Construction and Concerns

New Media ICC Profiles Construction and Concerns Western Michigan University ScholarWorks at WMU Dissertations Graduate College 1-2011 New Media ICC Profiles Construction and Concerns Reem El Asaleh Western Michigan University Follow this and additional

More information

Game Programming. Bing-Yu Chen National Taiwan University

Game Programming. Bing-Yu Chen National Taiwan University Game Programming Bing-Yu Chen National Taiwan University What is Computer Graphics? Definition the pictorial synthesis of real or imaginary objects from their computer-based models descriptions OUTPUT

More information

CSE 167: Introduction to Computer Graphics Lecture #6: Colors. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013

CSE 167: Introduction to Computer Graphics Lecture #6: Colors. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 CSE 167: Introduction to Computer Graphics Lecture #6: Colors Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013 Announcements Homework project #3 due this Friday, October 18

More information

Colour appearance modelling between physical samples and their representation on large liquid crystal display

Colour appearance modelling between physical samples and their representation on large liquid crystal display Colour appearance modelling between physical samples and their representation on large liquid crystal display Chrysiida Kitsara, M Ronnier Luo, Peter A Rhodes and Vien Cheung School of Design, University

More information

Lecture #2: Color and Linear Algebra pt.1

Lecture #2: Color and Linear Algebra pt.1 Lecture #2: Color and Linear Algebra pt.1 John McNelly, Alexander Haigh, Madeline Saviano, Scott Kazmierowicz, Cameron Van de Graaf Department of Computer Science Stanford University Stanford, CA 94305

More information

The ZLAB Color Appearance Model for Practical Image Reproduction Applications

The ZLAB Color Appearance Model for Practical Image Reproduction Applications The ZLAB Color Appearance Model for Practical Image Reproduction Applications Mark D. Fairchild Rochester Institute of Technology, Rochester, New York, USA ABSTRACT At its May, 1997 meeting in Kyoto, CIE

More information

Evaluation of Color Mapping Algorithms in Different Color Spaces

Evaluation of Color Mapping Algorithms in Different Color Spaces Evaluation of Color Mapping Algorithms in Different Color Spaces Timothée-Florian Bronner a,b and Ronan Boitard a and Mahsa T. Pourazad a,c and Panos Nasiopoulos a and Touradj Ebrahimi b a University of

More information

CSE 167: Lecture #6: Color. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011

CSE 167: Lecture #6: Color. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 CSE 167: Introduction to Computer Graphics Lecture #6: Color Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 Announcements Homework project #3 due this Friday, October 14

More information

Image Formation. Camera trial #1. Pinhole camera. What is an Image? Light and the EM spectrum The H.V.S. and Color Perception

Image Formation. Camera trial #1. Pinhole camera. What is an Image? Light and the EM spectrum The H.V.S. and Color Perception Image Formation Light and the EM spectrum The H.V.S. and Color Perception What is an Image? An image is a projection of a 3D scene into a 2D projection plane. An image can be defined as a 2 variable function

More information

SPECTRAL ANALYSIS OF THE COLOR OF SOME PIGMENTS

SPECTRAL ANALYSIS OF THE COLOR OF SOME PIGMENTS Romanian Reports in Physics, Vol. 57, No. 4, P. 905 911, 2005 SPECTRAL ANALYSIS OF THE COLOR OF SOME PIGMENTS F. IOVA, ATH. TRUTIA, V. VASILE Bucharest University, Department of Physics, POB MG-11, 077125,

More information

Uniform color spaces based on CIECAM02 and IPT color difference equations

Uniform color spaces based on CIECAM02 and IPT color difference equations Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 11-1-8 Uniform color spaces based on CIECAM and IPT color difference equations Yang Xue Follow this and additional

More information

Color to Binary Vision. The assignment Irfanview: A good utility Two parts: More challenging (Extra Credit) Lighting.

Color to Binary Vision. The assignment Irfanview: A good utility Two parts: More challenging (Extra Credit) Lighting. Announcements Color to Binary Vision CSE 90-B Lecture 5 First assignment was available last Thursday Use whatever language you want. Link to matlab resources from web page Always check web page for updates

More information

Fluorescent Excitation from White LEDs

Fluorescent Excitation from White LEDs Fluorescent Excitation from White LEDs David R. Wyble Munsell Color Science Laboratory Chester F. Carlson Center for Imaging Science Rochester Institute of Technology The Problem? original images from

More information

Image Formation. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Image Formation. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico Image Formation Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 1 Objectives Fundamental imaging notions Physical basis for image formation

More information

Why does a visual system need color? Color. Why does a visual system need color? (an incomplete list ) Lecture outline. Reading: Optional reading:

Why does a visual system need color? Color. Why does a visual system need color? (an incomplete list ) Lecture outline. Reading: Optional reading: Today Color Why does a visual system need color? Reading: Chapter 6, Optional reading: Chapter 4 of Wandell, Foundations of Vision, Sinauer, 1995 has a good treatment of this. Feb. 17, 2005 MIT 6.869 Prof.

More information

Color. Reading: Optional reading: Chapter 6, Forsyth & Ponce. Chapter 4 of Wandell, Foundations of Vision, Sinauer, 1995 has a good treatment of this.

Color. Reading: Optional reading: Chapter 6, Forsyth & Ponce. Chapter 4 of Wandell, Foundations of Vision, Sinauer, 1995 has a good treatment of this. Today Color Reading: Chapter 6, Forsyth & Ponce Optional reading: Chapter 4 of Wandell, Foundations of Vision, Sinauer, 1995 has a good treatment of this. Feb. 17, 2005 MIT 6.869 Prof. Freeman Why does

More information

The colorspace Package

The colorspace Package The colorspace Package November 16, 2006 Version 0.95 Date 2006-11-16 Title Colorspace Manipulation Author Maintainer Depends R (>= 2.0.0), methods

More information

ECE-161C Color. Nuno Vasconcelos ECE Department, UCSD (with thanks to David Forsyth)

ECE-161C Color. Nuno Vasconcelos ECE Department, UCSD (with thanks to David Forsyth) ECE-6C Color Nuno Vasconcelos ECE Department, UCSD (with thanks to David Forsyth) Color so far we have talked about geometry where is a 3D point map mapped into, in terms of image coordinates? perspective

More information

Color. Today s Class. Reading for This Week. Reading for This Week. Mid- Term PresentaCons. Today s Class 2/29/12

Color. Today s Class. Reading for This Week. Reading for This Week. Mid- Term PresentaCons. Today s Class 2/29/12 2/29/12 Today s Class Color (some slides from Fredo Durand) Readings for this Week Mid- Term PresentaCon What is Color? Human PercepCon Color Blindness & Metamerism Color Spaces LMS, RGB, XYZ, HSV, L*a*b*,.

More information

ICC color management for print production

ICC color management for print production ICC color management for print production TAGA Annual Technical Conference 2002 W Craig Revie Principal Consultant Fuji Film Electronic Imaging Limited ICC Chair of the Graphic Arts Special Interest Group

More information

Announcements. Lighting. Camera s sensor. HW1 has been posted See links on web page for readings on color. Intro Computer Vision.

Announcements. Lighting. Camera s sensor. HW1 has been posted See links on web page for readings on color. Intro Computer Vision. Announcements HW1 has been posted See links on web page for readings on color. Introduction to Computer Vision CSE 152 Lecture 6 Deviations from the lens model Deviations from this ideal are aberrations

More information

Lecture 16 Color. October 20, 2016

Lecture 16 Color. October 20, 2016 Lecture 16 Color October 20, 2016 Where are we? You can intersect rays surfaces You can use RGB triples You can calculate illumination: Ambient, Lambertian and Specular But what about color, is there more

More information

Topics: Chromaticity, white point, and quality metrics

Topics: Chromaticity, white point, and quality metrics EE 637 Study Solutions - Assignment 8 Topics: Chromaticity, white point, and quality metrics Spring 2 Final: Problem 2 (Lab color transform) The approximate Lab color space transform is given by L = (Y/Y

More information

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo Computer Graphics Bing-Yu Chen National Taiwan University The University of Tokyo Introduction The Graphics Process Color Models Triangle Meshes The Rendering Pipeline 1 What is Computer Graphics? modeling

More information

Physical Color. Color Theory - Center for Graphics and Geometric Computing, Technion 2

Physical Color. Color Theory - Center for Graphics and Geometric Computing, Technion 2 Color Theory Physical Color Visible energy - small portion of the electro-magnetic spectrum Pure monochromatic colors are found at wavelengths between 380nm (violet) and 780nm (red) 380 780 Color Theory

More information

Color Space Transformations

Color Space Transformations Color Space Transformations Philippe Colantoni and Al 2004 1 Introduction This document defines several color concepts and all the mathematic relations used in ColorSpace. The first version of this document

More information

Efficient Regression for Computational Imaging: from Color Management to Omnidirectional Superresolution

Efficient Regression for Computational Imaging: from Color Management to Omnidirectional Superresolution Efficient Regression for Computational Imaging: from Color Management to Omnidirectional Superresolution Maya R. Gupta Eric Garcia Raman Arora Regression 2 Regression Regression Linear Regression: fast,

More information

(0, 1, 1) (0, 1, 1) (0, 1, 0) What is light? What is color? Terminology

(0, 1, 1) (0, 1, 1) (0, 1, 0) What is light? What is color? Terminology lecture 23 (0, 1, 1) (0, 0, 0) (0, 0, 1) (0, 1, 1) (1, 1, 1) (1, 1, 0) (0, 1, 0) hue - which ''? saturation - how pure? luminance (value) - intensity What is light? What is? Light consists of electromagnetic

More information

Lighting. Camera s sensor. Lambertian Surface BRDF

Lighting. Camera s sensor. Lambertian Surface BRDF Lighting Introduction to Computer Vision CSE 152 Lecture 6 Special light sources Point sources Distant point sources Strip sources Area sources Common to think of lighting at infinity (a function on the

More information

Opponent Color Spaces

Opponent Color Spaces EE637 Digital Image Processing I: Purdue University VISE - May 1, 2002 1 Opponent Color Spaces Perception of color is usually not best represented in RGB. A better model of HVS is the so-call opponent

More information

Siggraph Course 2017 Path Tracing in Production Part 1 Manuka: Weta Digital's Spectral Renderer

Siggraph Course 2017 Path Tracing in Production Part 1 Manuka: Weta Digital's Spectral Renderer Siggraph Course 2017 Path Tracing in Production Part 1 Manuka: Weta Digital's Spectral Renderer Johannes Hanika, Weta Digital 1 Motivation Weta Digital is a VFX house we care about matching plate a lot

More information

Color Image Processing

Color Image Processing Color Image Processing Inel 5327 Prof. Vidya Manian Introduction Color fundamentals Color models Histogram processing Smoothing and sharpening Color image segmentation Edge detection Color fundamentals

More information

CS452/552; EE465/505. Color Display Issues

CS452/552; EE465/505. Color Display Issues CS452/552; EE465/505 Color Display Issues 4-16 15 2 Outline! Color Display Issues Color Systems Dithering and Halftoning! Splines Hermite Splines Bezier Splines Catmull-Rom Splines Read: Angel, Chapter

More information

Introduction to Computer Graphics with WebGL

Introduction to Computer Graphics with WebGL Introduction to Computer Graphics with WebGL Ed Angel Professor Emeritus of Computer Science Founding Director, Arts, Research, Technology and Science Laboratory University of New Mexico Image Formation

More information

CS 556: Computer Vision. Lecture 18

CS 556: Computer Vision. Lecture 18 CS 556: Computer Vision Lecture 18 Prof. Sinisa Todorovic sinisa@eecs.oregonstate.edu 1 Color 2 Perception of Color The sensation of color is caused by the brain Strongly affected by: Other nearby colors

More information

Visible Color. 700 (red) 580 (yellow) 520 (green)

Visible Color. 700 (red) 580 (yellow) 520 (green) Color Theory Physical Color Visible energy - small portion of the electro-magnetic spectrum Pure monochromatic colors are found at wavelengths between 380nm (violet) and 780nm (red) 380 780 Color Theory

More information

Visual Evaluation and Evolution of the RLAB Color Space

Visual Evaluation and Evolution of the RLAB Color Space Visual Evaluation and Evolution of the RLAB Color Space Mark D. Fairchild Munsell Color Science Laboratory, Center for Imaging Science Rochester Institute of Technology, Rochester, New York Abstract The

More information

Illumination and Shading

Illumination and Shading Illumination and Shading Light sources emit intensity: assigns intensity to each wavelength of light Humans perceive as a colour - navy blue, light green, etc. Exeriments show that there are distinct I

More information

Digital Image Processing. Introduction

Digital Image Processing. Introduction Digital Image Processing Introduction Digital Image Definition An image can be defined as a twodimensional function f(x,y) x,y: Spatial coordinate F: the amplitude of any pair of coordinate x,y, which

More information

Application of CIE with Associated CRI-based Colour Rendition Properties

Application of CIE with Associated CRI-based Colour Rendition Properties Application of CIE 13.3-1995 with Associated CRI-based Colour Rendition December 2018 Global Lighting Association 2018 Summary On September 18 th 2015, the Global Lighting Association (GLA) issued a position

More information

Main topics in the Chapter 2. Chapter 2. Digital Image Representation. Bitmaps digitization. Three Types of Digital Image Creation CS 3570

Main topics in the Chapter 2. Chapter 2. Digital Image Representation. Bitmaps digitization. Three Types of Digital Image Creation CS 3570 Main topics in the Chapter Chapter. Digital Image Representation CS 3570 Three main types of creating digital images Bitmapping, Vector graphics, Procedural modeling Frequency in digital image Discrete

More information

Spectral Color and Radiometry

Spectral Color and Radiometry Spectral Color and Radiometry Louis Feng April 13, 2004 April 13, 2004 Realistic Image Synthesis (Spring 2004) 1 Topics Spectral Color Light and Color Spectrum Spectral Power Distribution Spectral Color

More information

Refinement of the RLAB Color Space

Refinement of the RLAB Color Space Mark D. Fairchild Munsell Color Science Laboratory Center for Imaging Science Rochester Institute of Technology 54 Lomb Memorial Drive Rochester, New York 14623-5604 Refinement of the RLAB Color Space

More information

Colour Gamut Mapping for Ultra-HD TV

Colour Gamut Mapping for Ultra-HD TV Gianmarco Addari Master of Science in Computer Vision from the University of Surrey Department of Electrical and Electronic Engineering Faculty of Engineering and Physical Sciences University of Surrey

More information

6. Color Transforms. Computer Engineering, Sejong University. 비선형색공간 (Non-linear color space) 균등 (uniform) 색공간을위해도입

6. Color Transforms. Computer Engineering, Sejong University. 비선형색공간 (Non-linear color space) 균등 (uniform) 색공간을위해도입 Digital Image Processing 6. Color Transforms Computer Engineering, Sejong University 비선형색공간 (Non-linear color space) 인간눈의시각특성을반영 균등 (uniform) 색공간을위해도입 인간이느끼는색의차이가색공간에서의거리차이와비례하도록함 Munsell 색을광원의색이아닌물체의표면색

More information

3D graphics, raster and colors CS312 Fall 2010

3D graphics, raster and colors CS312 Fall 2010 Computer Graphics 3D graphics, raster and colors CS312 Fall 2010 Shift in CG Application Markets 1989-2000 2000 1989 3D Graphics Object description 3D graphics model Visualization 2D projection that simulates

More information

Chapter 5 Extraction of color and texture Comunicação Visual Interactiva. image labeled by cluster index

Chapter 5 Extraction of color and texture Comunicação Visual Interactiva. image labeled by cluster index Chapter 5 Extraction of color and texture Comunicação Visual Interactiva image labeled by cluster index Color images Many images obtained with CCD are in color. This issue raises the following issue ->

More information

The Display pipeline. The fast forward version. The Display Pipeline The order may vary somewhat. The Graphics Pipeline. To draw images.

The Display pipeline. The fast forward version. The Display Pipeline The order may vary somewhat. The Graphics Pipeline. To draw images. View volume The fast forward version The Display pipeline Computer Graphics 1, Fall 2004 Lecture 3 Chapter 1.4, 1.8, 2.5, 8.2, 8.13 Lightsource Hidden surface 3D Projection View plane 2D Rasterization

More information

Lagrange Multipliers

Lagrange Multipliers Lagrange Multipliers Christopher Croke University of Pennsylvania Math 115 How to deal with constrained optimization. How to deal with constrained optimization. Let s revisit the problem of finding the

More information

CSE 167: Lecture #6: Color. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

CSE 167: Lecture #6: Color. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 CSE 167: Introduction to Computer Graphics Lecture #6: Color Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Announcements Homework project #3 due this Friday, October 19

More information

Scientific imaging of Cultural Heritage: Minimizing Visual Editing and Relighting

Scientific imaging of Cultural Heritage: Minimizing Visual Editing and Relighting Scientific imaging of Cultural Heritage: Minimizing Visual Editing and Relighting Roy S. Berns Supported by the Andrew W. Mellon Foundation Colorimetry Numerical color and quantifying color quality b*

More information

Chapter 6 Color Image Processing

Chapter 6 Color Image Processing Image Comm. Lab EE/NTHU 1 Chapter 6 Color Image Processing Color is a powerful descriptor Human can discern thousands of color shades. "color" is more pleasing than "black and white. Full Color: color

More information

The Foundations of Color Measurement and. Color Perception. Brian A. Wandell. Department of Psychology. Stanford University. March 20, 1996.

The Foundations of Color Measurement and. Color Perception. Brian A. Wandell. Department of Psychology. Stanford University. March 20, 1996. The Foundations of Color Measurement and Color Perception Brian A. Wandell Department of Psychology Stanford University Stanford, California 94305 March 20, 1996 Abstract This tutorial is an introductory

More information

3D Visualization of Color Data To Analyze Color Images

3D Visualization of Color Data To Analyze Color Images r IS&T's 2003 PICS Conference 3D Visualization of Color Data To Analyze Color Images Philippe Colantoni and Alain Trémeau Laboratoire LIGIV EA 3070, Université Jean Monnet Saint-Etienne, France Abstract

More information

Color, Edge and Texture

Color, Edge and Texture EECS 432-Advanced Computer Vision Notes Series 4 Color, Edge and Texture Ying Wu Electrical Engineering & Computer Science Northwestern University Evanston, IL 628 yingwu@ece.northwestern.edu Contents

More information

A New Spatial Hue Angle Metric for Perceptual Image Difference

A New Spatial Hue Angle Metric for Perceptual Image Difference A New Spatial Hue Angle Metric for Perceptual Image Difference Marius Pedersen 1,2 and Jon Yngve Hardeberg 1 1 Gjøvik University College, Gjøvik, Norway 2 Océ Print Logic Technologies S.A., Créteil, France

More information

Reading. 4. Color. Outline. The radiant energy spectrum. Suggested: w Watt (2 nd ed.), Chapter 14. Further reading:

Reading. 4. Color. Outline. The radiant energy spectrum. Suggested: w Watt (2 nd ed.), Chapter 14. Further reading: Reading Suggested: Watt (2 nd ed.), Chapter 14. Further reading: 4. Color Brian Wandell. Foundations of Vision. Chapter 4. Sinauer Associates, Sunderland, MA, 1995. Gerald S. Wasserman. Color Vision: An

More information

UvA-DARE (Digital Academic Repository) Edge-driven color constancy Gijsenij, A. Link to publication

UvA-DARE (Digital Academic Repository) Edge-driven color constancy Gijsenij, A. Link to publication UvA-DARE (Digital Academic Repository) Edge-driven color constancy Gijsenij, A. Link to publication Citation for published version (APA): Gijsenij, A. (2010). Edge-driven color constancy General rights

More information

Colour and gloss. Colour and gloss. 15 November 2016 David Saunders. Colour and gloss. Colour and gloss. Why do we measure colour?

Colour and gloss. Colour and gloss. 15 November 2016 David Saunders. Colour and gloss. Colour and gloss. Why do we measure colour? Why do we measure colour? 15 November 2016 David Saunders 1.To help with the identification of materials 2.To map the presence of materials across an object 3.To measure and predict the change in colour

More information

USING COLOUR FEATURES TO CLASSIFY OBJECTS AND PEOPLE IN A VIDEO SURVEILLANCE NETWORK

USING COLOUR FEATURES TO CLASSIFY OBJECTS AND PEOPLE IN A VIDEO SURVEILLANCE NETWORK USING COLOUR FEATURES TO CLASSIFY OBJECTS AND PEOPLE IN A VIDEO SURVEILLANCE NETWORK By Mathew Price Supervised by Prof. Gerhard De Jager and Dr Fred Nicolls SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS

More information

Color. Phillip Otto Runge ( )

Color. Phillip Otto Runge ( ) Color Phillip Otto Runge (1777-1810) Overview The nature of color Color processing in the human visual system Color spaces Adaptation and constancy White balance Uses of color in computer vision What is

More information

CIE L*a*b* color model

CIE L*a*b* color model CIE L*a*b* color model To further strengthen the correlation between the color model and human perception, we apply the following non-linear transformation: with where (X n,y n,z n ) are the tristimulus

More information

Digital Image Processing COSC 6380/4393. Lecture 19 Mar 26 th, 2019 Pranav Mantini

Digital Image Processing COSC 6380/4393. Lecture 19 Mar 26 th, 2019 Pranav Mantini Digital Image Processing COSC 6380/4393 Lecture 19 Mar 26 th, 2019 Pranav Mantini What is color? Color is a psychological property of our visual experiences when we look at objects and lights, not a physical

More information

CHAPTER 3 COLOR MEASUREMENT USING CHROMATICITY DIAGRAM - SOFTWARE

CHAPTER 3 COLOR MEASUREMENT USING CHROMATICITY DIAGRAM - SOFTWARE 49 CHAPTER 3 COLOR MEASUREMENT USING CHROMATICITY DIAGRAM - SOFTWARE 3.1 PREAMBLE Software has been developed following the CIE 1931 standard of Chromaticity Coordinates to convert the RGB data into its

More information

Lecture 12 Color model and color image processing

Lecture 12 Color model and color image processing Lecture 12 Color model and color image processing Color fundamentals Color models Pseudo color image Full color image processing Color fundamental The color that humans perceived in an object are determined

More information

VISUAL SIMULATING DICHROMATIC VISION IN CIE SPACE

VISUAL SIMULATING DICHROMATIC VISION IN CIE SPACE VISUAL SIMULATING DICHROMATIC VISION IN CIE SPACE Yinghua Hu School of Computer Science University of Central Florida yhu@cs.ucf.edu Keywords: Abstract: Dichromatic vision, Visual simulation Dichromatic

More information

CS 4495 Computer Vision. Segmentation. Aaron Bobick (slides by Tucker Hermans) School of Interactive Computing. Segmentation

CS 4495 Computer Vision. Segmentation. Aaron Bobick (slides by Tucker Hermans) School of Interactive Computing. Segmentation CS 4495 Computer Vision Aaron Bobick (slides by Tucker Hermans) School of Interactive Computing Administrivia PS 4: Out but I was a bit late so due date pushed back to Oct 29. OpenCV now has real SIFT

More information

Color and Shading. Color. Shapiro and Stockman, Chapter 6. Color and Machine Vision. Color and Perception

Color and Shading. Color. Shapiro and Stockman, Chapter 6. Color and Machine Vision. Color and Perception Color and Shading Color Shapiro and Stockman, Chapter 6 Color is an important factor for for human perception for object and material identification, even time of day. Color perception depends upon both

More information

Spectral Estimation and Reconstruction.

Spectral Estimation and Reconstruction. Characterization of Digital Camera Based on Spectral Estimation and Reconstruction. Mei-Chun Lo +, Ruey-Kuen Perng, and Xin-Yan Shen + + Department of Information Management, Shih Hsin University, Taipei,

More information

LIGHT: Two-slit Interference

LIGHT: Two-slit Interference LIGHT: Two-slit Interference Objective: To study interference of light waves and verify the wave nature of light. Apparatus: Two red lasers (wavelength, λ = 633 nm); two orange lasers (λ = 612 nm); two

More information

A New Time-Dependent Tone Mapping Model

A New Time-Dependent Tone Mapping Model A New Time-Dependent Tone Mapping Model Alessandro Artusi Christian Faisstnauer Alexander Wilkie Institute of Computer Graphics and Algorithms Vienna University of Technology Abstract In this article we

More information

Color. making some recognition problems easy. is 400nm (blue) to 700 nm (red) more; ex. X-rays, infrared, radio waves. n Used heavily in human vision

Color. making some recognition problems easy. is 400nm (blue) to 700 nm (red) more; ex. X-rays, infrared, radio waves. n Used heavily in human vision Color n Used heavily in human vision n Color is a pixel property, making some recognition problems easy n Visible spectrum for humans is 400nm (blue) to 700 nm (red) n Machines can see much more; ex. X-rays,

More information