2.7 Implicit Differentiation

Size: px
Start display at page:

Download "2.7 Implicit Differentiation"

Transcription

1 2.7 Implicit Differentiation [ y] = = = [ x] 1 Sometimes we may be intereste in fining the erivative of an equation that is not solve or able to be solve for a particular epenent variable explicitly. In this case, we must evelop a way to analyze that variable s rate of change implicitly. The equations below are equivalent, but are in ifferent forms with respect to the epenent variable y. Example 1: Explicit form Implicit form 2 y = x xy = 2 Fin the erivative,, of 2 y =, an equation explicitly solve for y by taking the erivative of both sies x with respect to x. Example 2: Fin the erivative,, of xy = 2, an equation NOT explicitly solve for y by taking the erivative of both sies with respect to x. Solve for. The metho use to fin in Example 2 is calle Implicit Differentiation. What o you notice about the implicit result compare to the result from Example 1? Which metho was easier/faster? Page 1 of 6

2 In the first two examples, we ha the option of ifferentiating explicitly or implicitly, but most of the time, we will use implicit ifferentiation when we re ealing with equations of curves that are not functions of a single variable, whose equations have powers of y greater than 1 making it ifficult or impossible to explicitly solve for y. For such equations, we will be force to use implicit ifferentiation, then solve for, which will be a function of either y alone or both x an y. Important note 1: Just because an equation is not explicitly solve for a epenent variable oesn t mean it can t. Your first step is to analyze whether it can be solve explicitly. This will make the problem a bit easier an your erivative will be a function of a single variable. Important note 1.5: When ifferentiation implicitly, you must show that you are taking the erivative of both sies with respect to x. [ Left Sie] = [ Right Sie] Important note 2: It matters not if you use or y, just be careful not to mistake y for 1 y = y. stans out more prominently, but y is a wee ta little bit faster. Example 3: For the equation y x sec( y) = +, fin. In Example 3, we were aske to fin the variable equation for. Sometimes, however, we are intereste only in fining the slope of a curve at given point. For such a problem, we can save a bit of algebraic manipulation if we plug in (an inicate so) our point earlier. Example 4: Fin the slope of the graph of ( 1, 3) 3 + = at ( 1, 3) y y 5y x 4 by fining first, then evaluating at Page 2 of 6

3 Example 5: Fin the slope of the graph of before solving for. 3 + = at ( 1, 3) by ifferentiating then plugging in ( 1, 3) y y 5y x 4 Notice that in Examples 4 an 5, because our erivative equation ha both an x an a y in it, we neee the actual orere pair ( xy, ) to evaluate. Often when only an x-value is given, an not an orere pair, it is sign that our given equation can be explicitly solve for a single equation of y, like in Examples 1 an 2, but not always. Example 6: Fin at x = 1 for the equation 2 y + x= 2xy When your erivative is a quotient of two variable expressions, then 0 Horizontal tangents occur when = 0 0 Vertical tangents occur when = 0 0 No tangent line exists when = 0 (these points must be thrown out) Page 3 of 6

4 Example 7: The graph of the equation x + y = 4 is a circle centere at the origin with a raius of two. (a) Sketch the graph of the equation (a) fin. (b) Using calculus, verify that the graph has horizontal tangents at the point ( 0, 2 ) an ( 0, 2). (c) Using calculus, verify that the graph has vertical tangents at the point ( ) 2,0 an( 2,0). () At what value(s) of x is the slope of the graph 3 4? Page 4 of 6

5 Example 8: Graph generate by WolframAlpha The equation for the graph of the rotate ellipse shown above is 2x xy 4y =, (a) Determine the x-value(s) of any horizontal tangent lines to the graph of 2x xy 4y =. (b) Determine the y-value(s) of any vertical tangent lines to the graph of 2x xy 4y =. Page 5 of 6

6 Example 9: Determine the equation of the tangent line of ( ) 2 + = at the point ( 3,1 ) 3 x y 100xy When aske to fin a higher-orer erivative where implicit ifferentiation is neee, it is always beneficial to solve for prior to fining the secon erivative an beyon. This will always be possible because the first erivative will be a linear function of. Subsequent erivatives will have a visible in the equation, at which time, a substitution may be mae to put your final erivative in terms of x an y. Example 10: 2 y Fin as a function of x an y if x 3y = 8. Page 6 of 6

Math 131. Implicit Differentiation Larson Section 2.5

Math 131. Implicit Differentiation Larson Section 2.5 Math 131. Implicit Differentiation Larson Section.5 So far we have ealt with ifferentiating explicitly efine functions, that is, we are given the expression efining the function, such as f(x) = 5 x. However,

More information

Try It. Implicit and Explicit Functions. Video. Exploration A. Differentiating with Respect to x

Try It. Implicit and Explicit Functions. Video. Exploration A. Differentiating with Respect to x SECTION 5 Implicit Differentiation Section 5 Implicit Differentiation Distinguish between functions written in implicit form an eplicit form Use implicit ifferentiation to fin the erivative of a function

More information

Implicit and Explicit Functions

Implicit and Explicit Functions 60_005.q //0 :5 PM Page SECTION.5 Implicit Differentiation Section.5 EXPLORATION Graphing an Implicit Equation How coul ou use a graphing utilit to sketch the graph of the equation? Here are two possible

More information

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. Preface Here are my online notes for my Calculus I course that I teach here at Lamar University. Despite the fact that these are my class notes, they shoul be accessible to anyone wanting to learn Calculus

More information

Differentiation Using Product and Quotient Rule 1

Differentiation Using Product and Quotient Rule 1 Differentiation Using Prouct an Quotient Rule 1 1.. ( + 1)( + + 1) + 1 + +. 4. (7 + 15) ( 7 + 15) 5. 6. ( + 7) (5 + 14) 7. 9. + 4 ( 1) (10 + ) 8 + 49 6 4 + 7 10. 8. 1 4 1 11. 1. 1 ( + 1) ( 1) 1. 04 + 59

More information

4.2 Implicit Differentiation

4.2 Implicit Differentiation 6 Chapter 4 More Derivatives 4. Implicit Differentiation What ou will learn about... Implicitl Define Functions Lenses, Tangents, an Normal Lines Derivatives of Higher Orer Rational Powers of Differentiable

More information

Unit #5 - Implicit Differentiation, Related Rates Section 3.7

Unit #5 - Implicit Differentiation, Related Rates Section 3.7 Unit #5 - Implicit Differentiation, Relate Rates Section 3.7 Some material from Calculus, Single an MultiVariable b Hughes-Hallett, Gleason, McCallum et. al. Copright 005 b John Wile & Sons, Inc. This

More information

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT:

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT: CALCULUS WITH PARAMETERIZED CURVES In calculus I we learned how to differentiate and integrate functions. In the chapter covering the applications of the integral, we learned how to find the length of

More information

(a) Find the equation of the plane that passes through the points P, Q, and R.

(a) Find the equation of the plane that passes through the points P, Q, and R. Math 040 Miterm Exam 1 Spring 014 S o l u t i o n s 1 For given points P (, 0, 1), Q(, 1, 0), R(3, 1, 0) an S(,, 0) (a) Fin the equation of the plane that passes through the points P, Q, an R P Q = 0,

More information

11. Differentiating inverse functions.

11. Differentiating inverse functions. . Differentiating inverse functions. The General Case: Fin y x when y f x. Since f y x an we regar y as being a function of x, we ifferentiate both sies of the equation f y x with respect to x using the

More information

Linear First-Order PDEs

Linear First-Order PDEs MODULE 2: FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS 9 Lecture 2 Linear First-Orer PDEs The most general first-orer linear PDE has the form a(x, y)z x + b(x, y)z y + c(x, y)z = (x, y), (1) where a, b,

More information

Tangent line problems

Tangent line problems You will find lots of practice problems and homework problems that simply ask you to differentiate. The following examples are to illustrate some of the types of tangent line problems that you may come

More information

Classical Mechanics Examples (Lagrange Multipliers)

Classical Mechanics Examples (Lagrange Multipliers) Classical Mechanics Examples (Lagrange Multipliers) Dipan Kumar Ghosh Physics Department, Inian Institute of Technology Bombay Powai, Mumbai 400076 September 3, 015 1 Introuction We have seen that the

More information

The following information is for reviewing the material since Exam 3:

The following information is for reviewing the material since Exam 3: Outcomes List for Math 121 Calculus I Fall 2010-2011 General Information: The purpose of this Outcomes List is to give you a concrete summary of the material you should know, and the skills you should

More information

Instructor: Barry McQuarrie Page 1 of 6

Instructor: Barry McQuarrie Page 1 of 6 Questions 1. Solve the system by graphing: 3x + y = 2 2x y = 3 2. Solve the system by graphing: x + 3y = 9 y = 1 3 x 2 3. Solve the system by graphing: y = 2x + 5 3y + 6x = 15 4. Solve the system algebraically,

More information

DISCOVERING THE CHAIN RULE THROUGH THE GRAPHING CALCULATOR

DISCOVERING THE CHAIN RULE THROUGH THE GRAPHING CALCULATOR DISCOVERING THE CHAIN RULE THROUGH THE GRAPHING CALCULATOR In this lab you will iscover the rule known at the chain rule for ifferentiation. This important rule will help you ifferentiate functions which

More information

3.4. Derivatives of Trigonometric Functions. Derivative of the Sine Function

3.4. Derivatives of Trigonometric Functions. Derivative of the Sine Function 3.4 Derivatives of Trigonometric Functions 83 3.4 Derivatives of Trigonometric Functions Many of the phenomena we want information about are approximately perioic (electromagnetic fiels, heart rhythms,

More information

Properties of the Derivative Lecture 9.

Properties of the Derivative Lecture 9. Properties of the Derivative Lecture 9. Recall that the average rate of change of a function y = f(x) over the interval from a to a + h, with h 0, is the slope of the line between y x f(a + h) f(a) =,

More information

Worksheet A. y = e row in the table below, giving values to 1 d.p. Use your calculator to complete the

Worksheet A. y = e row in the table below, giving values to 1 d.p. Use your calculator to complete the Use our calculator to complete the = e row in the table below, giving values to 1.p. = e Check that our values agree approimatel with points that lie on the curve shown below. Worksheet A Graph of = e

More information

Exam 3 SCORE. MA 114 Exam 3 Spring Section and/or TA:

Exam 3 SCORE. MA 114 Exam 3 Spring Section and/or TA: MA 114 Exam 3 Spring 217 Exam 3 Name: Section and/or TA: Last Four Digits of Student ID: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test.

More information

GREENWOOD PUBLIC SCHOOL DISTRICT AP Calculus AB Pacing Guide FIRST NINE WEEKS

GREENWOOD PUBLIC SCHOOL DISTRICT AP Calculus AB Pacing Guide FIRST NINE WEEKS AP Calculus AB FIRST NINE WEEKS 1 Aug. 6-10 5 Introduction to Course Classroom Expectations/Syllabus/Overview Course Requirements/Administer Learning Styles Inventories 1 Limits Estimate limits from graphs

More information

Part I. Problems in this section are mostly short answer and multiple choice. Little partial credit will be given. 5 points each.

Part I. Problems in this section are mostly short answer and multiple choice. Little partial credit will be given. 5 points each. Math 106/108 Final Exam Page 1 Part I. Problems in this section are mostly short answer and multiple choice. Little partial credit will be given. 5 points each. 1. Factor completely. Do not solve. a) 2x

More information

Unit 1: Sections Skill Set

Unit 1: Sections Skill Set MthSc 106 Fall 2011 Calculus of One Variable I : Calculus by Briggs and Cochran Section 1.1: Review of Functions Unit 1: Sections 1.1 3.3 Skill Set Find the domain and range of a function. 14, 17 13, 15,

More information

Tangents of Parametric Curves

Tangents of Parametric Curves Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 32 Notes These notes correspond to Section 92 in the text Tangents of Parametric Curves When a curve is described by an equation of the form y = f(x),

More information

GRAPHING WORKSHOP. A graph of an equation is an illustration of a set of points whose coordinates satisfy the equation.

GRAPHING WORKSHOP. A graph of an equation is an illustration of a set of points whose coordinates satisfy the equation. GRAPHING WORKSHOP A graph of an equation is an illustration of a set of points whose coordinates satisfy the equation. The figure below shows a straight line drawn through the three points (2, 3), (-3,-2),

More information

Dual Arm Robot Research Report

Dual Arm Robot Research Report Dual Arm Robot Research Report Analytical Inverse Kinematics Solution for Moularize Dual-Arm Robot With offset at shouler an wrist Motivation an Abstract Generally, an inustrial manipulator such as PUMA

More information

Pre-Calculus Guided Notes: Chapter 10 Conics. A circle is

Pre-Calculus Guided Notes: Chapter 10 Conics. A circle is Name: Pre-Calculus Guided Notes: Chapter 10 Conics Section Circles A circle is _ Example 1 Write an equation for the circle with center (3, ) and radius 5. To do this, we ll need the x1 y y1 distance formula:

More information

Tangent Lines and Linear Approximations Solutions

Tangent Lines and Linear Approximations Solutions Solutions We have intentionally included more material than can be covered in most Student Study Sessions to account for groups that are able to answer the questions at a faster rate. Use your own judgment,

More information

AP Calculus Problems with HP Prime

AP Calculus Problems with HP Prime AP Calculus Problems with HP Prime G. T. Springer Email: gt.springer@hp.com Hewlett-Packard Calculators and Educational Software In this hands-on workshop, participants will explore a number of problems

More information

AP Calculus AB Unit 2 Assessment

AP Calculus AB Unit 2 Assessment Class: Date: 203-204 AP Calculus AB Unit 2 Assessment Multiple Choice Identify the choice that best completes the statement or answers the question. A calculator may NOT be used on this part of the exam.

More information

Chapter 3A Rectangular Coordinate System

Chapter 3A Rectangular Coordinate System Fry Texas A&M University! Math 150! Spring 2015!!! Unit 4!!! 1 Chapter 3A Rectangular Coordinate System A is any set of ordered pairs of real numbers. The of the relation is the set of all first elements

More information

Rewrite the equation in the left column into the format in the middle column. The answers are in the third column. 1. y 4y 4x 4 0 y k 4p x h y 2 4 x 0

Rewrite the equation in the left column into the format in the middle column. The answers are in the third column. 1. y 4y 4x 4 0 y k 4p x h y 2 4 x 0 Pre-Calculus Section 1.1 Completing the Square Rewrite the equation in the left column into the format in the middle column. The answers are in the third column. 1. y 4y 4x 4 0 y k 4p x h y 4 x 0. 3x 3y

More information

----- o Implicit Differentiation ID: A. dy r.---; d 2 Y 2. If- = '" 1-y- then - = dx 'dx 2. a c. -1 d. -2 e.

----- o Implicit Differentiation ID: A. dy r.---; d 2 Y 2. If- = ' 1-y- then - = dx 'dx 2. a c. -1 d. -2 e. Name: Class: Date: ----- ID: A Implicit Differentiation Multiple Choice Identify the choice that best completes the statement or answers the question.. The slope of the line tangent to the curve y + (xy

More information

Differentiation. J. Gerlach November 2010

Differentiation. J. Gerlach November 2010 Differentiation J. Gerlach November 200 D and diff The limit definition of the derivative is covered in the Limit tutorial. Here we look for direct ways to calculate derivatives. Maple has two commands

More information

PARAMETERIZATIONS OF PLANE CURVES

PARAMETERIZATIONS OF PLANE CURVES PARAMETERIZATIONS OF PLANE CURVES Suppose we want to plot the path of a particle moving in a plane. This path looks like a curve, but we cannot plot it like we would plot any other type of curve in the

More information

Implicit Differentiation - the basics

Implicit Differentiation - the basics x x 6 Implicit Differentiation - the basics Implicit differentiation is the name for the method of differentiation that we use when we have not explicitl solved for in terms of x (that means we did not

More information

10.2 Calculus with Parametric Curves

10.2 Calculus with Parametric Curves CHAPTER 1. PARAMETRIC AND POLAR 91 1.2 Calculus with Parametric Curves Example 1. Return to the parametric equations in Example 2 from the previous section: x t + sin() y t + cos() (a) Find the Cartesian

More information

ENGI Parametric & Polar Curves Page 2-01

ENGI Parametric & Polar Curves Page 2-01 ENGI 3425 2. Parametric & Polar Curves Page 2-01 2. Parametric and Polar Curves Contents: 2.1 Parametric Vector Functions 2.2 Parametric Curve Sketching 2.3 Polar Coordinates r f 2.4 Polar Curve Sketching

More information

10.2 Calculus with Parametric Curves

10.2 Calculus with Parametric Curves CHAPTER 1. PARAMETRIC AND POLAR 1 1.2 Calculus with Parametric Curves Example 1. Return to the parametric equations in Example 2 from the previous section: x t +sin() y t + cos() (a) Find the cartesian

More information

Animação e Visualização Tridimensional. Collision Detection Corpo docente de AVT / CG&M / DEI / IST / UTL

Animação e Visualização Tridimensional. Collision Detection Corpo docente de AVT / CG&M / DEI / IST / UTL Animação e Visualização Triimensional Collision Detection Collision Hanling Collision Detection Collision Determination Collision Response Collision Hanling Collision Detection Collision Determination

More information

AP Calculus. Slide 1 / 213 Slide 2 / 213. Slide 3 / 213. Slide 4 / 213. Slide 4 (Answer) / 213 Slide 5 / 213. Derivatives. Derivatives Exploration

AP Calculus. Slide 1 / 213 Slide 2 / 213. Slide 3 / 213. Slide 4 / 213. Slide 4 (Answer) / 213 Slide 5 / 213. Derivatives. Derivatives Exploration Slide 1 / 213 Slide 2 / 213 AP Calculus Derivatives 2015-11-03 www.njctl.org Slide 3 / 213 Table of Contents Slide 4 / 213 Rate of Change Slope of a Curve (Instantaneous ROC) Derivative Rules: Power, Constant,

More information

Differentiation. The Derivative and the Tangent Line Problem 10/9/2014. Copyright Cengage Learning. All rights reserved.

Differentiation. The Derivative and the Tangent Line Problem 10/9/2014. Copyright Cengage Learning. All rights reserved. Differentiation Copyright Cengage Learning. All rights reserved. The Derivative and the Tangent Line Problem Copyright Cengage Learning. All rights reserved. 1 Objectives Find the slope of the tangent

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below:

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below: Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

Each point P in the xy-plane corresponds to an ordered pair (x, y) of real numbers called the coordinates of P.

Each point P in the xy-plane corresponds to an ordered pair (x, y) of real numbers called the coordinates of P. Lecture 7, Part I: Section 1.1 Rectangular Coordinates Rectangular or Cartesian coordinate system Pythagorean theorem Distance formula Midpoint formula Lecture 7, Part II: Section 1.2 Graph of Equations

More information

Implicit differentiation

Implicit differentiation Roberto s Notes on Differential Calculus Chapter 4: Basic differentiation rules Section 5 Implicit differentiation What ou need to know alread: Basic rules of differentiation, including the chain rule.

More information

Graphing Functions. 0, < x < 0 1, 0 x < is defined everywhere on R but has a jump discontinuity at x = 0. h(x) =

Graphing Functions. 0, < x < 0 1, 0 x < is defined everywhere on R but has a jump discontinuity at x = 0. h(x) = Graphing Functions Section. of your tetbook is devoted to reviewing a series of steps that you can use to develop a reasonable graph of a function. Here is my version of a list of things to check. You

More information

Lesson 11 Interference of Light

Lesson 11 Interference of Light Physics 30 Lesson 11 Interference of Light I. Light Wave or Particle? The fact that light carries energy is obvious to anyone who has focuse the sun's rays with a magnifying glass on a piece of paper an

More information

Direction Fields; Euler s Method

Direction Fields; Euler s Method Direction Fields; Euler s Method It frequently happens that we cannot solve first order systems dy (, ) dx = f xy or corresponding initial value problems in terms of formulas. Remarkably, however, this

More information

Limits and Their Properties. Copyright Cengage Learning. All rights reserved.

Limits and Their Properties. Copyright Cengage Learning. All rights reserved. 1 Limits and Their Properties Copyright Cengage Learning. All rights reserved. 1.1 A Preview of Calculus Copyright Cengage Learning. All rights reserved. What Is Calculus? 3 Calculus Calculus is the mathematics

More information

Updated: August 24, 2016 Calculus III Section Math 232. Calculus III. Brian Veitch Fall 2015 Northern Illinois University

Updated: August 24, 2016 Calculus III Section Math 232. Calculus III. Brian Veitch Fall 2015 Northern Illinois University Updated: August 24, 216 Calculus III Section 1.2 Math 232 Calculus III Brian Veitch Fall 215 Northern Illinois University 1.2 Calculus with Parametric Curves Definition 1: First Derivative of a Parametric

More information

Pre-Calculus Mr. Davis

Pre-Calculus Mr. Davis Pre-Calculus 2016-2017 Mr. Davis How to use a Graphing Calculator Applications: 1. Graphing functions 2. Analyzing a function 3. Finding zeroes (or roots) 4. Regression analysis programs 5. Storing values

More information

11.3 The Tangent Line Problem

11.3 The Tangent Line Problem 11.3 The Tangent Line Problem Copyright Cengage Learning. All rights reserved. What You Should Learn Understand the tangent line problem. Use a tangent line to approximate the slope of a graph at a point.

More information

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f Gradients and the Directional Derivative In 14.3, we discussed the partial derivatives f f and, which tell us the rate of change of the x y height of the surface defined by f in the x direction and the

More information

Functions of Several Variables

Functions of Several Variables Jim Lambers MAT 280 Spring Semester 2009-10 Lecture 2 Notes These notes correspond to Section 11.1 in Stewart and Section 2.1 in Marsden and Tromba. Functions of Several Variables Multi-variable calculus

More information

Name: Date: 1. Match the equation with its graph. Page 1

Name: Date: 1. Match the equation with its graph. Page 1 Name: Date: 1. Match the equation with its graph. y 6x A) C) Page 1 D) E) Page . Match the equation with its graph. ( x3) ( y3) A) C) Page 3 D) E) Page 4 3. Match the equation with its graph. ( x ) y 1

More information

NAME: Section # SSN: X X X X

NAME: Section # SSN: X X X X Math 155 FINAL EXAM A May 5, 2003 NAME: Section # SSN: X X X X Question Grade 1 5 (out of 25) 6 10 (out of 25) 11 (out of 20) 12 (out of 20) 13 (out of 10) 14 (out of 10) 15 (out of 16) 16 (out of 24)

More information

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY

True/False. MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY MATH 1C: SAMPLE EXAM 1 c Jeffrey A. Anderson ANSWER KEY True/False 10 points: points each) For the problems below, circle T if the answer is true and circle F is the answer is false. After you ve chosen

More information

Math 2201 Unit 3: Acute Triangle Trigonometry. Ch. 3 Notes

Math 2201 Unit 3: Acute Triangle Trigonometry. Ch. 3 Notes Rea Learning Goals, p. 17 text. Math 01 Unit 3: ute Triangle Trigonometry h. 3 Notes 3.1 Exploring Sie-ngle Relationships in ute Triangles (0.5 lass) Rea Goal p. 130 text. Outomes: 1. Define an aute triangle.

More information

Walt Whitman High School SUMMER REVIEW PACKET. For students entering AP CALCULUS BC

Walt Whitman High School SUMMER REVIEW PACKET. For students entering AP CALCULUS BC Walt Whitman High School SUMMER REVIEW PACKET For students entering AP CALCULUS BC Name: 1. This packet is to be handed in to your Calculus teacher on the first day of the school year.. All work must be

More information

Module 3: Stand Up Conics

Module 3: Stand Up Conics MATH55 Module 3: Stand Up Conics Main Math concepts: Conic Sections (i.e. Parabolas, Ellipses, Hyperbolas), nd degree equations Auxilliary ideas: Analytic vs. Co-ordinate-free Geometry, Parameters, Calculus.

More information

6 Computing Derivatives the Quick and Easy Way

6 Computing Derivatives the Quick and Easy Way Jay Daigle Occiental College Mat 4: Calculus Experience 6 Computing Derivatives te Quick an Easy Way In te previous section we talke about wat te erivative is, an we compute several examples, an ten we

More information

10-2 Circles. Warm Up Lesson Presentation Lesson Quiz. Holt Algebra2 2

10-2 Circles. Warm Up Lesson Presentation Lesson Quiz. Holt Algebra2 2 10-2 Circles Warm Up Lesson Presentation Lesson Quiz Holt Algebra2 2 Warm Up Find the slope of the line that connects each pair of points. 1. (5, 7) and ( 1, 6) 1 6 2. (3, 4) and ( 4, 3) 1 Warm Up Find

More information

CALCULUS II. Parametric Equations and Polar Coordinates. Paul Dawkins

CALCULUS II. Parametric Equations and Polar Coordinates. Paul Dawkins CALCULUS II Parametric Equations and Polar Coordinates Paul Dawkins Table of Contents Preface... ii Parametric Equations and Polar Coordinates... 3 Introduction... 3 Parametric Equations and Curves...

More information

UNIT 8 STUDY SHEET POLYNOMIAL FUNCTIONS

UNIT 8 STUDY SHEET POLYNOMIAL FUNCTIONS UNIT 8 STUDY SHEET POLYNOMIAL FUNCTIONS KEY FEATURES OF POLYNOMIALS Intercepts of a function o x-intercepts - a point on the graph where y is zero {Also called the zeros of the function.} o y-intercepts

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6 Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

Exam 1 Review. MATH Intuitive Calculus Fall Name:. Show your reasoning. Use standard notation correctly.

Exam 1 Review. MATH Intuitive Calculus Fall Name:. Show your reasoning. Use standard notation correctly. MATH 11012 Intuitive Calculus Fall 2012 Name:. Exam 1 Review Show your reasoning. Use standard notation correctly. 1. Consider the function f depicted below. y 1 1 x (a) Find each of the following (or

More information

MTH 122 Calculus II Essex County College Division of Mathematics and Physics 1 Lecture Notes #11 Sakai Web Project Material

MTH 122 Calculus II Essex County College Division of Mathematics and Physics 1 Lecture Notes #11 Sakai Web Project Material MTH Calculus II Essex County College Division of Mathematics and Physics Lecture Notes # Sakai Web Project Material Introduction - - 0 - Figure : Graph of y sin ( x y ) = x cos (x + y) with red tangent

More information

To sketch the graph we need to evaluate the parameter t within the given interval to create our x and y values.

To sketch the graph we need to evaluate the parameter t within the given interval to create our x and y values. Module 10 lesson 6 Parametric Equations. When modeling the path of an object, it is useful to use equations called Parametric equations. Instead of using one equation with two variables, we will use two

More information

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ Math 0 Prelim I Solutions Spring 010 1. Let f(x, y) = x3 y for (x, y) (0, 0). x 6 + y (4 pts) (a) Show that the cubic curves y = x 3 are level curves of the function f. Solution. Substituting y = x 3 in

More information

. The differential of y f (x)

. The differential of y f (x) Calculus I - Prof D Yuen Exam Review version 11/14/01 Please report any typos Derivative Rules Of course you have to remember all your derivative rules Implicit Differentiation Differentiate both sides

More information

Section Graphs and Lines

Section Graphs and Lines Section 1.1 - Graphs and Lines The first chapter of this text is a review of College Algebra skills that you will need as you move through the course. This is a review, so you should have some familiarity

More information

Section 4.3: How Derivatives Affect the Shape of the Graph

Section 4.3: How Derivatives Affect the Shape of the Graph Section 4.3: How Derivatives Affect the Shape of the Graph What does the first derivative of a function tell you about the function? Where on the graph below is f x > 0? Where on the graph below is f x

More information

In math, the rate of change is called the slope and is often described by the ratio rise

In math, the rate of change is called the slope and is often described by the ratio rise Chapter 3 Equations of Lines Sec. Slope The idea of slope is used quite often in our lives, however outside of school, it goes by different names. People involved in home construction might talk about

More information

Objectives. Materials

Objectives. Materials Activity 13 Objectives Understand what a slope field represents in terms of Create a slope field for a given differential equation Materials TI-84 Plus / TI-83 Plus Graph paper Introduction One of the

More information

Slope of the Tangent Line. Estimating with a Secant Line

Slope of the Tangent Line. Estimating with a Secant Line Slope of the Tangent Line Given a function f find the slope of the line tangent to the graph of f, that is, to the curve, at the point P(a, f (a)). The graph of a function f and the tangent line at a point

More information

COMPUTER AIDED ENGINEERING DESIGN (BFF2612)

COMPUTER AIDED ENGINEERING DESIGN (BFF2612) COMPUTER AIDED ENGINEERING DESIGN (BFF2612) BASIC MATHEMATICAL CONCEPTS IN CAED by Dr. Mohd Nizar Mhd Razali Faculty of Manufacturing Engineering mnizar@ump.edu.my COORDINATE SYSTEM y+ y+ z+ z+ x+ RIGHT

More information

f sin the slope of the tangent line is given by f sin f cos cos sin , but it s also given by 2. So solve the DE with initial condition: sin cos

f sin the slope of the tangent line is given by f sin f cos cos sin , but it s also given by 2. So solve the DE with initial condition: sin cos Math 414 Activity 1 (Due by end of class August 1) 1 Four bugs are placed at the four corners of a square with side length a The bugs crawl counterclockwise at the same speed and each bug crawls directly

More information

NEWTON METHOD and HP-48G

NEWTON METHOD and HP-48G NEWTON METHOD an HP-48G DE TING WU DEPART. of MATH. MOREHOUSE COLLEGE I. Introuction Newton metho is an often-use proceure to fin the approximate values of the solutions of an equation. Now, it is covere

More information

Math 32, August 20: Review & Parametric Equations

Math 32, August 20: Review & Parametric Equations Math 3, August 0: Review & Parametric Equations Section 1: Review This course will continue the development of the Calculus tools started in Math 30 and Math 31. The primary difference between this course

More information

Put your initials on the top of every page, in case the pages become separated.

Put your initials on the top of every page, in case the pages become separated. Math 1201, Fall 2016 Name (print): Dr. Jo Nelson s Calculus III Practice for 1/2 of Final, Midterm 1 Material Time Limit: 90 minutes DO NOT OPEN THIS BOOKLET UNTIL INSTRUCTED TO DO SO. This exam contains

More information

AP Calculus BC Course Description

AP Calculus BC Course Description AP Calculus BC Course Description COURSE OUTLINE: The following topics define the AP Calculus BC course as it is taught over three trimesters, each consisting of twelve week grading periods. Limits and

More information

Multivariable Calculus

Multivariable Calculus Multivariable Calculus Chapter 10 Topics in Analytic Geometry (Optional) 1. Inclination of a line p. 5. Circles p. 4 9. Determining Conic Type p. 13. Angle between lines p. 6. Parabolas p. 5 10. Rotation

More information

Practice Test - Chapter 7

Practice Test - Chapter 7 Write an equation for an ellipse with each set of characteristics. 1. vertices (7, 4), ( 3, 4); foci (6, 4), ( 2, 4) The distance between the vertices is 2a. 2a = 7 ( 3) a = 5; a 2 = 25 The distance between

More information

MATH 1020 WORKSHEET 10.1 Parametric Equations

MATH 1020 WORKSHEET 10.1 Parametric Equations MATH WORKSHEET. Parametric Equations If f and g are continuous functions on an interval I, then the equations x ft) and y gt) are called parametric equations. The parametric equations along with the graph

More information

Math 1313 Prerequisites/Test 1 Review

Math 1313 Prerequisites/Test 1 Review Math 1313 Prerequisites/Test 1 Review Test 1 (Prerequisite Test) is the only exam that can be done from ANYWHERE online. Two attempts. See Online Assignments in your CASA account. Note the deadline too.

More information

Kevin James. MTHSC 206 Section 14.5 The Chain Rule

Kevin James. MTHSC 206 Section 14.5 The Chain Rule MTHSC 206 Section 14.5 The Chain Rule Theorem (Chain Rule - Case 1) Suppose that z = f (x, y) is a differentiable function and that x(t) and y(t) are both differentiable functions as well. Then, dz dt

More information

Limits and an Introduction to Calculus. Copyright Cengage Learning. All rights reserved.

Limits and an Introduction to Calculus. Copyright Cengage Learning. All rights reserved. Limits and an Introduction to Calculus 12 Copyright Cengage Learning. All rights reserved. 12.2 TECHNIQUES FOR EVALUATING LIMITS Copyright Cengage Learning. All rights reserved. What You Should Learn Use

More information

2.4. Rates of Change and Tangent Lines. Copyright 2007 Pearson Education, Inc. Publishing as Pearson Prentice Hall

2.4. Rates of Change and Tangent Lines. Copyright 2007 Pearson Education, Inc. Publishing as Pearson Prentice Hall 2.4 Rates of Change and Tangent Lines Copyright 2007 Pearson Education, Inc. Publishing as Pearson Prentice Hall What you ll learn about Average Rates of Change Tangent to a Curve Slope of a Curve Normal

More information

Math 21a Tangent Lines and Planes Fall, What do we know about the gradient f? Tangent Lines to Curves in the Plane.

Math 21a Tangent Lines and Planes Fall, What do we know about the gradient f? Tangent Lines to Curves in the Plane. Math 21a Tangent Lines and Planes Fall, 2016 What do we know about the gradient f? Tangent Lines to Curves in the Plane. 1. For each of the following curves, find the tangent line to the curve at the point

More information

Here are some of the more basic curves that we ll need to know how to do as well as limits on the parameter if they are required.

Here are some of the more basic curves that we ll need to know how to do as well as limits on the parameter if they are required. 1 of 10 23/07/2016 05:15 Paul's Online Math Notes Calculus III (Notes) / Line Integrals / Line Integrals - Part I Problems] [Notes] [Practice Problems] [Assignment Calculus III - Notes Line Integrals Part

More information

CALCULUS MADE EASY - FUNCTIONALITY for the TiNspire CAS

CALCULUS MADE EASY - FUNCTIONALITY for the TiNspire CAS CALCULUS MADE EASY - FUNCTIONALITY for the TiNspire CAS www.tinspireapps.com Functions READ: Linear Functions Find Slope Find y=mx+b All-in-one-Function Explorer Evaluate Function Find Domain of f(x) Find

More information

MATH 19520/51 Class 6

MATH 19520/51 Class 6 MATH 19520/51 Class 6 Minh-Tam Trinh University of Chicago 2017-10-06 1 Review partial derivatives. 2 Review equations of planes. 3 Review tangent lines in single-variable calculus. 4 Tangent planes to

More information

Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers

Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers. Lagrange Multipliers In this section we present Lagrange s method for maximizing or minimizing a general function f(x, y, z) subject to a constraint (or side condition) of the form g(x, y, z) = k. Figure 1 shows this curve

More information

Lesson 2.4 Exercises, pages

Lesson 2.4 Exercises, pages Lesson. Eercises, pages 13 10 A 3. Sketch the graph of each function. ( - )( + 1) a) = b) = + 1 ( )( 1) 1 (- + )( - ) - ( )( ) 0 0 The function is undefined when: 1 There is a hole at 1. The function can

More information

Math 2 Coordinate Geometry Part 2 Lines & Systems of Equations

Math 2 Coordinate Geometry Part 2 Lines & Systems of Equations Name: Math 2 Coordinate Geometry Part 2 Lines & Systems of Equations Date: USING TWO POINTS TO FIND THE SLOPE - REVIEW In mathematics, the slope of a line is often called m. We can find the slope if we

More information

Level Curves and Contour Maps (sec 14.1) & Partial Derivatives (sec 14.3) Today, We Will: Level Curves. Notes. Notes. Notes.

Level Curves and Contour Maps (sec 14.1) & Partial Derivatives (sec 14.3) Today, We Will: Level Curves. Notes. Notes. Notes. Level Curves and Contour Maps (sec 14.1) & Partial Derivatives (sec 14.3) 11 February 2015 Today, We Will: Wrap-up our discussion of level curves and contour maps. Define partial derivatives of a function

More information

Curve and Surface Basics

Curve and Surface Basics Curve and Surface Basics Implicit and parametric forms Power basis form Bezier curves Rational Bezier Curves Tensor Product Surfaces ME525x NURBS Curve and Surface Modeling Page 1 Implicit and Parametric

More information

Calculus Course Overview

Calculus Course Overview Description: Walk in the footsteps of Newton and Leibnitz! An interactive text and graphing software combine with the exciting on-line course delivery to make Calculus an adventure. This course includes

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 9 ARAMETRIC EQUATIONS AND OLAR COORDINATES So far we have described plane curves b giving as a function of f or as a function of t or b giving a relation between and that defines implicitl as a function

More information

by Kevin M. Chevalier

by Kevin M. Chevalier Precalculus Review Handout.4 Trigonometric Functions: Identities, Graphs, and Equations, Part I by Kevin M. Chevalier Angles, Degree and Radian Measures An angle is composed of: an initial ray (side) -

More information