Vision: From Eye to Brain (Chap 3)

Size: px
Start display at page:

Download "Vision: From Eye to Brain (Chap 3)"

Transcription

1 Vision: From Eye to Brain (Chap 3) Lecture 7 Jonathan Pillow Sensation & Perception (PSY 345 / NEU 325) Princeton University, Fall 2017

2 early visual pathway eye eye optic nerve optic chiasm optic tract thalamus: lateral geniculate nucleus (LGN) optic radiations cortex: primary visual cortex ( V1 ) (aka striate cortex ) right visual world left visual world

3 Acuity: measure of finest visual detail that can be resolved

4 Measuring Visual Acuity Snellen E test Herman Snellen invented this method for designating visual acuity in 1862 Notice that the strokes on the E form a small grating pattern

5 Visual Acuity in the lab Acuity: The smallest spatial detail that can be resolved

6 Acuity eye doctor: 20 / 20 (your distance / avg person s distance) for letter identification vision scientist: visual angle of one cycle of the finest grating you can see

7 explaining acuity stimulus on retina striped pattern is a sine wave grating visual system samples the grating at cone locations acuity limit: 1 of arc cone spacing in fovea: 0.5 of arc percept

8 more channels : spatial frequency channels spatial frequency: the number of cycles of a grating per unit of visual angle (usually specified in degrees) think of it as: # of bars per unit length low frequency intermediate high frequency

9 Why sine gratings? Provide useful decomposition of images Technical term: Fourier decomposition (But the real reason: some neuroscientists read a math book and decided it would be cool to apply some fancy math to vision science!)

10 Fourier decomposition mathematical decomposition of an image (or sound) into sine waves. reconstruction: image 1 sine wave 2 sine waves 3 sine waves 4 sine waves

11 Fourier Decomposition theory of V1 claim: role of V1 is to do Fourier decomposition, i.e., break images down into a sum of sine waves Summation of two spatial sine waves any pattern can be broken down into a sum of sine waves

12 Fourier decomposition mathematical decomposition of an image (or sound) into sine waves. Original image High Frequencies Low Frequencies

13 original low medium high

14 Retinal Ganglion Cells: tuned to spatial frequency Response of a ganglion cell to sine gratings of different frequencies

15 The contrast sensitivity function Human contrast sensitivity illustration of this sensitivity

16 Image Illustrating Spatial Frequency Channels

17 Image Illustrating Spatial Frequency Channels

18 If it is hard to tell who this famous person is, try squinting or defocusing Lincoln illusion Harmon & Jules 1973

19 Gala Contemplating the Mediterranean Sea, which at 30 meters becomes the portrait of Abraham Lincoln (Homage to Rothko) - Salvador Dali (1976)

20 Gala Contemplating the Mediterranean Sea, which at 30 meters becomes the portrait of Abraham Lincoln (Homage to Rothko) - Salvador Dali (1976)

21 lateral geniculate nucleus (LGN): one on each side of the brain this is where axons of retinal ganglion cells synapse Organization: represents contralateral visual field segregated into eyespecific layers segregated into M and P layers Ipsilateral: Referring to the same side of the body Contralateral: Referring to the opposite side of the body

22 Primary Visual Cortex Striate cortex: known as primary visual cortex, or V1 Primary visual cortex = first place in cortex where visual information is processed (Previous two stages: retina and LGN are pre-cortical)

23 Receptive Fields: monocular vs. binocular - LGN cells: responds to one eye or the other, never both LGN - V1 cells: can respond to input from both eyes (but V1 neurons still tend to have a preferred eye - they spike more to input from one eye) V1

24 Topography: mapping of objects in space onto the visual cortex contralateral representation - each visual field (L/R) represented in opposite hemisphere cortical magnification - unequal representation of fovea vs. periphery in cortex - a misnomer, because magnification already present in retina (that is, the amount of space in cortex for each part of the visual field is given by the number of fibers coming in from LGN)

Visual Pathways to the Brain

Visual Pathways to the Brain Visual Pathways to the Brain 1 Left half of visual field which is imaged on the right half of each retina is transmitted to right half of brain. Vice versa for right half of visual field. From each eye

More information

Visual Acuity. Adler s Physiology of the Eye 11th Ed. Chapter 33 - by Dennis Levi.

Visual Acuity. Adler s Physiology of the Eye 11th Ed. Chapter 33 - by Dennis Levi. Visual Acuity Adler s Physiology of the Eye 11th Ed. Chapter 33 - by Dennis Levi http://www.mcgill.ca/mvr/resident/ Visual Acuity Keeness of Sight, possible to be defined in different ways Minimum Visual

More information

Introduction to visual computation and the primate visual system

Introduction to visual computation and the primate visual system Introduction to visual computation and the primate visual system Problems in vision Basic facts about the visual system Mathematical models for early vision Marr s computational philosophy and proposal

More information

Exercise: Simulating spatial processing in the visual pathway with convolution

Exercise: Simulating spatial processing in the visual pathway with convolution Exercise: Simulating spatial processing in the visual pathway with convolution This problem uses convolution to simulate the spatial filtering performed by neurons in the early stages of the visual pathway,

More information

Visual Acuity. Visual acuity

Visual Acuity. Visual acuity Visual Acuity Excerpts from a lecture by: Harold E. Bedell Physiological Optics & Vision Science Visual acuity Visual acuity is the smallest spatial detail that can be detected or identified. Types of

More information

Visual Acuity. Excerpts from a lecture by: Harold E. Bedell. Physiological Optics & Vision Science

Visual Acuity. Excerpts from a lecture by: Harold E. Bedell. Physiological Optics & Vision Science Visual Acuity Excerpts from a lecture by: Harold E. Bedell Physiological Optics & Vision Science Visual acuity Visual acuity is the smallest spatial detail that can be detected or identified. Types of

More information

Topographic Mapping with fmri

Topographic Mapping with fmri Topographic Mapping with fmri Retinotopy in visual cortex Tonotopy in auditory cortex signal processing + neuroimaging = beauty! Topographic Mapping with fmri Retinotopy in visual cortex Tonotopy in auditory

More information

Introduction to Neural Networks Overview of the visual system

Introduction to Neural Networks Overview of the visual system Introduction to Neural Networks Overview of the visual system November 2, 2011 Daniel Kersten Goals Provide an overview of a major brain subsystem to help anchor concepts in neural network theory. Discuss

More information

Binocular cues to depth PSY 310 Greg Francis. Lecture 21. Depth perception

Binocular cues to depth PSY 310 Greg Francis. Lecture 21. Depth perception Binocular cues to depth PSY 310 Greg Francis Lecture 21 How to find the hidden word. Depth perception You can see depth in static images with just one eye (monocular) Pictorial cues However, motion and

More information

Binocular Stereo Vision

Binocular Stereo Vision Binocular Stereo Vision Properties of human stereo vision Marr-Poggio-Grimson multi-resolution stereo algorithm CS332 Visual Processing Department of Computer Science Wellesley College Properties of human

More information

Geometric Fourier Analysis in Computational Vision

Geometric Fourier Analysis in Computational Vision Geometric Fourier Analysis in Computational Vision Biological and Mathematical Background Jacek Turski University of Houston-DTN 9 th International Conference on Cognitive and Neural Systems Boston University,

More information

The Human Visual System!

The Human Visual System! ! The Human Visual System! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 5! stanford.edu/class/ee267/!! nautilus eye, wikipedia! Dawkins, Climbing Mount Improbable,! Norton & Company,

More information

APPENDIX A THE NEURO BIOLOGY OF VISION AND ATTENTION

APPENDIX A THE NEURO BIOLOGY OF VISION AND ATTENTION APPENDIX A THE NEURO BIOLOGY OF VISION AND ATTENTION A.1 Introduction To understand the concept to human attention, it is worth to regard the processing involved in human visual system as discussed in

More information

Computational Perception. Visual Coding 3

Computational Perception. Visual Coding 3 Computational Perception 15-485/785 February 21, 2008 Visual Coding 3 A gap in the theory? - - + - - from Hubel, 1995 2 Eye anatomy from Hubel, 1995 Photoreceptors: rods (night vision) and cones (day vision)

More information

POVS Basic Vision Science Core. Visual Acuity

POVS Basic Vision Science Core. Visual Acuity POVS Basic Vision Science Core Visual Acuity Visual acuity Visual acuity is the smallest spatial detail that can be detected or identified. Types of acuity tasks: Detection acuity Resolution acuity Localization

More information

CSE 167: Lecture #6: Color. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

CSE 167: Lecture #6: Color. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 CSE 167: Introduction to Computer Graphics Lecture #6: Color Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Announcements Homework project #3 due this Friday, October 19

More information

Nicolai Petkov Intelligent Systems group Institute for Mathematics and Computing Science

Nicolai Petkov Intelligent Systems group Institute for Mathematics and Computing Science V1-inspired orientation selective filters for image processing and computer vision Nicolai Petkov Intelligent Systems group Institute for Mathematics and Computing Science 2 Most of the images in this

More information

Realtime 3D Computer Graphics Virtual Reality

Realtime 3D Computer Graphics Virtual Reality Realtime 3D Computer Graphics Virtual Reality Human Visual Perception The human visual system 2 eyes Optic nerve: 1.5 million fibers per eye (each fiber is the axon from a neuron) 125 million rods (achromatic

More information

Representing the World

Representing the World Table of Contents Representing the World...1 Sensory Transducers...1 The Lateral Geniculate Nucleus (LGN)... 2 Areas V1 to V5 the Visual Cortex... 2 Computer Vision... 3 Intensity Images... 3 Image Focusing...

More information

Computational Models of V1 cells. Gabor and CORF

Computational Models of V1 cells. Gabor and CORF 1 Computational Models of V1 cells Gabor and CORF George Azzopardi Nicolai Petkov 2 Primary visual cortex (striate cortex or V1) 3 Types of V1 Cells Hubel and Wiesel, Nobel Prize winners Three main types

More information

Neurophysical Model by Barten and Its Development

Neurophysical Model by Barten and Its Development Chapter 14 Neurophysical Model by Barten and Its Development According to the Barten model, the perceived foveal image is corrupted by internal noise caused by statistical fluctuations, both in the number

More information

Improvement of optic flow estimation from an event-based sensor with recurrently connected processing layers

Improvement of optic flow estimation from an event-based sensor with recurrently connected processing layers Improvement of optic flow estimation from an event-based sensor with recurrently connected processing layers Vilim Štih 31st March 2014 1 Introduction The Dynamic Vision Sensor (DVS) is a visual sensor

More information

CSE 167: Lecture #6: Color. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011

CSE 167: Lecture #6: Color. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 CSE 167: Introduction to Computer Graphics Lecture #6: Color Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011 Announcements Homework project #3 due this Friday, October 14

More information

Nicolai Petkov Intelligent Systems group Institute for Mathematics and Computing Science

Nicolai Petkov Intelligent Systems group Institute for Mathematics and Computing Science 2D Gabor functions and filters for image processing and computer vision Nicolai Petkov Intelligent Systems group Institute for Mathematics and Computing Science 2 Most of the images in this presentation

More information

Important concepts in binocular depth vision: Corresponding and non-corresponding points. Depth Perception 1. Depth Perception Part II

Important concepts in binocular depth vision: Corresponding and non-corresponding points. Depth Perception 1. Depth Perception Part II Depth Perception Part II Depth Perception 1 Binocular Cues to Depth Depth Information Oculomotor Visual Accomodation Convergence Binocular Monocular Static Cues Motion Parallax Perspective Size Interposition

More information

Interocular transfer in normal humans, and those who lack stereopsis

Interocular transfer in normal humans, and those who lack stereopsis Perception, 1972, volume 1, pages 483-490 Interocular transfer in normal humans, and those who lack stereopsis J A Movshon, B E I Chambers, C Blakemore The Psychological and Physiological Laboratories,

More information

Nicolai Petkov Intelligent Systems group Institute for Mathematics and Computing Science

Nicolai Petkov Intelligent Systems group Institute for Mathematics and Computing Science 2D Gabor functions and filters for image processing and computer vision Nicolai Petkov Intelligent Systems group Institute for Mathematics and Computing Science 2 Most of the images in this presentation

More information

Arbib: Slides for TMB2 Section 7.2 1

Arbib: Slides for TMB2 Section 7.2 1 Arbib: Slides for TMB2 Section 7.2 1 Lecture 20: Optic Flow Reading assignment: TMB2 7.2 If, as we walk forward, we recognize that a tree appears to be getting bigger, we can infer that the tree is in

More information

Stereovision. Binocular disparity

Stereovision. Binocular disparity Stereovision Binocular disparity Retinal correspondence Uncrossed disparity Horoptor Crossed disparity Horoptor, crossed and uncrossed disparity Wheatsteone stereoscope (c. 1838) Red-green anaglyph How

More information

Introduction to Neural Networks Overview of the visual system

Introduction to Neural Networks Overview of the visual system Introduction to Neural Networks Overview of the visual system November 14, 2012 Daniel Kersten To create a background with a Shade From Title, choose Shade Background on the Color Scheme dialog. Shading

More information

CS4670: Computer Vision

CS4670: Computer Vision CS4670: Computer Vision Noah Snavely Lecture 30: Light, color, and reflectance Light by Ted Adelson Readings Szeliski, 2.2, 2.3.2 Light by Ted Adelson Readings Szeliski, 2.2, 2.3.2 Properties of light

More information

PERCEIVING DEPTH AND SIZE

PERCEIVING DEPTH AND SIZE PERCEIVING DEPTH AND SIZE DEPTH Cue Approach Identifies information on the retina Correlates it with the depth of the scene Different cues Previous knowledge Slide 3 Depth Cues Oculomotor Monocular Binocular

More information

Basic distinctions. Definitions. Epstein (1965) familiar size experiment. Distance, depth, and 3D shape cues. Distance, depth, and 3D shape cues

Basic distinctions. Definitions. Epstein (1965) familiar size experiment. Distance, depth, and 3D shape cues. Distance, depth, and 3D shape cues Distance, depth, and 3D shape cues Pictorial depth cues: familiar size, relative size, brightness, occlusion, shading and shadows, aerial/ atmospheric perspective, linear perspective, height within image,

More information

Improving visual function diagnostic metrics. Charles Campbell

Improving visual function diagnostic metrics. Charles Campbell Improving visual function diagnostic metrics Charles Campbell Metrics - What are they? What are they used for? A metric assigns a numerical value or a set of values to characterize some chosen phenomenon

More information

CS4442/9542b Artificial Intelligence II prof. Olga Veksler

CS4442/9542b Artificial Intelligence II prof. Olga Veksler CS4442/9542b Artificial Intelligence II prof. Olga Veksler Lecture 8 Computer Vision Introduction, Filtering Some slides from: D. Jacobs, D. Lowe, S. Seitz, A.Efros, X. Li, R. Fergus, J. Hayes, S. Lazebnik,

More information

CS4442/9542b Artificial Intelligence II prof. Olga Veksler

CS4442/9542b Artificial Intelligence II prof. Olga Veksler CS4442/9542b Artificial Intelligence II prof. Olga Veksler Lecture 2 Computer Vision Introduction, Filtering Some slides from: D. Jacobs, D. Lowe, S. Seitz, A.Efros, X. Li, R. Fergus, J. Hayes, S. Lazebnik,

More information

Unit 9 Light & Optics

Unit 9 Light & Optics Unit 9 Light & Optics 1 A quick review of the properties of light. Light is a form of electromagnetic radiation Light travels as transverse waves having wavelength and frequency. fλ=c The velocity of EMR

More information

Computer Vision James L. Crowley

Computer Vision James L. Crowley Computer Vision James L. Crowley M2R MoSIG option GVR Lesson 1 Fall Semester 7 October 2008 Lesson Outline: Color Perception in Man and Machine 1 The Physics of Light...2 1.1 Photons and the Electo-Magnetic

More information

Creating psychological tutorials on the World-Wide Web

Creating psychological tutorials on the World-Wide Web Behavior Research Methods, Instruments, & Computers 1996, 28 (2), 156 160 Creating psychological tutorials on the World-Wide Web JOHN H. KRANTZ and BRANDI M. EAGLEY Hanover College, Hanover, Indiana The

More information

Image Formation. CS418 Computer Graphics Eric Shaffer.

Image Formation. CS418 Computer Graphics Eric Shaffer. Image Formation CS418 Computer Graphics Eric Shaffer http://graphics.cs.illinois.edu/cs418/fa14 Some stuff about the class Grades probably on usual scale: 97 to 93: A 93 to 90: A- 90 to 87: B+ 87 to 83:

More information

Functional Characteristics of Lenses

Functional Characteristics of Lenses Functional Characteristics of Lenses Kellye Knueppel, OD, FCOVD Great Lakes Congress 2018 Goals of lecture: Understand optical characteristics in order to expand the uses of lenses in prescribing glasses

More information

Human Perception of Objects

Human Perception of Objects Human Perception of Objects Early Visual Processing of Spatial Form Defined by Luminance, Color, Texture, Motion, and Binocular Disparity David Regan York University, Toronto University of Toronto Sinauer

More information

Modeling the top neuron layers of the human retina. Laurens Koppenol ( ) Universiteit Utrecht

Modeling the top neuron layers of the human retina. Laurens Koppenol ( ) Universiteit Utrecht Modeling the top neuron layers of the human retina Laurens Koppenol (3245578) 23-06-2013 Universiteit Utrecht 1 Contents Introduction... 3 Background... 4 Photoreceptors... 4 Scotopic vision... 5 Photopic

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 20: Light, reflectance and photometric stereo Light by Ted Adelson Readings Szeliski, 2.2, 2.3.2 Light by Ted Adelson Readings Szeliski, 2.2, 2.3.2 Properties

More information

Efficient Visual Coding: From Retina To V2

Efficient Visual Coding: From Retina To V2 Efficient Visual Coding: From Retina To V Honghao Shan Garrison Cottrell Computer Science and Engineering UCSD La Jolla, CA 9093-0404 shanhonghao@gmail.com, gary@ucsd.edu Abstract The human visual system

More information

Using weightless neural networks for vergence control in an artificial vision system

Using weightless neural networks for vergence control in an artificial vision system ORIGINAL RESEARCH Using weightless neural networks for vergence control in an artificial vision system Karin S Komati and Alberto F De Souza Departamento de Informática, Universidade Federal do Espírito

More information

The elements of early vision or, what vision (and this course) is all about. NYU/CNS Center for Neural Science

The elements of early vision or, what vision (and this course) is all about. NYU/CNS Center for Neural Science The elements of early vision or, what vision (and this course) is all about NYU/CNS Center for Neural Science The Electric Monk was a labor saving device, like a dishwasher or a video recorder. Dishwashers

More information

Persistent Homology for Characterizing Stimuli Response in the Primary Visual Cortex

Persistent Homology for Characterizing Stimuli Response in the Primary Visual Cortex Persistent Homology for Characterizing Stimuli Response in the Primary Visual Cortex Avani Wildani Tatyana O. Sharpee (PI) ICML Topology 6/25/2014 The big questions - How do we turn sensory stimuli into

More information

Thinking in Frequency

Thinking in Frequency Thinking in Frequency Computer Vision Jia-Bin Huang, Virginia Tech Dali: Gala Contemplating the Mediterranean Sea (1976) Administrative stuffs Course website: http://bit.ly/vt-computer-vision-fall-2017

More information

A Computational Approach To Understanding The Response Properties Of Cells In The Visual System

A Computational Approach To Understanding The Response Properties Of Cells In The Visual System A Computational Approach To Understanding The Response Properties Of Cells In The Visual System David C. Noelle Assistant Professor of Computer Science and Psychology Vanderbilt University March 3, 2004

More information

Binocular integration and disparity selectivity in mouse primary visual cortex

Binocular integration and disparity selectivity in mouse primary visual cortex J Neurophysiol 109: 3013 3024, 2013. First published March 20, 2013; doi:10.1152/jn.01021.2012. Binocular integration and disparity selectivity in mouse primary visual cortex Benjamin Scholl, Johannes

More information

Perception, Part 2 Gleitman et al. (2011), Chapter 5

Perception, Part 2 Gleitman et al. (2011), Chapter 5 Perception, Part 2 Gleitman et al. (2011), Chapter 5 Mike D Zmura Department of Cognitive Sciences, UCI Psych 9A / Psy Beh 11A February 27, 2014 T. M. D'Zmura 1 Visual Reconstruction of a Three-Dimensional

More information

Digital Video Quality

Digital Video Quality Digital Video Quality Vision Models and Metrics Stefan Winkler Genista Corporation, Montreux, Switzerland Digital Video Quality Digital Video Quality Vision Models and Metrics Stefan Winkler Genista

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 21: Light, reflectance and photometric stereo Announcements Final projects Midterm reports due November 24 (next Tuesday) by 11:59pm (upload to CMS) State the

More information

Image Formation. Camera trial #1. Pinhole camera. What is an Image? Light and the EM spectrum The H.V.S. and Color Perception

Image Formation. Camera trial #1. Pinhole camera. What is an Image? Light and the EM spectrum The H.V.S. and Color Perception Image Formation Light and the EM spectrum The H.V.S. and Color Perception What is an Image? An image is a projection of a 3D scene into a 2D projection plane. An image can be defined as a 2 variable function

More information

Optics of Vision. MATERIAL TO READ Web: 1.

Optics of Vision. MATERIAL TO READ Web: 1. Optics of Vision MATERIAL TO READ Web: 1. www.physics.uoguelph.ca/phys1070/webst.html Text: Chap. 3, pp. 1-39 (NB: pg. 3-37 missing) Chap. 5 pp.1-17 Handbook: 1. study guide 3 2. lab 3 Optics of the eye

More information

Imaging Partnership STEMM PRACTITIONER RESOURCES

Imaging Partnership STEMM PRACTITIONER RESOURCES Imaging Partnership STEMM PRACTITIONER RESOURCES The Eye Vs. The Camera LESSON FOUR What you will learn: The differences and similarities between how our eyes and a camera captures an image. Understanding

More information

The topics are listed below not exactly in the same order as they were presented in class but all relevant topics are on the list!

The topics are listed below not exactly in the same order as they were presented in class but all relevant topics are on the list! Ph332, Fall 2016 Study guide for the final exam, Part Two: (material lectured before the Nov. 3 midterm test, but not used in that test, and the material lectured after the Nov. 3 midterm test.) The final

More information

Processing Framework Proposed by Marr. Image

Processing Framework Proposed by Marr. Image Processing Framework Proposed by Marr Recognition 3D structure; motion characteristics; surface properties Shape From stereo Motion flow Shape From motion Color estimation Shape From contour Shape From

More information

Acuity. Measurement of Visual Acuity. Glossary. Detection and Resolution Acuity

Acuity. Measurement of Visual Acuity. Glossary. Detection and Resolution Acuity Acuity M D Crossland, UCL Institute of Ophthalmology/Moorfields Eye Hospital, London, UK ã 2010 Elsevier Ltd. All rights reserved. Glossary Cycles per degree The number of complete phases of a grating

More information

(A) Electromagnetic. B) Mechanical. (C) Longitudinal. (D) None of these.

(A) Electromagnetic. B) Mechanical. (C) Longitudinal. (D) None of these. Downloaded from LIGHT 1.Light is a form of radiation. (A) Electromagnetic. B) Mechanical. (C) Longitudinal. 2.The wavelength of visible light is in the range: (A) 4 10-7 m to 8 10-7 m. (B) 4 10 7

More information

RELATIVE ADVANTAGE OF TOUCH OVER VISION IN THE EXPLORATION OF TEXTURE. A Thesis YOON H. BAI

RELATIVE ADVANTAGE OF TOUCH OVER VISION IN THE EXPLORATION OF TEXTURE. A Thesis YOON H. BAI RELATIVE ADVANTAGE OF TOUCH OVER VISION IN THE EXPLORATION OF TEXTURE A Thesis by YOON H. BAI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements

More information

How to Tell a Human apart from a Computer. The Turing Test. (and Computer Literacy) Spring 2013 ITS B 1. Are Computers like Human Brains?

How to Tell a Human apart from a Computer. The Turing Test. (and Computer Literacy) Spring 2013 ITS B 1. Are Computers like Human Brains? How to Tell a Human apart from a Computer The Turing Test (and Computer Literacy) Spring 2013 ITS102.23 - B 1 Are Computers like Human Brains? The impressive contributions of computers during World War

More information

LEARNING TO SEGMENT TEXTURE IN 2D VS. 3D : A COMPARATIVE STUDY. A Thesis SE JONG OH

LEARNING TO SEGMENT TEXTURE IN 2D VS. 3D : A COMPARATIVE STUDY. A Thesis SE JONG OH LEARNING TO SEGMENT TEXTURE IN 2D VS. 3D : A COMPARATIVE STUDY A Thesis by SE JONG OH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for

More information

Project proposal: Statistical models of visual neurons

Project proposal: Statistical models of visual neurons Project proposal: Statistical models of visual neurons Anna Sotnikova asotniko@math.umd.edu Project Advisor: Prof. Daniel A. Butts dab@umd.edu Department of Biology Abstract Studying visual neurons may

More information

Virtual Reality ll. Visual Imaging in the Electronic Age. Donald P. Greenberg November 16, 2017 Lecture #22

Virtual Reality ll. Visual Imaging in the Electronic Age. Donald P. Greenberg November 16, 2017 Lecture #22 Virtual Reality ll Visual Imaging in the Electronic Age Donald P. Greenberg November 16, 2017 Lecture #22 Fundamentals of Human Perception Retina, Rods & Cones, Physiology Receptive Fields Field of View

More information

TITMUS Vision Screener S n e l l e n O c c u p a t i o n a l. S l i d e I n f o r m a t i o n b r o c h u r e

TITMUS Vision Screener S n e l l e n O c c u p a t i o n a l. S l i d e I n f o r m a t i o n b r o c h u r e TITMUS Vision Screener S n e l l e n O c c u p a t i o n a l S l i d e I n f o r m a t i o n b r o c h u r e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 TITMUS Vision Screener Snellen Occupational S l i d e I

More information

Coordinate Transformations in Parietal Cortex. Computational Models of Neural Systems Lecture 7.1. David S. Touretzky November, 2013

Coordinate Transformations in Parietal Cortex. Computational Models of Neural Systems Lecture 7.1. David S. Touretzky November, 2013 Coordinate Transformations in Parietal Cortex Lecture 7.1 David S. Touretzky November, 2013 Outline Anderson: parietal cells represent locations of visual stimuli. Zipser and Anderson: a backprop network

More information

CS5670: Computer Vision

CS5670: Computer Vision CS5670: Computer Vision Noah Snavely Light & Perception Announcements Quiz on Tuesday Project 3 code due Monday, April 17, by 11:59pm artifact due Wednesday, April 19, by 11:59pm Can we determine shape

More information

Wavelets, vision and the statistics of natural scenes

Wavelets, vision and the statistics of natural scenes Wavelets, vision and the statistics of natural scenes By D. J. Field Uris Hall, Cornell University, Ithaca, NY 14853, USA The processing of spatial information by the visual system shows a number of similarities

More information

DEPTH PERCEPTION. Learning Objectives: 7/31/2018. Intro & Overview of DEPTH PERCEPTION** Speaker: Michael Patrick Coleman, COT, ABOC, & former CPOT

DEPTH PERCEPTION. Learning Objectives: 7/31/2018. Intro & Overview of DEPTH PERCEPTION** Speaker: Michael Patrick Coleman, COT, ABOC, & former CPOT DEPTH PERCEPTION Speaker: Michael Patrick Coleman, COT, ABOC, & former CPOT Learning Objectives: Attendees will be able to 1. Explain what the primary cue to depth perception is (vs. monocular cues) 2.

More information

How does light behave at the boundary between two different materials?

How does light behave at the boundary between two different materials? Guiding Question How does light behave at the boundary between two different materials? 1 Key Vocabulary Key Vocabulary } angle of incidence } angle of refraction } critical angle } function } refraction

More information

The representation of visual depth perception based on the plenoptic function in the retina and its neural computation in visual cortex V1

The representation of visual depth perception based on the plenoptic function in the retina and its neural computation in visual cortex V1 The representation of visual depth perception based on the plenoptic function in the retina and its neural computation in visual cortex V1 Songnian et al. Songnian et al. BMC Neuroscience 2014, 15:50 Songnian

More information

Color and Shading. Color. Shapiro and Stockman, Chapter 6. Color and Machine Vision. Color and Perception

Color and Shading. Color. Shapiro and Stockman, Chapter 6. Color and Machine Vision. Color and Perception Color and Shading Color Shapiro and Stockman, Chapter 6 Color is an important factor for for human perception for object and material identification, even time of day. Color perception depends upon both

More information

USE R/G GLASSES. Binocular Combina0on of Images. What can happen when images are combined by the two eyes?

USE R/G GLASSES. Binocular Combina0on of Images. What can happen when images are combined by the two eyes? Binocular Combina0on of Images 3D D USE R/G GLASSES What can happen when images are combined by the two eyes? Fusion- when images are similar and disparity is small Monocular Suppression / Rivalry- when

More information

VS 117 LABORATORY III: FIXATION DISPARITY INTRODUCTION

VS 117 LABORATORY III: FIXATION DISPARITY INTRODUCTION VS 117 LABORATORY III: FIXATION DISPARITY INTRODUCTION Under binocular viewing, subjects generally do not gaze directly at the visual target. Fixation disparity is defined as the difference between the

More information

Statistical models of visual neurons

Statistical models of visual neurons Statistical models of visual neurons Final Presentation Anna Sotnikova Applied Mathematics and Statistics, and Scientific Computation program Advisor: Dr. Daniel A. Butts Department of Biology 1 The power

More information

Active Fixation Control to Predict Saccade Sequences Supplementary Material

Active Fixation Control to Predict Saccade Sequences Supplementary Material Active Fixation Control to Predict Saccade Sequences Supplementary Material Calden Wloka Iuliia Kotseruba John K. Tsotsos Department of Electrical Engineering and Computer Science York University, Toronto,

More information

Light and Lenses Notes

Light and Lenses Notes Light and Lenses Notes Refraction The change in speed and direction of a wave Due to change in medium Must cross boundary at an angle other than 90 o, otherwise no change in direction I R (unlike reflection)

More information

Announcements. Light. Properties of light. Light. Project status reports on Wednesday. Readings. Today. Readings Szeliski, 2.2, 2.3.

Announcements. Light. Properties of light. Light. Project status reports on Wednesday. Readings. Today. Readings Szeliski, 2.2, 2.3. Announcements Project status reports on Wednesday prepare 5 minute ppt presentation should contain: problem statement (1 slide) description of approach (1 slide) some images (1 slide) current status +

More information

Perception Viewed as an Inverse Problem

Perception Viewed as an Inverse Problem Perception Viewed as an Inverse Problem Fechnerian Causal Chain of Events - an evaluation Fechner s study of outer psychophysics assumes that the percept is a result of a causal chain of events: Distal

More information

Outline. Immersive Visual Communication Pipeline. Lec 02 Human Vision System

Outline. Immersive Visual Communication Pipeline. Lec 02 Human Vision System Outline CS/EE 5590 / (Class Ids: 44873, 44874) Fall 2016, Tue 5-8:15pm@Edu Room 260 Special Topics: Advanced Multimedia Communication Lec 02 Human Vision System Re-Cap of Lec 01 Human Vision System Human

More information

An Intuitive Explanation of Fourier Theory

An Intuitive Explanation of Fourier Theory An Intuitive Explanation of Fourier Theory Steven Lehar slehar@cns.bu.edu Fourier theory is pretty complicated mathematically. But there are some beautifully simple holistic concepts behind Fourier theory

More information

On the road to invariant object recognition: How cortical area V2 transforms absolute to relative disparity during 3D vision

On the road to invariant object recognition: How cortical area V2 transforms absolute to relative disparity during 3D vision On the road to invariant object recognition: How cortical area V2 transforms absolute to relative disparity during 3D vision Stephen Grossberg, Karthik Srinivasan, and Arash Yazdanbakhsh Center for Adaptive

More information

Filter Select ion Model for Generating Visual Mot ion Signals

Filter Select ion Model for Generating Visual Mot ion Signals In: C. L. Giles, S. J. Hanson, and J. D. Cowan (Eds.) Advances in Neural Infirmation Processing Systems 5, Morgan Kaufman Publishers, San Mateo, CA, (1993). Filter Select ion Model for Generating Visual

More information

All human beings desire to know. [...] sight, more than any other senses, gives us knowledge of things and clarifies many differences among them.

All human beings desire to know. [...] sight, more than any other senses, gives us knowledge of things and clarifies many differences among them. All human beings desire to know. [...] sight, more than any other senses, gives us knowledge of things and clarifies many differences among them. - Aristotle University of Texas at Arlington Introduction

More information

Google Daydream

Google Daydream Current VR Devices Current VR Devices Most of these new devices include slight improvements, primarily involved with tracking (both location and orientation) and obtaining better accuracy Google Daydream

More information

Simple Spatial Domain Filtering

Simple Spatial Domain Filtering Simple Spatial Domain Filtering Binary Filters Non-phase-preserving Fourier transform planes Simple phase-step filters (for phase-contrast imaging) Amplitude inverse filters, related to apodization Contrast

More information

Light. Properties of light. What is light? Today What is light? How do we measure it? How does light propagate? How does light interact with matter?

Light. Properties of light. What is light? Today What is light? How do we measure it? How does light propagate? How does light interact with matter? Light Properties of light Today What is light? How do we measure it? How does light propagate? How does light interact with matter? by Ted Adelson Readings Andrew Glassner, Principles of Digital Image

More information

adaptation upon monocular visibility.

adaptation upon monocular visibility. Journal of Physiology (1991), 437, pp. 449-46 449 With 5 figures Printed in Great Britain TONIC INTEROCULAR SUPPRESSION AND BINOCULAR SUMMATION IN HUMAN VISION BY NOREEN DENNY*, THOMAS E. FRUMKES*t, MICHAEL

More information

Visual sensing by humans and computers

Visual sensing by humans and computers Behavior Research Methods, Instruments, & Computers 1984, 16 (2),88-95 SESSION II INVITED ADDRESS Geoffrey Loftus, Presider Visual sensing by humans and computers BRIAN A. WANDELL Stanford University,

More information

To Conclude: Vision in terms of

To Conclude: Vision in terms of To Conclude: Vision in terms of Neurophysiology Receptive fields Left/right hemisphere Visual pathway, packing problem, columns, complementary features Cognitive psychology Perceptual grouping Bottom-up

More information

Stereo Vision, Models of

Stereo Vision, Models of Stereo Vision, Models of Synonyms Models of stereopsis, models of 3D vision. Definition Stereo vision refers to the perception of depth based on slight disparities between the images seen by the two eyes,

More information

Stereo Optical Company Vision Tester Slide Package:

Stereo Optical Company Vision Tester Slide Package: Stereo Optical Company Vision Tester Slide Package: F.A.C.T. Contrast Sensitivity Test for Distance and Near, Acuity,Color, Phorias, Stereopsis, and Potential Acuity. Ideal for Clinical or Research Practices.

More information

Lecture 11. Color. UW CSE vision faculty

Lecture 11. Color. UW CSE vision faculty Lecture 11 Color UW CSE vision faculty Starting Point: What is light? Electromagnetic radiation (EMR) moving along rays in space R(λ) is EMR, measured in units of power (watts) λ is wavelength Perceiving

More information

Computational Vision U. Minn. Psy 5036 Daniel Kersten Contrast normalization, 2nd order histogram analysis of filter outputs

Computational Vision U. Minn. Psy 5036 Daniel Kersten Contrast normalization, 2nd order histogram analysis of filter outputs Computational Vision U. Minn. Psy 5036 Daniel Kersten Contrast normalization, nd order histogram analysis of filter outputs Initialize Spell check off In[537]:= SetOptions@ArrayPlot, ColorFunction Ø "GrayTones",

More information

Computational Foundations of Cognitive Science

Computational Foundations of Cognitive Science Computational Foundations of Cognitive Science Lecture 16: Models of Object Recognition Frank Keller School of Informatics University of Edinburgh keller@inf.ed.ac.uk February 23, 2010 Frank Keller Computational

More information

Seeing in three dimensions: the neurophysiology of stereopsis

Seeing in three dimensions: the neurophysiology of stereopsis eview Seeing in three dimensions: the neurophysiology of stereopsis Gregory C. DeAngelis From the pair of 2-D images formed on the retinas, the brain is capable of synthesizing a rich 3-D representation

More information

Thanks to Chris Bregler. COS 429: Computer Vision

Thanks to Chris Bregler. COS 429: Computer Vision Thanks to Chris Bregler COS 429: Computer Vision COS 429: Computer Vision Instructor: Szymon Rusinkiewicz TA: Linjie Luo smr@cs.princeton.edu linjiel@cs.princeton.edu Course web page http://www.cs.princeton.edu/courses/archive/fall09/cos429/

More information

A Modified Approach to Biologically Motivated Saliency Mapping

A Modified Approach to Biologically Motivated Saliency Mapping A Modified Approach to Biologically Motivated Saliency Mapping Shane Grant Department of Computer Science University of California, San Diego La Jolla, CA 9093 wgrant@ucsd.edu Kevin A Heins Department

More information