Introduction to Delta-Matroids

Size: px
Start display at page:

Download "Introduction to Delta-Matroids"

Transcription

1 Introduction to Delta-Matroids Carolyn Chun, Iain Moffatt, Steve Noble, Ralf Rueckriemen Brunel University 23/7/2014 Steve Noble ( Brunel University ) Introduction to Delta-Matroids 23/7/ / 20

2 Ribbon graphs Ribbon graphs A topological graph with discs for vertices, ribbons for edges. Considered up to homeomorphisms that preserve vertex-edge structure (including cyclic order of edges at vertices). = Topologically a punctured surface. Steve Noble ( Brunel University ) Introduction to Delta-Matroids 23/7/ / 20

3 Ribbon graphs and quasi-trees Definition A E is a quasi-tree in a connected ribbon graph (V, E) if the boundary of (V, A) has one component. Example A spanning tree is a quasi-tree. a b e c d abcd acde bcde ab ac ad ae bc bd be Steve Noble ( Brunel University ) Introduction to Delta-Matroids 23/7/ / 20

4 What is it? R? G M Steve Noble ( Brunel University ) Introduction to Delta-Matroids 23/7/ / 20

5 Delta-Matroid Definition (E, B) form a matroid if 1 B =. 2 If B 1, B 2 B and e B 1 B 2 then there exists f B 1 B 2 such that B 1 {e, f } B. 3 B 1 = B 2 for all B 1, B 2 B. Definition (Bouchet) (E, F) form a delta-matroid if 1 F. 2 If F 1, F 2 F and e F 1 F 2 then there exists f F 1 F 2 such that F 1 {e, f } F. We allow e = f in the definition. F is the set of feasible sets. Steve Noble ( Brunel University ) Introduction to Delta-Matroids 23/7/ / 20

6 Delta-matroids and ribbon graphs Theorem (Bouchet) The quasi-trees of a ribbon graph form the feasible sets of a delta-matroid. The ribbon graph can be embedded in an orientable surface if and only if the sizes of all feasible sets have the same parity. (Such delta-matroids are called even). Proposition Every matroid is a delta-matroid. Proposition (Bouchet) The feasible sets of smallest (largest) size form the bases of a matroid D min (D max ). Steve Noble ( Brunel University ) Introduction to Delta-Matroids 23/7/ / 20

7 Deletion and contraction in ribbon graphs b a a b a Big new vertex e d c b G non-loop c d c G e non-orientable loop d G/e orientable loop G G\e G/e Steve Noble ( Brunel University ) Introduction to Delta-Matroids 23/7/ / 20

8 Deletion and contraction in delta-matroids Just like matroids... Definition A coloop is an element in every feasible set. A loop is an element in no feasible set. Definition 1 If e is not a coloop in D, then F(D \ e) = {F : F F(D), e / F}. 2 If e is not a loop in D, then F(D/e) = {F e : F F(D), e F}. 3 If e is either a coloop or a loop then D/e = D \ e. Steve Noble ( Brunel University ) Introduction to Delta-Matroids 23/7/ / 20

9 Example Proposition Deletion and contraction in ribbon graphs corresponds to deletion and contraction in delta-matroids. 1 G= 2 3 D(G) D(G/1) D(G \ 1) Steve Noble ( Brunel University ) Introduction to Delta-Matroids 23/7/ / 20

10 Hiding edges Edges can be described by pairs of labelled arrows on the boundary: 1 orient edge e 2 add arrows where e meets vertices 3 remove edge. e e e e e e Example = 2 2 = = = 1 1 = = = 3 Steve Noble ( Brunel University ) Introduction to Delta-Matroids 23/7/ / 20

11 The geometric dual of a ribbon graph The geometric dual G of G One vertex of G in each face of G. One edge of G whenever faces of G are adjacent. embed dual expand G= take expand redraw ribbon graph Steve Noble ( Brunel University ) Introduction to Delta-Matroids = G 23/7/ / 20

12 The geometric dual of a ribbon graph The geometric dual G of G One vertex of G in each face of G. One edge of G whenever faces of G are adjacent. embed dual expand G= take expand redraw ribbon graph = G The geometric dual G of a ribbon graph G Fill in punctures of surface G with vertices of G, then delete vertices of G to get G. Steve Noble ( Brunel University ) Introduction to Delta-Matroids 23/7/ / 20

13 Partial duals The partial dual G A of G is obtained by forming the dual only at the edges in A E(G). Definition: partial duals (S. Chmutov 07) 1 A E(G) 2 Replace edges not in A by arrows. 3 Form geometric dual. 4 Add back hidden edges. 5 Gives the partial dual G A. Example G = e = G {e} Steve Noble ( Brunel University ) Introduction to Delta-Matroids 23/7/ / 20

14 Partial dual of a single edge G non-loop non-orientable loop orientable loop G e Steve Noble ( Brunel University ) Introduction to Delta-Matroids 23/7/ / 20

15 Another example Forming G A with A = {2, 3}. 1 G= 2 = 3 1: given G and A 2: hide edges not in A = = 3: form the dual 4 & 5: add edge back to get G A Steve Noble ( Brunel University ) Introduction to Delta-Matroids 23/7/ / 20

16 The example continued... 1 G= 2 3 has four partial duals (up to isomorphism): Observe that G and G A can have very different graph theoretic and topological properties. Steve Noble ( Brunel University ) Introduction to Delta-Matroids 23/7/ / 20

17 Partial dual Definition The partial dual or twist of the delta-matroid D = (E, F) by a set A E is the delta-matroid D A on E with feasible sets {F A : F F}. Proposition Partial duals of ribbon graphs and delta-matroids correspond. Steve Noble ( Brunel University ) Introduction to Delta-Matroids 23/7/ / 20

18 Another class of delta-matroids Partial duals of matroids form a minor-closed family of delta-matroids. Theorem (Duchamp) The excluded minors for being a partial dual of a matroid are Theorem (CMNR) D 0 D 1 D D A is a matroid if and only if A is separating in D min and both D \ A and D \ A c are matroids. Steve Noble ( Brunel University ) Introduction to Delta-Matroids 23/7/ / 20

19 Bipartite and Eulerian matroids Definition A bipartite (Eulerian) matroid is one in which all circuits (cocircuits) have an even number of elements. Theorem (CMNR) If M is a bipartite (Eulerian) binary matroid then (M A) min is bipartite (Eulerian) if and only if A is a bicycle i.e. in both the cycle and cocycle spaces. Steve Noble ( Brunel University ) Introduction to Delta-Matroids 23/7/ / 20

20 Representable delta-matroids Binary delta-matroids A symmetric binary matrix The non-singular principal sub-matrices Steve Noble ( Brunel University ) Introduction to Delta-Matroids 23/7/ / 20

21 Representable delta-matroids Binary delta-matroids A symmetric binary matrix The non-singular principal sub-matrices Definition (Bouchet) Binary delta-matroids are partial duals of those formed from symmetric binary matrices. This extends to any field with a slight technicality. Steve Noble ( Brunel University ) Introduction to Delta-Matroids 23/7/ / 20

22 Representable delta-matroids Binary delta-matroids A symmetric binary matrix The non-singular principal sub-matrices Proposition (Bouchet) Every matroid representable over F is representable over F as a delta-matroid. Steve Noble ( Brunel University ) Introduction to Delta-Matroids 23/7/ / 20

23 Questions Any questions? Steve Noble ( Brunel University ) Introduction to Delta-Matroids 23/7/ / 20

24 Questions Any questions? Over to Carolyn... Steve Noble ( Brunel University ) Introduction to Delta-Matroids 23/7/ / 20

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 351 George Voutsadakis (LSSU) Introduction to Graph Theory August 2018 1 /

More information

Building Roads. Page 2. I = {;, a, b, c, d, e, ab, ac, ad, ae, bc, bd, be, cd, ce, de, abd, abe, acd, ace, bcd, bce, bde}

Building Roads. Page 2. I = {;, a, b, c, d, e, ab, ac, ad, ae, bc, bd, be, cd, ce, de, abd, abe, acd, ace, bcd, bce, bde} Page Building Roads Page 2 2 3 4 I = {;, a, b, c, d, e, ab, ac, ad, ae, bc, bd, be, cd, ce, de, abd, abe, acd, ace, bcd, bce, bde} Building Roads Page 3 2 a d 3 c b e I = {;, a, b, c, d, e, ab, ac, ad,

More information

Chapter 2. Splitting Operation and n-connected Matroids. 2.1 Introduction

Chapter 2. Splitting Operation and n-connected Matroids. 2.1 Introduction Chapter 2 Splitting Operation and n-connected Matroids The splitting operation on an n-connected binary matroid may not yield an n-connected binary matroid. In this chapter, we provide a necessary and

More information

Matroids, graphs in surfaces, and the Tutte polynomial

Matroids, graphs in surfaces, and the Tutte polynomial s, graphs in surfaces, and the 2016 International Workshop on Structure in Graphs and s Iain Moffatt and Ben Smith Royal Holloway, University of London Eindhoven, 29 th July 2016 Overview Introduce matroidal

More information

Graph and Digraph Glossary

Graph and Digraph Glossary 1 of 15 31.1.2004 14:45 Graph and Digraph Glossary A B C D E F G H I-J K L M N O P-Q R S T U V W-Z Acyclic Graph A graph is acyclic if it contains no cycles. Adjacency Matrix A 0-1 square matrix whose

More information

Further Mathematics 2016 Module 2: NETWORKS AND DECISION MATHEMATICS Chapter 9 Undirected Graphs and Networks

Further Mathematics 2016 Module 2: NETWORKS AND DECISION MATHEMATICS Chapter 9 Undirected Graphs and Networks Further Mathematics 2016 Module 2: NETWORKS AND DECISION MATHEMATICS Chapter 9 Undirected Graphs and Networks Key knowledge the conventions, terminology, properties and types of graphs; edge, face, loop,

More information

GRAPHS: THEORY AND ALGORITHMS

GRAPHS: THEORY AND ALGORITHMS GRAPHS: THEORY AND ALGORITHMS K. THULASIRAMAN M. N. S. SWAMY Concordia University Montreal, Canada A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York / Chichester / Brisbane / Toronto /

More information

Algebraic Graph Theory

Algebraic Graph Theory Chris Godsil Gordon Royle Algebraic Graph Theory With 120 Illustrations Springer Preface 1 Graphs 1 1.1 Graphs 1 1.2 Subgraphs 3 1.3 Automorphisms 4 1.4 Homomorphisms 6 1.5 Circulant Graphs 8 1.6 Johnson

More information

Module 2: NETWORKS AND DECISION MATHEMATICS

Module 2: NETWORKS AND DECISION MATHEMATICS Further Mathematics 2017 Module 2: NETWORKS AND DECISION MATHEMATICS Chapter 9 Undirected Graphs and Networks Key knowledge the conventions, terminology, properties and types of graphs; edge, face, loop,

More information

MAS 341: GRAPH THEORY 2016 EXAM SOLUTIONS

MAS 341: GRAPH THEORY 2016 EXAM SOLUTIONS MAS 341: GRAPH THEORY 2016 EXAM SOLUTIONS 1. Question 1 Part i. There are many Hamiltonian cycles; e.g., ABLKJEDFIHGC. We now show that if we remove vertex D, the result G \ {D} is not hamiltonian. Note

More information

Lecture 3A: Generalized associahedra

Lecture 3A: Generalized associahedra Lecture 3A: Generalized associahedra Nathan Reading NC State University Cluster Algebras and Cluster Combinatorics MSRI Summer Graduate Workshop, August 2011 Introduction Associahedron and cyclohedron

More information

The following is a summary, hand-waving certain things which actually should be proven.

The following is a summary, hand-waving certain things which actually should be proven. 1 Basics of Planar Graphs The following is a summary, hand-waving certain things which actually should be proven. 1.1 Plane Graphs A plane graph is a graph embedded in the plane such that no pair of lines

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Tandy Warnow January 20, 2017 Graphs Tandy Warnow Graphs A graph G = (V, E) is an object that contains a vertex set V and an edge set E. We also write V (G) to denote the vertex

More information

Graphs and Network Flows IE411. Lecture 21. Dr. Ted Ralphs

Graphs and Network Flows IE411. Lecture 21. Dr. Ted Ralphs Graphs and Network Flows IE411 Lecture 21 Dr. Ted Ralphs IE411 Lecture 21 1 Combinatorial Optimization and Network Flows In general, most combinatorial optimization and integer programming problems are

More information

Nim-Regularity of Graphs

Nim-Regularity of Graphs Nim-Regularity of Graphs Nathan Reading School of Mathematics, University of Minnesota Minneapolis, MN 55455 reading@math.umn.edu Submitted: November 24, 1998; Accepted: January 22, 1999 Abstract. Ehrenborg

More information

Name Date Class. Vertical angles are opposite angles formed by the intersection of two lines. Vertical angles are congruent.

Name Date Class. Vertical angles are opposite angles formed by the intersection of two lines. Vertical angles are congruent. SKILL 43 Angle Relationships Example 1 Adjacent angles are pairs of angles that share a common vertex and a common side. Vertical angles are opposite angles formed by the intersection of two lines. Vertical

More information

Lecture 5: Graphs. Rajat Mittal. IIT Kanpur

Lecture 5: Graphs. Rajat Mittal. IIT Kanpur Lecture : Graphs Rajat Mittal IIT Kanpur Combinatorial graphs provide a natural way to model connections between different objects. They are very useful in depicting communication networks, social networks

More information

6. Lecture notes on matroid intersection

6. Lecture notes on matroid intersection Massachusetts Institute of Technology 18.453: Combinatorial Optimization Michel X. Goemans May 2, 2017 6. Lecture notes on matroid intersection One nice feature about matroids is that a simple greedy algorithm

More information

The (extended) coset leader and list weight enumerator

The (extended) coset leader and list weight enumerator The (extended) coset leader and list weight enumerator Relinde Jurrius (joint work with Ruud Pellikaan) Vrije Universiteit Brussel Fq11 July 24, 2013 Relinde Jurrius (VUB) Coset leader weight enumerator

More information

How to find a minimum spanning tree

How to find a minimum spanning tree Print How to find a minimum spanning tree Definitions Kruskal s algorithm Spanning tree example Definitions Trees A tree is a connected graph without any cycles. It can also be defined as a connected graph

More information

Snakes, lattice path matroids and a conjecture by Merino and Welsh

Snakes, lattice path matroids and a conjecture by Merino and Welsh Snakes, lattice path matroids and a conjecture by Merino and Welsh Leonardo Ignacio Martínez Sandoval Ben-Gurion University of the Negev Joint work with Kolja Knauer - Université Aix Marseille Jorge Ramírez

More information

Graphs on surfaces and virtual link theory. Sergei Chmutov Max-Planck-Institut für Mathematik, Bonn The Ohio State University, Mansfield

Graphs on surfaces and virtual link theory. Sergei Chmutov Max-Planck-Institut für Mathematik, Bonn The Ohio State University, Mansfield University of Liverpool Graphs on surfaces and virtual link theory Sergei Chmutov Max-Planck-Institut für Mathematik, Bonn The Ohio State University, Mansfield Friday, December, 008 M. B. Thistlethwaite

More information

Lesson 3.6 Overlapping Triangles

Lesson 3.6 Overlapping Triangles Lesson 3.6 Overlapping Triangles Getting Ready: Each division in the given triangle is 1 unit long. Hence, the side of the largest triangle is 4- unit long. Figure 3.6.1. Something to think about How many

More information

Bollobás Riordan and Relative Tutte Polynomials

Bollobás Riordan and Relative Tutte Polynomials Arnold Math J. (2015) 1:283 298 DOI 10.1007/s40598-015-0021-7 RESEARCH CONTRIBUTION Bollobás Riordan and Relative Tutte Polynomials Clark Butler 1 Sergei Chmutov 2 Received: 8 December 2014 / Revised:

More information

Proposition 1. The edges of an even graph can be split (partitioned) into cycles, no two of which have an edge in common.

Proposition 1. The edges of an even graph can be split (partitioned) into cycles, no two of which have an edge in common. Math 3116 Dr. Franz Rothe June 5, 2012 08SUM\3116_2012t1.tex Name: Use the back pages for extra space 1 Solution of Test 1.1 Eulerian graphs Proposition 1. The edges of an even graph can be split (partitioned)

More information

arxiv: v1 [math.co] 12 Jan 2016

arxiv: v1 [math.co] 12 Jan 2016 THE INTERLACE POLYNOMIAL ADA MORSE arxiv:1601.03003v1 [math.co] 12 Jan 2016 Abstract. In this paper, we survey results regarding the interlace polynomial of a graph, connections to such graph polynomials

More information

1.4 Euler Diagram Layout Techniques

1.4 Euler Diagram Layout Techniques 1.4 Euler Diagram Layout Techniques Euler Diagram Layout Techniques: Overview Dual graph based methods Inductive methods Drawing with circles Including software demos. How is the drawing problem stated?

More information

Three applications of Euler s formula. Chapter 10

Three applications of Euler s formula. Chapter 10 Three applications of Euler s formula Chapter 10 A graph is planar if it can be drawn in the plane R without crossing edges (or, equivalently, on the -dimensional sphere S ). We talk of a plane graph if

More information

Tree Decompositions Why Matroids are Useful

Tree Decompositions Why Matroids are Useful Petr Hliněný, W. Graph Decompositions, Vienna, 2004 Tree Decompositions Why Matroids are Useful Petr Hliněný Tree Decompositions Why Matroids are Useful Department of Computer Science FEI, VŠB Technical

More information

Nesting points in the sphere. Dan Archdeacon. University of Vermont. Feliu Sagols.

Nesting points in the sphere. Dan Archdeacon. University of Vermont.   Feliu Sagols. Nesting points in the sphere Dan Archdeacon Dept. of Computer Science University of Vermont Burlington, VT, USA 05405 e-mail: dan.archdeacon@uvm.edu Feliu Sagols Dept. of Computer Science University of

More information

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS

CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 1 UNIT I INTRODUCTION CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 1. Define Graph. A graph G = (V, E) consists

More information

0.0.1 Network Analysis

0.0.1 Network Analysis Graph Theory 0.0.1 Network Analysis Prototype Example: In Algonquian Park the rangers have set up snowmobile trails with various stops along the way. The system of trails is our Network. The main entrance

More information

Greedy Algorithms and Matroids. Andreas Klappenecker

Greedy Algorithms and Matroids. Andreas Klappenecker Greedy Algorithms and Matroids Andreas Klappenecker Greedy Algorithms A greedy algorithm solves an optimization problem by working in several phases. In each phase, a decision is made that is locally optimal

More information

Topological cycle matroids of infinite graphs

Topological cycle matroids of infinite graphs Topological cycle matroids of infinite graphs Johannes Carmesin September 28, 2016 Abstract We prove that the topological cycles of an arbitrary infinite graph together with its topological ends form a

More information

Numeral system Numerals

Numeral system Numerals Book B: Chapter 9 Different Numeral Systems Revision. (a) Numerals in the system Numeral system Numerals Denary,,,,,, 6, 7, 8 and 9 Binary and Hexadecimal,,,,,, 6, 7, 8, 9, A (i.e. ), B (i.e. ), C (i.e.

More information

Gate Level Minimization Map Method

Gate Level Minimization Map Method Gate Level Minimization Map Method Complexity of hardware implementation is directly related to the complexity of the algebraic expression Truth table representation of a function is unique Algebraically

More information

Elements of Graph Theory

Elements of Graph Theory Elements of Graph Theory Quick review of Chapters 9.1 9.5, 9.7 (studied in Mt1348/2008) = all basic concepts must be known New topics we will mostly skip shortest paths (Chapter 9.6), as that was covered

More information

Greedy Algorithms and Matroids. Andreas Klappenecker

Greedy Algorithms and Matroids. Andreas Klappenecker Greedy Algorithms and Matroids Andreas Klappenecker Greedy Algorithms A greedy algorithm solves an optimization problem by working in several phases. In each phase, a decision is made that is locally optimal

More information

Connectivity and Tiling Algorithms

Connectivity and Tiling Algorithms Connectivity and Tiling Algorithms Department of Mathematics Louisiana State University Phylanx Kick-off meeting Baton Rouge, August 24, 2017 2/29 Part I My research area: matroid theory 3/29 Matroids

More information

Assignment 4 Solutions of graph problems

Assignment 4 Solutions of graph problems Assignment 4 Solutions of graph problems 1. Let us assume that G is not a cycle. Consider the maximal path in the graph. Let the end points of the path be denoted as v 1, v k respectively. If either of

More information

BACKGROUND: A BRIEF INTRODUCTION TO GRAPH THEORY

BACKGROUND: A BRIEF INTRODUCTION TO GRAPH THEORY BACKGROUND: A BRIEF INTRODUCTION TO GRAPH THEORY General definitions; Representations; Graph Traversals; Topological sort; Graphs definitions & representations Graph theory is a fundamental tool in sparse

More information

Missouri State University REU, 2013

Missouri State University REU, 2013 G. Hinkle 1 C. Robichaux 2 3 1 Department of Mathematics Rice University 2 Department of Mathematics Louisiana State University 3 Department of Mathematics Missouri State University Missouri State University

More information

Planar Graph (7A) Young Won Lim 5/21/18

Planar Graph (7A) Young Won Lim 5/21/18 Planar Graph (7A) Copyright (c) 2015 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

Definition. Given a (v,k,λ)- BIBD, (X,B), a set of disjoint blocks of B which partition X is called a parallel class.

Definition. Given a (v,k,λ)- BIBD, (X,B), a set of disjoint blocks of B which partition X is called a parallel class. Resolvable BIBDs Definition Given a (v,k,λ)- BIBD, (X,B), a set of disjoint blocks of B which partition X is called a parallel class. A partition of B into parallel classes (there must be r of them) is

More information

1. a graph G = (V (G), E(G)) consists of a set V (G) of vertices, and a set E(G) of edges (edges are pairs of elements of V (G))

1. a graph G = (V (G), E(G)) consists of a set V (G) of vertices, and a set E(G) of edges (edges are pairs of elements of V (G)) 10 Graphs 10.1 Graphs and Graph Models 1. a graph G = (V (G), E(G)) consists of a set V (G) of vertices, and a set E(G) of edges (edges are pairs of elements of V (G)) 2. an edge is present, say e = {u,

More information

Introductory Combinatorics

Introductory Combinatorics Introductory Combinatorics Third Edition KENNETH P. BOGART Dartmouth College,. " A Harcourt Science and Technology Company San Diego San Francisco New York Boston London Toronto Sydney Tokyo xm CONTENTS

More information

Discrete Mathematics. Chapter 7. trees Sanguk Noh

Discrete Mathematics. Chapter 7. trees Sanguk Noh Discrete Mathematics Chapter 7. trees Sanguk Noh Table Trees Labeled Trees Tree searching Undirected trees Minimal Spanning Trees Trees Theorem : Let (T, v ) be a rooted tree. Then, There are no cycles

More information

Discrete Structures CISC 2315 FALL Graphs & Trees

Discrete Structures CISC 2315 FALL Graphs & Trees Discrete Structures CISC 2315 FALL 2010 Graphs & Trees Graphs A graph is a discrete structure, with discrete components Components of a Graph edge vertex (node) Vertices A graph G = (V, E), where V is

More information

1. The following graph is not Eulerian. Make it into an Eulerian graph by adding as few edges as possible.

1. The following graph is not Eulerian. Make it into an Eulerian graph by adding as few edges as possible. 1. The following graph is not Eulerian. Make it into an Eulerian graph by adding as few edges as possible. A graph is Eulerian if it has an Eulerian circuit, which occurs if the graph is connected and

More information

Planar Graph (7A) Young Won Lim 6/20/18

Planar Graph (7A) Young Won Lim 6/20/18 Planar Graph (7A) Copyright (c) 2015 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points MC 0 GRAPH THEORY 0// Solutions to HW # 0 points + XC points ) [CH] p.,..7. This problem introduces an important class of graphs called the hypercubes or k-cubes, Q, Q, Q, etc. I suggest that before you

More information

Matchings. Examples. K n,m, K n, Petersen graph, Q k ; graphs without perfect matching. A maximal matching cannot be enlarged by adding another edge.

Matchings. Examples. K n,m, K n, Petersen graph, Q k ; graphs without perfect matching. A maximal matching cannot be enlarged by adding another edge. Matchings A matching is a set of (non-loop) edges with no shared endpoints. The vertices incident to an edge of a matching M are saturated by M, the others are unsaturated. A perfect matching of G is a

More information

Introduction to Graphs

Introduction to Graphs Graphs Introduction to Graphs Graph Terminology Directed Graphs Special Graphs Graph Coloring Representing Graphs Connected Graphs Connected Component Reading (Epp s textbook) 10.1-10.3 1 Introduction

More information

The Active Bijection in Graphs, Hyperplane Arrangements, and Oriented Matroids

The Active Bijection in Graphs, Hyperplane Arrangements, and Oriented Matroids The Active Bijection in Graphs, Hyperplane Arrangements, and Oriented Matroids. The Fully Optimal Basis of a Bounded Region Emeric Gioan Michel Las Vergnas published in European Journal of Combinatorics

More information

Unlabeled equivalence for matroids representable over finite fields

Unlabeled equivalence for matroids representable over finite fields Unlabeled equivalence for matroids representable over finite fields November 16, 2012 S. R. Kingan Department of Mathematics Brooklyn College, City University of New York 2900 Bedford Avenue Brooklyn,

More information

Combinational Circuits Digital Logic (Materials taken primarily from:

Combinational Circuits Digital Logic (Materials taken primarily from: Combinational Circuits Digital Logic (Materials taken primarily from: http://www.facstaff.bucknell.edu/mastascu/elessonshtml/eeindex.html http://www.cs.princeton.edu/~cos126 ) Digital Systems What is a

More information

Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem

Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem Math 443/543 Graph Theory Notes 11: Graph minors and Kuratowski s Theorem David Glickenstein November 26, 2008 1 Graph minors Let s revisit some de nitions. Let G = (V; E) be a graph. De nition 1 Removing

More information

CONTENTS Equivalence Classes Partition Intersection of Equivalence Relations Example Example Isomorphis

CONTENTS Equivalence Classes Partition Intersection of Equivalence Relations Example Example Isomorphis Contents Chapter 1. Relations 8 1. Relations and Their Properties 8 1.1. Definition of a Relation 8 1.2. Directed Graphs 9 1.3. Representing Relations with Matrices 10 1.4. Example 1.4.1 10 1.5. Inverse

More information

1 Digraphs. Definition 1

1 Digraphs. Definition 1 1 Digraphs Definition 1 Adigraphordirected graphgisatriplecomprisedofavertex set V(G), edge set E(G), and a function assigning each edge an ordered pair of vertices (tail, head); these vertices together

More information

Introduction to. Graph Theory. Second Edition. Douglas B. West. University of Illinois Urbana. ftentice iiilil PRENTICE HALL

Introduction to. Graph Theory. Second Edition. Douglas B. West. University of Illinois Urbana. ftentice iiilil PRENTICE HALL Introduction to Graph Theory Second Edition Douglas B. West University of Illinois Urbana ftentice iiilil PRENTICE HALL Upper Saddle River, NJ 07458 Contents Preface xi Chapter 1 Fundamental Concepts 1

More information

Max flow min cut in higher dimensions

Max flow min cut in higher dimensions Art Duval 1 Caroline Klivans 2 Jeremy Martin 3 1 University of Texas at El Paso 2 Brown University 3 University of Kansas Joint Mathematics Meeting AMS Special Session on Topological Combinatorics San

More information

Ma/CS 6b Class 11: Kuratowski and Coloring

Ma/CS 6b Class 11: Kuratowski and Coloring Ma/CS 6b Class 11: Kuratowski and Coloring By Adam Sheffer Kuratowski's Theorem Theorem. A graph is planar if and only if it does not have K 5 and K 3,3 as topological minors. We know that if a graph contains

More information

12/15/2015. Directions

12/15/2015. Directions Directions You will have 4 minutes to answer each question. The scoring will be 16 points for a correct response in the 1 st minute, 12 points for a correct response in the 2 nd minute, 8 points for a

More information

Graphs and Hypergraphs

Graphs and Hypergraphs Graphs and Hypergraphs CLAUDE BERGE University of Paris Translated by Edward Minieka NORTH-HOLLAND PUBLISHING COMPANY-AMSTERDAM LONDON AMERICAN ELSEVIER PUBLISHING COMPANY, INC. - NEW YORK CHAPTER 1. BASIC

More information

MATH 350 GRAPH THEORY & COMBINATORICS. Contents

MATH 350 GRAPH THEORY & COMBINATORICS. Contents MATH 350 GRAPH THEORY & COMBINATORICS PROF. SERGEY NORIN, FALL 2013 Contents 1. Basic definitions 1 2. Connectivity 2 3. Trees 3 4. Spanning Trees 3 5. Shortest paths 4 6. Eulerian & Hamiltonian cycles

More information

Planarity. 1 Introduction. 2 Topological Results

Planarity. 1 Introduction. 2 Topological Results Planarity 1 Introduction A notion of drawing a graph in the plane has led to some of the most deep results in graph theory. Vaguely speaking by a drawing or embedding of a graph G in the plane we mean

More information

Planarity: dual graphs

Planarity: dual graphs : dual graphs Math 104, Graph Theory March 28, 2013 : dual graphs Duality Definition Given a plane graph G, the dual graph G is the plane graph whose vtcs are the faces of G. The correspondence between

More information

Shannon Switching Game

Shannon Switching Game EECS 495: Combinatorial Optimization Lecture 1 Shannon s Switching Game Shannon Switching Game In the Shannon switching game, two players, Join and Cut, alternate choosing edges on a graph G. Join s objective

More information

Dual-fitting analysis of Greedy for Set Cover

Dual-fitting analysis of Greedy for Set Cover Dual-fitting analysis of Greedy for Set Cover We showed earlier that the greedy algorithm for set cover gives a H n approximation We will show that greedy produces a solution of cost at most H n OPT LP

More information

Combinatorics Summary Sheet for Exam 1 Material 2019

Combinatorics Summary Sheet for Exam 1 Material 2019 Combinatorics Summary Sheet for Exam 1 Material 2019 1 Graphs Graph An ordered three-tuple (V, E, F ) where V is a set representing the vertices, E is a set representing the edges, and F is a function

More information

Chapter 1 Graph Theory

Chapter 1 Graph Theory Chapter Graph Theory - Representations of Graphs Graph, G=(V,E): It consists of the set V of vertices and the set E of edges. If each edge has its direction, the graph is called the directed graph (digraph).

More information

MATH 682 Notes Combinatorics and Graph Theory II. One interesting class of graphs rather akin to trees and acyclic graphs is the bipartite graph:

MATH 682 Notes Combinatorics and Graph Theory II. One interesting class of graphs rather akin to trees and acyclic graphs is the bipartite graph: 1 Bipartite graphs One interesting class of graphs rather akin to trees and acyclic graphs is the bipartite graph: Definition 1. A graph G is bipartite if the vertex-set of G can be partitioned into two

More information

Gate Level Minimization

Gate Level Minimization Gate Level Minimization By Dr. M. Hebaishy Digital Logic Design Ch- Simplifying Boolean Equations Example : Y = AB + AB Example 2: = B (A + A) T8 = B () T5 = B T Y = A(AB + ABC) = A (AB ( + C ) ) T8 =

More information

Upright-Quad Drawing of st-planar Learning Spaces David Eppstein

Upright-Quad Drawing of st-planar Learning Spaces David Eppstein Upright-Quad Drawing of st-planar Learning Spaces David Eppstein Computer Science Department Univ. of California, Irvine Design Principle for Specialized Graph Drawing Algorithms If you re designing algorithms

More information

v V Question: How many edges are there in a graph with 10 vertices each of degree 6?

v V Question: How many edges are there in a graph with 10 vertices each of degree 6? ECS20 Handout Graphs and Trees March 4, 2015 (updated 3/9) Notion of a graph 1. A graph G = (V,E) consists of V, a nonempty set of vertices (or nodes) and E, a set of pairs of elements of V called edges.

More information

Introduction to Trees

Introduction to Trees Introduction to Trees Tandy Warnow December 28, 2016 Introduction to Trees Tandy Warnow Clades of a rooted tree Every node v in a leaf-labelled rooted tree defines a subset of the leafset that is below

More information

The planar cubic Cayley graphs of connectivity 2

The planar cubic Cayley graphs of connectivity 2 The planar cubic Cayley graphs of connectivity 2 Agelos Georgakopoulos Technische Universität Graz Steyrergasse 30, 8010 Graz, Austria March 2, 2011 Abstract We classify the planar cubic Cayley graphs

More information

Mutation-linear algebra and universal geometric cluster algebras

Mutation-linear algebra and universal geometric cluster algebras Mutation-linear algebra and universal geometric cluster algebras Nathan Reading NC State University Mutation-linear ( µ-linear ) algebra Universal geometric cluster algebras The mutation fan Universal

More information

arxiv: v1 [math.co] 28 Sep 2010

arxiv: v1 [math.co] 28 Sep 2010 Densities of Minor-Closed Graph Families David Eppstein Computer Science Department University of California, Irvine Irvine, California, USA arxiv:1009.5633v1 [math.co] 28 Sep 2010 September 3, 2018 Abstract

More information

Discrete Mathematics (2009 Spring) Graphs (Chapter 9, 5 hours)

Discrete Mathematics (2009 Spring) Graphs (Chapter 9, 5 hours) Discrete Mathematics (2009 Spring) Graphs (Chapter 9, 5 hours) Chih-Wei Yi Dept. of Computer Science National Chiao Tung University June 1, 2009 9.1 Graphs and Graph Models What are Graphs? General meaning

More information

Graph Theory. ICT Theory Excerpt from various sources by Robert Pergl

Graph Theory. ICT Theory Excerpt from various sources by Robert Pergl Graph Theory ICT Theory Excerpt from various sources by Robert Pergl What can graphs model? Cost of wiring electronic components together. Shortest route between two cities. Finding the shortest distance

More information

GRAPHS Lecture 19 CS2110 Spring 2013

GRAPHS Lecture 19 CS2110 Spring 2013 GRAPHS Lecture 19 CS2110 Spring 2013 Announcements 2 Prelim 2: Two and a half weeks from now Tuesday, April16, 7:30-9pm, Statler Exam conflicts? We need to hear about them and can arrange a makeup It would

More information

Happy Endings for Flip Graphs. David Eppstein Univ. of California, Irvine Computer Science Department

Happy Endings for Flip Graphs. David Eppstein Univ. of California, Irvine Computer Science Department Happy Endings for Flip Graphs David Eppstein Univ. of California, Irvine Computer Science Department Rotation in binary trees Rearrange links in and out of two adjacent nodes while preserving in-order

More information

Octonion multiplication and Heawood s map

Octonion multiplication and Heawood s map Octonion multiplication and Heawood s map Bruno Sévennec arxiv:0.0v [math.ra] 29 Jun 20 June 30, 20 Almost any article or book dealing with Cayley-Graves algebra O of octonions (to be recalled shortly)

More information

The Further Mathematics Support Programme

The Further Mathematics Support Programme Degree Topics in Mathematics Groups A group is a mathematical structure that satisfies certain rules, which are known as axioms. Before we look at the axioms, we will consider some terminology. Elements

More information

About the Tutorial. Audience. Prerequisites. Disclaimer & Copyright. Graph Theory

About the Tutorial. Audience. Prerequisites. Disclaimer & Copyright. Graph Theory About the Tutorial This tutorial offers a brief introduction to the fundamentals of graph theory. Written in a reader-friendly style, it covers the types of graphs, their properties, trees, graph traversability,

More information

Angle Bisectors in a Triangle- Teacher

Angle Bisectors in a Triangle- Teacher Angle Bisectors in a Triangle- Teacher Concepts Relationship between an angle bisector and the arms of the angle Applying the Angle Bisector Theorem and its converse Materials TI-Nspire Math and Science

More information

EULERIAN AND BIPARTITE ORIENTABLE MATROIDS Laura E. Chávez Lomelí and Luis A. Goddyn

EULERIAN AND BIPARTITE ORIENTABLE MATROIDS Laura E. Chávez Lomelí and Luis A. Goddyn chapter02 OUP012/McDiarmid (Typeset by SPi, Delhi) 11 of 27 July 4, 2006 13:12 2 EULERIAN AND BIPARTITE ORIENTABLE MATROIDS Laura E. Chávez Lomelí and Luis A. Goddyn Welsh [6] extended to the class of

More information

MATH 890 HOMEWORK 2 DAVID MEREDITH

MATH 890 HOMEWORK 2 DAVID MEREDITH MATH 890 HOMEWORK 2 DAVID MEREDITH (1) Suppose P and Q are polyhedra. Then P Q is a polyhedron. Moreover if P and Q are polytopes then P Q is a polytope. The facets of P Q are either F Q where F is a facet

More information

Computing Linkless and Flat Embeddings of Graphs in R 3

Computing Linkless and Flat Embeddings of Graphs in R 3 Computing Linkless and Flat Embeddings of Graphs in R 3 Stephan Kreutzer Technical University Berlin based on joint work with Ken-ichi Kawarabayashi, Bojan Mohar and Bruce Reed Graph Theory @ Georgie Tech

More information

CONTRACTIONS OF PLANAR GRAPHS

CONTRACTIONS OF PLANAR GRAPHS Marcin Kamiński Brussels Daniël Paulusma Durham Dimitrios Thilikos Athens ESA 2010 CONTAINMENT RELATIONS \v \e /e 2 CONTAINMENT RELATIONS \v \e /e induced subgraph subgraph minor contraction induced minor

More information

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2 Graph Theory S I I S S I I S Graphs Definition A graph G is a pair consisting of a vertex set V (G), and an edge set E(G) ( ) V (G). x and y are the endpoints of edge e = {x, y}. They are called adjacent

More information

CSCI 220: Computer Architecture I Instructor: Pranava K. Jha. Simplification of Boolean Functions using a Karnaugh Map

CSCI 220: Computer Architecture I Instructor: Pranava K. Jha. Simplification of Boolean Functions using a Karnaugh Map CSCI 22: Computer Architecture I Instructor: Pranava K. Jha Simplification of Boolean Functions using a Karnaugh Map Q.. Plot the following Boolean function on a Karnaugh map: f(a, b, c, d) = m(, 2, 4,

More information

Lecture 18: Groupoids and spaces

Lecture 18: Groupoids and spaces Lecture 18: Groupoids and spaces The simplest algebraic invariant of a topological space T is the set π 0 T of path components. The next simplest invariant, which encodes more of the topology, is the fundamental

More information

Multi-edges, loops, and two or more pieces are all allowed. Example 4 (Not Graphs). None of the following are graphs.

Multi-edges, loops, and two or more pieces are all allowed. Example 4 (Not Graphs). None of the following are graphs. MA 111, Topic 4: Graph Theory Our last topic in this course is called Graph Theory. This is the mathematics of connections, associations, and relationships. Definition 1. A Graph is a set of points called

More information

6.2 Classification of Closed Surfaces

6.2 Classification of Closed Surfaces Table 6.1: A polygon diagram 6.1.2 Second Proof: Compactifying Teichmuller Space 6.2 Classification of Closed Surfaces We saw that each surface has a triangulation. Compact surfaces have finite triangulations.

More information

On the Component Number of Links from Plane Graphs

On the Component Number of Links from Plane Graphs On the Component Number of Links from Plane Graphs Daniel S. Silver Susan G. Williams January 20, 2015 Abstract A short, elementary proof is given of the result that the number of components of a link

More information

Basics of Graph Theory

Basics of Graph Theory Basics of Graph Theory 1 Basic notions A simple graph G = (V, E) consists of V, a nonempty set of vertices, and E, a set of unordered pairs of distinct elements of V called edges. Simple graphs have their

More information

Gate-Level Minimization

Gate-Level Minimization MEC520 디지털공학 Gate-Level Minimization Jee-Hwan Ryu School of Mechanical Engineering Gate-Level Minimization-The Map Method Truth table is unique Many different algebraic expression Boolean expressions may

More information

Cyclic base orders of matroids

Cyclic base orders of matroids Cyclic base orders of matroids Doug Wiedemann May 9, 2006 Abstract This is a typewritten version, with many corrections, of a handwritten note, August 1984, for a course taught by Jack Edmonds. The purpose

More information