Parallel edge-based implementation of the finite element method for shallow water equations

Size: px
Start display at page:

Download "Parallel edge-based implementation of the finite element method for shallow water equations"

Transcription

1 Parallel edge-based implementation of the finite element method for shallow water equations I. Slobodcicov, F.L.B. Ribeiro, & A.L.G.A. Coutinho Programa de Engenharia Civil, COPPE / Universidade Federal do Rio de Janeiro, Brazil Abstract A parallel implementation of the fmite element method is presented in this paper, focusing on the fully coupled stabilized solutions of nonlinear systems arising from the discretization of shallow water equations. Edge-based data structures are used in order to optirnize matrix-vector products appearing in the GMRES iterative solver. Numerical examples, including the tidal flow simulation in the coastal lagoon of Araruama, Brazil, show the speed-up of the present implementation, designed for PC clusters running MPI. 1 Introduction In this paper we are interested in the numerical solution of the so-called vertically averaged (2DH) model of the shallow water equations (SW) which satisfactory describes the hydrodynamics (circulation of water) in a class of wellmixed estuaries and coastal embayments. One of the major numerical difficulties associated with the SWE is its convection-dominated character. Many numerical procedures rely on characteristic or semi-lagrangian based methods in order to circumvent this drawback. Another way to deal with this problem, in its full Eulerian description, is to use stabilized finite element methods [2,4,5,6]. In this work we adopt this methodology, using a semi-discrete variational formulation for the non-conservative form of the S W, written in terms of velocity-celerity

2 14 Coastal Engineering V1 variables. Following this approach, the CAU finite element method [1,3] is constructed. The finite element discretization of the SWE leads to a nonlinear coupled nonsymmetric system of algebraic equations. In this paper we discuss a parallel implementation using the GMRES iterative solver. Edge-based data structures are used in order to optimize matrix-vector products appearing in the GMRES. Edge-based data structures have been used before with success in the solution of the SWE [7,8]. We simulate the tidal flow in the coastal lagoon of Araruama, Brazil, for three successive refined meshes, showing the good speed-up of the present implementation, designed for PC clusters running MPI. 2 Governing equations The 2DH model for the SWE is obtained by vertical integration averaging of the three-dimensional Navier-Stokes equations, with bottom and surface boundary conditions included. The principal limitation of vertically averaged models is that they do not consider the effects of velocity and density variations in the vertical direction. However, the 2DH model can be adequate for the consideration of pronounced unsteady flows in shallow water bodies. Let U, (i = 1, 2) represent the horizontal average velocity components and c = J g the ~ wave celerity, where g is the gravity acceleration and H = 77 +h is the total water depth (h is the water depth of the undisturbed configuration and 77 is the water surface elevation). Using these definitions the 2DH velocity/celerity model reads: where U=(Ul,U,,2c) ; U,,=dU/Bt and A=[A, A,F, VU=[U,, U,, = du lax, and A.VU = ATVU, with u,*t; I' : :l and

3 Coastal Engineering V1 15 In the above relations, p is the fluid density, f is the Coriolis parameter, v is the eddy viscosity,.rw are the wind shear stresses components at the free surface, g 112 and y = --(U: + U:), where C is the Chezy coefficient. C 3 Finite element formulation Let Q c!r2 be an open (spatial) domain with boundary r, and (0, T) the time interval of interest. According to the classical semi-discrete finite element discretization procedure, the domain a is subdivided into nel "elements" a, such that For each discrete time tn E (0, T) ; (n = 1,2,...), the finite element subspaces of piecewise continuous weighting functions and admissible functions are given respectively by where pk is the set of polynomials of degree less than or equal to k, and g are the prescribed boundary conditions. Under the above assumptions the semi-discrete stabilized finite element formulation reads: for each time tn, n = 1,2,..., find U h E Uh such that yeh E Eh:

4 16 Coastal Engineering V1 where R(Uh) = U: + A(U").VU" -V. (DVU") - F(Uh) is the residual associated with the approximate solution Uh. Moreover, in this formulation the first integral corresponds to the Galerkin method, the second integral comes from the SUPG contribution and the thud represents the additional contribution of the discontinuity-capturing operator (CAU). The definitions of T and can be found in references [l]. The usual finite element approximation procedure leads to a set of first order ODE: where U, is the column vector of nodal values of U* and U, is the correspondent time rate. The time derivatives can be approximated by a finite difference scheme such as the trapezoidal rule The resulting system of algebraic equations can be solved using the following predictor multi-corrector algorithm: U:,, = U"+ At(1 -a)~,, U:,, = 0 (predictor phase) For i = 0, 1, 2,... I (multi- corrector phase) where M * = M + aatk.

5 4 Parallel edge-based implementation Coastal Engineering V1 17 For the parallel implementation, the original domain R, that is subdivided into nel "elements" Re, should be first partitioned into N local subdomains RLi, i = 0, 1,..., N-l, where N is the number of processors (figure 1). Each subdomain RLi is subdivided into nelloc "elements" Re such that N-l Q= U Q, Q, nrlk =0 for j+k i=o Figure l. For N = 4. A partitioning program for unstructured meshes named METIS was used in this paper. METIS is a software package for partitioning large irregular graphs, large meshes and computing fill-reducing orderings of sparse matrices. It provides two methods for partitioning meshes (e.g., those arising in finite element or finite volume methods) into k equal size parts. The program initially converts the mesh into a nodal graph (each node of the mesh becomes a vertex of the graph) or into a dual graph (each element of the mesh becomes a vertex of the graph) and then performs its partitioning. METIS currently supports four different types of elements, i.e., triangles, tetrahedra, hexahedra or quadrilaterals. Triangular elements were used in all simulations in this paper. Figure 2 shows that elements A and B, through the common edge connecting node i to node j, contribute to the global edge-based matrix coefficients S(i,j). Both contributions SA(itj) and SB(irj) are stored in the corresponding element matrices. This can be done performing a loop on the elements and assembling the coefficients by edges.

6 18 Coastal Engineering V1 Figure 2. Element contributions. After performing the loop in each subdomain, all the coefficients related to the boundary edges must be added and equalized in each processor. Figure 3. Boundary edges on each subdomain for N=4. 5 Numerical examples The numerical example chosen to illustrate the performance of the parallel edgebased implementation is the simulation of a tidal flow in the coastal lagoon of Araruama, Brazil. We used a Linux Red Hat 7.2 cluster with 24 Pentium I11 1 GHz processors, fast-ethernet, running LAM-MP1 and Lahey Fortran. Three meshes were used in order to have an estimate of the speed-up of the implementation. The second and third meshes were obtained from the uniform refinement of the fmt (small). Figure 4 shows the small mesh and figure 5 the METIS partition for 4 processors. In Table 1 we list the topological characteristics of the small, medium and large meshes. The performance is evaluated using 10 time steps of 1, 10, 20, 30, 40 and 50s, with 10 Krylov space vectors for GMRES algorithm. GMRES and nonlinear iteration tolerances were set to 10".

7 Coastal Engineering V1 19 Figure 4. Small mesh. Figure 5. METIS partition for 4 processors. Table 1. Topological data for Araruama Lagoon meshes. Medium 75, , , ,628 Large 296, , , ,866 Speed-up results can be seen in the plots of Figures 6-8, respectively for the small, medium and large meshes for several simulations with different time steps. We may verify that speed-up increases with mesh refinement. However, the optimum number of processors for all simulations varies with time step and mesh size. For instance, for the small mesh the best speed-up is achieved for 12 processors, whereas for the large mesh we observed that the best speed-up is for 16 processors. In all simulations speed-up decreases as the time step increases. We may associate this behavior to the increasing difficulty to solve the resulting nonlinear systems as the time step increases. Note that for the small mesh 500s (10 time steps with dt=50s) were best simulated in 40s in 8 processors, reducing

8 20 Coastal Engineering V1 real time by a factor of In the medium mesh 500s were best simulated in 172s in 12 processors, yielding a reduction factor of 2.9. However, no reduction was observed in the large mesh simulations. If we use more powerful processors in the cluster we foresee that similar reductions in the simulation time will be possible for the large mesh too Processors Figure 6. Small mesh. Processors Figure 7. Medium mesh.

9 Coastal Engineering V $ Processors Figure 8. Large mesh. 6 Conclusions In this paper we have presented a cluster-oriented parallel edge-based implementation for the semi-discrete stabilized finite element formulation for problems governed by the shallow water equations. All computation related to formation and updating of edge matrices and residuals were parallelized. Edgebased matrix-vector products needed in the GMRES iterative solver were parallelized as well. A performance study for a real life tidal flow case shows that large coupled nonlinear solutions can be efficiently obtained in low cost parallel rnachnes. References Almeida, R. C., GaleBo, A. C., "An Adaptive Petrov-Galerkin Formulation for the Compressible Euler and Navier-Stokes Equations". Comput. Meth. Appl. Mech. Engrg, vol. 129, , Bova, S. W., Carey, G. F., "An entropy Variable Formulation and Petrov- Galerkin Methods for the Shallow Water Equations", in: Finite Element Modeling of Environmental Problems-Su$ace and Subsurface Flow and Transport, ed. G. Carey, John Wiley, London, England, Galelo, A. C., Do Carmo, E. G., "A Consistent Approximate Upwind Petrov-Galerkin Method for Convection-Dominated Problems", Comput. Meth. Appl. Mech. Engrg, vol. 32, , 1988.

10 22 Coastal Engineering V1 4. Ribeiro, F. L. B., Galego, A. C. and Landau, L., "A Space-Time Finite Element Formulation for Shallow Water Equations", in: Development and Application of Computer Techniques to Eizvimnme~ztal Studies Vl, pp , Computational Mechanics Publications, Ribeiro, F. L. B., Castro, R. G. S., Galego, A. C., Loula, A. F. D. and Landau, L., "A Space-Time Finite Element Formulation for Shallow Water Equations with Shock-capturing Operator", IV World Congress, Argentina, Saleri, F., "Some Stabilization Techniques in Computational Fluid Dynamics", Proceedings of the grh Ixternational Corzfererzce on Finite Elements in Fluids, Venezia, Ribeiro, F. L. B., Galego, A. C. and Landau, L., "Edge-based fmite element method for shallow water equations", International Journal for Numerical Methods in Fluids, vol. 36, pp , Ribeiro, F.L.B., Castro, R.G.S., Galego, A.C., Landau, L., "Finite Elements for Shallow Water Equations: Stabilized Formulations and Computational Aspects", Advances in Fluid Mechanics 111, pp , Computational Mechanics Publications, 2000.

Corrected/Updated References

Corrected/Updated References K. Kashiyama, H. Ito, M. Behr and T. Tezduyar, "Massively Parallel Finite Element Strategies for Large-Scale Computation of Shallow Water Flows and Contaminant Transport", Extended Abstracts of the Second

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 3, 2012

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 3, 2012 INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 3, 2012 Copyright 2010 All rights reserved Integrated Publishing services Research article ISSN 0976 4399 Efficiency and performances

More information

The 3D DSC in Fluid Simulation

The 3D DSC in Fluid Simulation The 3D DSC in Fluid Simulation Marek K. Misztal Informatics and Mathematical Modelling, Technical University of Denmark mkm@imm.dtu.dk DSC 2011 Workshop Kgs. Lyngby, 26th August 2011 Governing Equations

More information

High-Order Navier-Stokes Simulations using a Sparse Line-Based Discontinuous Galerkin Method

High-Order Navier-Stokes Simulations using a Sparse Line-Based Discontinuous Galerkin Method High-Order Navier-Stokes Simulations using a Sparse Line-Based Discontinuous Galerkin Method Per-Olof Persson University of California, Berkeley, Berkeley, CA 9472-384, U.S.A. We study some of the properties

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

Keywords: Block ILU preconditioner, Krylov subspace methods, Additive Schwarz, Domain decomposition

Keywords: Block ILU preconditioner, Krylov subspace methods, Additive Schwarz, Domain decomposition BLOCK ILU PRECONDITIONERS FOR PARALLEL AMR/C SIMULATIONS Jose J. Camata Alvaro L. G. A. Coutinho Federal University of Rio de Janeiro, NACAD, COPPE Department of Civil Engineering, Rio de Janeiro, Brazil

More information

Finite element solution of multi-scale transport problems using the least squares based bubble function enrichment

Finite element solution of multi-scale transport problems using the least squares based bubble function enrichment Finite element solution of multi-scale transport problems using the least squares based bubble function enrichment A. Yazdani a, V. Nassehi b1 a Cranfield University, School of Applied Sciences, Cranfield,

More information

Uncertainty Analysis: Parameter Estimation. Jackie P. Hallberg Coastal and Hydraulics Laboratory Engineer Research and Development Center

Uncertainty Analysis: Parameter Estimation. Jackie P. Hallberg Coastal and Hydraulics Laboratory Engineer Research and Development Center Uncertainty Analysis: Parameter Estimation Jackie P. Hallberg Coastal and Hydraulics Laboratory Engineer Research and Development Center Outline ADH Optimization Techniques Parameter space Observation

More information

Modeling Khowr-e Musa Multi-Branch Estuary Currents due to the Persian Gulf Tides Using NASIR Depth Average Flow Solver

Modeling Khowr-e Musa Multi-Branch Estuary Currents due to the Persian Gulf Tides Using NASIR Depth Average Flow Solver Journal of the Persian Gulf (Marine Science)/Vol.1/No.1/September 2010/6/45-50 Modeling Khowr-e Musa Multi-Branch Estuary Currents due to the Persian Gulf Tides Using NASIR Depth Average Flow Solver Sabbagh-Yazdi,

More information

Isogeometric Analysis of Fluid-Structure Interaction

Isogeometric Analysis of Fluid-Structure Interaction Isogeometric Analysis of Fluid-Structure Interaction Y. Bazilevs, V.M. Calo, T.J.R. Hughes Institute for Computational Engineering and Sciences, The University of Texas at Austin, USA e-mail: {bazily,victor,hughes}@ices.utexas.edu

More information

EXPLICIT AND IMPLICIT TVD AND ENO HIGH RESOLUTION ALGORITHMS APPLIED TO THE EULER AND NAVIER-STOKES EQUATIONS IN THREE-DIMENSIONS RESULTS

EXPLICIT AND IMPLICIT TVD AND ENO HIGH RESOLUTION ALGORITHMS APPLIED TO THE EULER AND NAVIER-STOKES EQUATIONS IN THREE-DIMENSIONS RESULTS EXPLICIT AND IMPLICIT TVD AND ENO HIGH RESOLUTION ALGORITHMS APPLIED TO THE EULER AND NAVIER-STOKES EQUATIONS IN THREE-DIMENSIONS RESULTS Edisson Sávio de Góes Maciel, edissonsavio@yahoo.com.br Mechanical

More information

MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP

MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP Vol. 12, Issue 1/2016, 63-68 DOI: 10.1515/cee-2016-0009 MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP Juraj MUŽÍK 1,* 1 Department of Geotechnics, Faculty of Civil Engineering, University

More information

Chapter 6. Petrov-Galerkin Formulations for Advection Diffusion Equation

Chapter 6. Petrov-Galerkin Formulations for Advection Diffusion Equation Chapter 6 Petrov-Galerkin Formulations for Advection Diffusion Equation In this chapter we ll demonstrate the difficulties that arise when GFEM is used for advection (convection) dominated problems. Several

More information

MODELLING THE FLOW AROUND AN ISLAND AND A HEADLAND: APPLICATION OF A TWO MIXING LENGTH MODEL WITH TELEMAC3D. Nicolas Chini 1 and Peter K.

MODELLING THE FLOW AROUND AN ISLAND AND A HEADLAND: APPLICATION OF A TWO MIXING LENGTH MODEL WITH TELEMAC3D. Nicolas Chini 1 and Peter K. MODELLING THE FLOW AROUND AN ISLAND AND A HEADLAND: APPLICATION OF A TWO MIXING LENGTH MODEL WITH TELEMAC3D Nicolas Chini 1 and Peter K. Stansby 2 Numerical modelling of the circulation around islands

More information

Final Report. Discontinuous Galerkin Compressible Euler Equation Solver. May 14, Andrey Andreyev. Adviser: Dr. James Baeder

Final Report. Discontinuous Galerkin Compressible Euler Equation Solver. May 14, Andrey Andreyev. Adviser: Dr. James Baeder Final Report Discontinuous Galerkin Compressible Euler Equation Solver May 14, 2013 Andrey Andreyev Adviser: Dr. James Baeder Abstract: In this work a Discontinuous Galerkin Method is developed for compressible

More information

Application of Finite Volume Method for Structural Analysis

Application of Finite Volume Method for Structural Analysis Application of Finite Volume Method for Structural Analysis Saeed-Reza Sabbagh-Yazdi and Milad Bayatlou Associate Professor, Civil Engineering Department of KNToosi University of Technology, PostGraduate

More information

Parallel Computing for the Simulation of 3D Free Surface Flows in Environmental Applications

Parallel Computing for the Simulation of 3D Free Surface Flows in Environmental Applications Parallel Computing for the Simulation of 3D Free Surface Flows in Environmental Applications Paola Causin and Edie Miglio MOX - Modeling and Scientific Computing, Dipartimento di Matematica F.Brioschi

More information

Comparison of Central and Upwind Flux Averaging in Overlapping Finite Volume Methods for Simulation of Super-Critical Flow with Shock Waves

Comparison of Central and Upwind Flux Averaging in Overlapping Finite Volume Methods for Simulation of Super-Critical Flow with Shock Waves Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 7, 6 (pp55665) Comparison of and Flux Averaging in Overlapping Finite Volume Methods for Simulation of

More information

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean A Direct Simulation-Based Study of Radiance in a Dynamic Ocean Dick K.P. Yue Center for Ocean Engineering Massachusetts Institute of Technology Room 5-321, 77 Massachusetts Ave, Cambridge, MA 02139 phone:

More information

AMS527: Numerical Analysis II

AMS527: Numerical Analysis II AMS527: Numerical Analysis II A Brief Overview of Finite Element Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao SUNY Stony Brook AMS527: Numerical Analysis II 1 / 25 Overview Basic concepts Mathematical

More information

QUASI-3D SOLVER OF MEANDERING RIVER FLOWS BY CIP-SOROBAN SCHEME IN CYLINDRICAL COORDINATES WITH SUPPORT OF BOUNDARY FITTED COORDINATE METHOD

QUASI-3D SOLVER OF MEANDERING RIVER FLOWS BY CIP-SOROBAN SCHEME IN CYLINDRICAL COORDINATES WITH SUPPORT OF BOUNDARY FITTED COORDINATE METHOD QUASI-3D SOLVER OF MEANDERING RIVER FLOWS BY CIP-SOROBAN SCHEME IN CYLINDRICAL COORDINATES WITH SUPPORT OF BOUNDARY FITTED COORDINATE METHOD Keisuke Yoshida, Tadaharu Ishikawa Dr. Eng., Tokyo Institute

More information

THREE-STEP EXPLICIT FINITE ELEMENT COMPUTATION OF SHALLOW WATER FLOWS ON A MASSIVELY PARALLEL COMPUTER

THREE-STEP EXPLICIT FINITE ELEMENT COMPUTATION OF SHALLOW WATER FLOWS ON A MASSIVELY PARALLEL COMPUTER INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 21, 885-900 (1995) THREE-STEP EXPLICIT FINITE ELEMENT COMPUTATION OF SHALLOW WATER FLOWS ON A MASSIVELY PARALLEL COMPUTER KAZUO KASHIYAMA AND

More information

MIKE 21 & MIKE 3 FLOW MODEL FM. Transport Module. Short Description

MIKE 21 & MIKE 3 FLOW MODEL FM. Transport Module. Short Description MIKE 21 & MIKE 3 FLOW MODEL FM Short Description MIKE213_TR_FM_Short_Description.docx/AJS/EBR/2011Short_Descriptions.lsm//2011-06-17 MIKE 21 & MIKE 3 FLOW MODEL FM Agern Allé 5 DK-2970 Hørsholm Denmark

More information

MIKE 21 & MIKE 3 Flow Model FM. Transport Module. Short Description

MIKE 21 & MIKE 3 Flow Model FM. Transport Module. Short Description MIKE 21 & MIKE 3 Flow Model FM Transport Module Short Description DHI headquarters Agern Allé 5 DK-2970 Hørsholm Denmark +45 4516 9200 Telephone +45 4516 9333 Support +45 4516 9292 Telefax mike@dhigroup.com

More information

Possibility of Implicit LES for Two-Dimensional Incompressible Lid-Driven Cavity Flow Based on COMSOL Multiphysics

Possibility of Implicit LES for Two-Dimensional Incompressible Lid-Driven Cavity Flow Based on COMSOL Multiphysics Possibility of Implicit LES for Two-Dimensional Incompressible Lid-Driven Cavity Flow Based on COMSOL Multiphysics Masanori Hashiguchi 1 1 Keisoku Engineering System Co., Ltd. 1-9-5 Uchikanda, Chiyoda-ku,

More information

FAST ALGORITHMS FOR CALCULATIONS OF VISCOUS INCOMPRESSIBLE FLOWS USING THE ARTIFICIAL COMPRESSIBILITY METHOD

FAST ALGORITHMS FOR CALCULATIONS OF VISCOUS INCOMPRESSIBLE FLOWS USING THE ARTIFICIAL COMPRESSIBILITY METHOD TASK QUARTERLY 12 No 3, 273 287 FAST ALGORITHMS FOR CALCULATIONS OF VISCOUS INCOMPRESSIBLE FLOWS USING THE ARTIFICIAL COMPRESSIBILITY METHOD ZBIGNIEW KOSMA Institute of Applied Mechanics, Technical University

More information

Contents. I The Basic Framework for Stationary Problems 1

Contents. I The Basic Framework for Stationary Problems 1 page v Preface xiii I The Basic Framework for Stationary Problems 1 1 Some model PDEs 3 1.1 Laplace s equation; elliptic BVPs... 3 1.1.1 Physical experiments modeled by Laplace s equation... 5 1.2 Other

More information

Driven Cavity Example

Driven Cavity Example BMAppendixI.qxd 11/14/12 6:55 PM Page I-1 I CFD Driven Cavity Example I.1 Problem One of the classic benchmarks in CFD is the driven cavity problem. Consider steady, incompressible, viscous flow in a square

More information

A High-Order Accurate Unstructured GMRES Solver for Poisson s Equation

A High-Order Accurate Unstructured GMRES Solver for Poisson s Equation A High-Order Accurate Unstructured GMRES Solver for Poisson s Equation Amir Nejat * and Carl Ollivier-Gooch Department of Mechanical Engineering, The University of British Columbia, BC V6T 1Z4, Canada

More information

Introduction to Computational Fluid Dynamics Mech 122 D. Fabris, K. Lynch, D. Rich

Introduction to Computational Fluid Dynamics Mech 122 D. Fabris, K. Lynch, D. Rich Introduction to Computational Fluid Dynamics Mech 122 D. Fabris, K. Lynch, D. Rich 1 Computational Fluid dynamics Computational fluid dynamics (CFD) is the analysis of systems involving fluid flow, heat

More information

River inundation modelling for risk analysis

River inundation modelling for risk analysis River inundation modelling for risk analysis L. H. C. Chua, F. Merting & K. P. Holz Institute for Bauinformatik, Brandenburg Technical University, Germany Abstract This paper presents the results of an

More information

Mid-Year Report. Discontinuous Galerkin Euler Equation Solver. Friday, December 14, Andrey Andreyev. Advisor: Dr.

Mid-Year Report. Discontinuous Galerkin Euler Equation Solver. Friday, December 14, Andrey Andreyev. Advisor: Dr. Mid-Year Report Discontinuous Galerkin Euler Equation Solver Friday, December 14, 2012 Andrey Andreyev Advisor: Dr. James Baeder Abstract: The focus of this effort is to produce a two dimensional inviscid,

More information

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 13: The Lecture deals with:

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 13: The Lecture deals with: The Lecture deals with: Some more Suggestions for Improvement of Discretization Schemes Some Non-Trivial Problems with Discretized Equations file:///d /chitra/nptel_phase2/mechanical/cfd/lecture13/13_1.htm[6/20/2012

More information

Lax-Wendroff and McCormack Schemes for Numerical Simulation of Unsteady Gradually and Rapidly Varied Open Channel Flow

Lax-Wendroff and McCormack Schemes for Numerical Simulation of Unsteady Gradually and Rapidly Varied Open Channel Flow Archives of Hydro-Engineering and Environmental Mechanics Vol. 60 (2013), No. 1 4, pp. 51 62 DOI: 10.2478/heem-2013-0008 IBW PAN, ISSN 1231 3726 Lax-Wendroff and McCormack Schemes for Numerical Simulation

More information

Solving non-hydrostatic Navier-Stokes equations with a free surface

Solving non-hydrostatic Navier-Stokes equations with a free surface Solving non-hydrostatic Navier-Stokes equations with a free surface J.-M. Hervouet Laboratoire National d'hydraulique et Environnement, Electricite' De France, Research & Development Division, France.

More information

CGT 581 G Fluids. Overview. Some terms. Some terms

CGT 581 G Fluids. Overview. Some terms. Some terms CGT 581 G Fluids Bedřich Beneš, Ph.D. Purdue University Department of Computer Graphics Technology Overview Some terms Incompressible Navier-Stokes Boundary conditions Lagrange vs. Euler Eulerian approaches

More information

Advanced Numerical Methods for Numerical Weather Prediction

Advanced Numerical Methods for Numerical Weather Prediction Advanced Numerical Methods for Numerical Weather Prediction Francis X. Giraldo Naval Research Laboratory Monterey, CA 93943-5502 phone: (831) 656-4882 fax: (831) 656-4769 e-mail: giraldo@nrlmry.navy.mil

More information

Robust Numerical Methods for Singularly Perturbed Differential Equations SPIN Springer s internal project number, if known

Robust Numerical Methods for Singularly Perturbed Differential Equations SPIN Springer s internal project number, if known Hans-Görg Roos Martin Stynes Lutz Tobiska Robust Numerical Methods for Singularly Perturbed Differential Equations SPIN Springer s internal project number, if known Convection-Diffusion-Reaction and Flow

More information

NUMERICAL SIMULATION OF THE SHALLOW WATER EQUATIONS USING A TIME-CENTERED SPLIT-IMPLICIT METHOD

NUMERICAL SIMULATION OF THE SHALLOW WATER EQUATIONS USING A TIME-CENTERED SPLIT-IMPLICIT METHOD 18th Engineering Mechanics Division Conference (EMD007) NUMERICAL SIMULATION OF THE SHALLOW WATER EQUATIONS USING A TIME-CENTERED SPLIT-IMPLICIT METHOD Abstract S. Fu University of Texas at Austin, Austin,

More information

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean A Direct Simulation-Based Study of Radiance in a Dynamic Ocean Lian Shen Department of Civil Engineering Johns Hopkins University Baltimore, MD 21218 phone: (410) 516-5033 fax: (410) 516-7473 email: LianShen@jhu.edu

More information

This is an author-deposited version published in: Eprints ID: 4362

This is an author-deposited version published in:   Eprints ID: 4362 This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ Eprints ID: 4362 To cite this document: CHIKHAOUI Oussama, GRESSIER Jérémie, GRONDIN Gilles. Assessment of the Spectral

More information

Numerical and theoretical analysis of shock waves interaction and reflection

Numerical and theoretical analysis of shock waves interaction and reflection Fluid Structure Interaction and Moving Boundary Problems IV 299 Numerical and theoretical analysis of shock waves interaction and reflection K. Alhussan Space Research Institute, King Abdulaziz City for

More information

2.7 Cloth Animation. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter 2 123

2.7 Cloth Animation. Jacobs University Visualization and Computer Graphics Lab : Advanced Graphics - Chapter 2 123 2.7 Cloth Animation 320491: Advanced Graphics - Chapter 2 123 Example: Cloth draping Image Michael Kass 320491: Advanced Graphics - Chapter 2 124 Cloth using mass-spring model Network of masses and springs

More information

Introduction to C omputational F luid Dynamics. D. Murrin

Introduction to C omputational F luid Dynamics. D. Murrin Introduction to C omputational F luid Dynamics D. Murrin Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat transfer, mass transfer, chemical reactions, and related phenomena

More information

Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics

Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics I. Pantle Fachgebiet Strömungsmaschinen Karlsruher Institut für Technologie KIT Motivation

More information

CS205b/CME306. Lecture 9

CS205b/CME306. Lecture 9 CS205b/CME306 Lecture 9 1 Convection Supplementary Reading: Osher and Fedkiw, Sections 3.3 and 3.5; Leveque, Sections 6.7, 8.3, 10.2, 10.4. For a reference on Newton polynomial interpolation via divided

More information

Using efficient numerical methods in large-scale air pollution modelling

Using efficient numerical methods in large-scale air pollution modelling Using efficient numerical methods in large-scale air pollution modelling ZAHARI ZLATEV National Environmental Research Institute, Frederiksborgvej 399, P. O. Box 358, DK-4000 Roskilde, DENMARK Abstract:

More information

Parallel Mesh Multiplication for Code_Saturne

Parallel Mesh Multiplication for Code_Saturne Parallel Mesh Multiplication for Code_Saturne Pavla Kabelikova, Ales Ronovsky, Vit Vondrak a Dept. of Applied Mathematics, VSB-Technical University of Ostrava, Tr. 17. listopadu 15, 708 00 Ostrava, Czech

More information

Computational Fluid Dynamics - Incompressible Flows

Computational Fluid Dynamics - Incompressible Flows Computational Fluid Dynamics - Incompressible Flows March 25, 2008 Incompressible Flows Basis Functions Discrete Equations CFD - Incompressible Flows CFD is a Huge field Numerical Techniques for solving

More information

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean 1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. A Direct Simulation-Based Study of Radiance in a Dynamic Ocean LONG-TERM GOALS Dick K.P. Yue Center for Ocean Engineering

More information

EDICT for 3D computation of two- uid interfaces q

EDICT for 3D computation of two- uid interfaces q Comput. Methods Appl. Mech. Engrg. 190 (2000) 403±410 www.elsevier.com/locate/cma EDICT for 3D computation of two- uid interfaces q Tayfun E. Tezduyar a, *, Shahrouz Aliabadi b a Mechanical Engineering

More information

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011 First-Order Hyperbolic System Method If you have a CFD book for hyperbolic problems, you have a CFD book for all problems.

More information

Implementation of the skyline algorithm in finite-element computations of Saint-Venant equations

Implementation of the skyline algorithm in finite-element computations of Saint-Venant equations P a g e 61 Journal of Applied Research in Water and Wastewater (14) 61-65 Original paper Implementation of the skyline algorithm in finite-element computations of Saint-Venant equations Reza Karimi 1,

More information

Index. C m (Ω), 141 L 2 (Ω) space, 143 p-th order, 17

Index. C m (Ω), 141 L 2 (Ω) space, 143 p-th order, 17 Bibliography [1] J. Adams, P. Swarztrauber, and R. Sweet. Fishpack: Efficient Fortran subprograms for the solution of separable elliptic partial differential equations. http://www.netlib.org/fishpack/.

More information

Incompressible Viscous Flow Simulations Using the Petrov-Galerkin Finite Element Method

Incompressible Viscous Flow Simulations Using the Petrov-Galerkin Finite Element Method Copyright c 2007 ICCES ICCES, vol.4, no.1, pp.11-18, 2007 Incompressible Viscous Flow Simulations Using the Petrov-Galerkin Finite Element Method Kazuhiko Kakuda 1, Tomohiro Aiso 1 and Shinichiro Miura

More information

Second International Workshop on Scientific Computing and Applications. Kananaskis, Canada, May 28 - June 1, 2000

Second International Workshop on Scientific Computing and Applications. Kananaskis, Canada, May 28 - June 1, 2000 Second International Workshop on Scientific Computing and Applications. Kananaskis, Canada, May 28 - June 1, 2000 Program May 28 (Sunday) 19:00-21:00 Registration and reception Session Chairman: Y. Wong

More information

UNDERBODY BLAST (project 1b)

UNDERBODY BLAST (project 1b) UNDERBODY BLAST (project 1b) PI: Mingjun Wei, New Mexico State University (overall project lead: Charbel Farhat, Stanford University) Graduate Students: HaoQan Gao, Mehdi Tabandeh Khorshid Post- Doctoral

More information

High quality triangular grid generation for the risk analysis of a special lagoon

High quality triangular grid generation for the risk analysis of a special lagoon Advances in Fluid Mechanics VIII 31 High quality triangular grid generation for the risk analysis of a special lagoon B. Tansel Istanbul Technical University, Maritime Faculty, Turkey Abstract Much of

More information

Chapter 6. Semi-Lagrangian Methods

Chapter 6. Semi-Lagrangian Methods Chapter 6. Semi-Lagrangian Methods References: Durran Chapter 6. Review article by Staniford and Cote (1991) MWR, 119, 2206-2223. 6.1. Introduction Semi-Lagrangian (S-L for short) methods, also called

More information

COMPUTATIONAL FLUIDAND SOLID MECHANICS

COMPUTATIONAL FLUIDAND SOLID MECHANICS COMPUTATIONAL FLUIDAND SOLID MECHANICS K.J. Bathe, editor Proceedings First MIT Conference on ComDutational Fluid and Solid Mechanics June t2.t5,2oot ElSeVief 968 Aerodynamic interaction between multiple

More information

Continued Investigation of Small-Scale Air-Sea Coupled Dynamics Using CBLAST Data

Continued Investigation of Small-Scale Air-Sea Coupled Dynamics Using CBLAST Data Continued Investigation of Small-Scale Air-Sea Coupled Dynamics Using CBLAST Data Dick K.P. Yue Center for Ocean Engineering Department of Mechanical Engineering Massachusetts Institute of Technology Cambridge,

More information

Eulerian Techniques for Fluid-Structure Interactions - Part II: Applications

Eulerian Techniques for Fluid-Structure Interactions - Part II: Applications Published in Lecture Notes in Computational Science and Engineering Vol. 103, Proceedings of ENUMATH 2013, pp. 755-762, Springer, 2014 Eulerian Techniques for Fluid-Structure Interactions - Part II: Applications

More information

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering Debojyoti Ghosh Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering To study the Dynamic Stalling of rotor blade cross-sections Unsteady Aerodynamics: Time varying

More information

A Knowledge Based Approach to Mesh Optimization in CFD Domain: ID Euler Code Example

A Knowledge Based Approach to Mesh Optimization in CFD Domain: ID Euler Code Example A Knowledge Based Approach to Mesh Optimization in CFD Domain: ID Euler Code Example Tharini Santhanam, J.C. Browne, J. Kallinderis and D. Miranker Department of Computer Science The University of Texas

More information

Prof. B.S. Thandaveswara. The computation of a flood wave resulting from a dam break basically involves two

Prof. B.S. Thandaveswara. The computation of a flood wave resulting from a dam break basically involves two 41.4 Routing The computation of a flood wave resulting from a dam break basically involves two problems, which may be considered jointly or seperately: 1. Determination of the outflow hydrograph from the

More information

Parallel High-Order Geometric Multigrid Methods on Adaptive Meshes for Highly Heterogeneous Nonlinear Stokes Flow Simulations of Earth s Mantle

Parallel High-Order Geometric Multigrid Methods on Adaptive Meshes for Highly Heterogeneous Nonlinear Stokes Flow Simulations of Earth s Mantle ICES Student Forum The University of Texas at Austin, USA November 4, 204 Parallel High-Order Geometric Multigrid Methods on Adaptive Meshes for Highly Heterogeneous Nonlinear Stokes Flow Simulations of

More information

ITU/FAA Faculty of Aeronautics and Astronautics

ITU/FAA Faculty of Aeronautics and Astronautics S. Banu YILMAZ, Mehmet SAHIN, M. Fevzi UNAL, Istanbul Technical University, 34469, Maslak/Istanbul, TURKEY 65th Annual Meeting of the APS Division of Fluid Dynamics November 18-20, 2012, San Diego, CA

More information

A linear solver based on algebraic multigrid and defect correction for the solution of adjoint RANS equations

A linear solver based on algebraic multigrid and defect correction for the solution of adjoint RANS equations INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2014; 74:846 855 Published online 24 January 2014 in Wiley Online Library (wileyonlinelibrary.com)..3878 A linear solver

More information

Solution of 2D Euler Equations and Application to Airfoil Design

Solution of 2D Euler Equations and Application to Airfoil Design WDS'6 Proceedings of Contributed Papers, Part I, 47 52, 26. ISBN 8-86732-84-3 MATFYZPRESS Solution of 2D Euler Equations and Application to Airfoil Design J. Šimák Charles University, Faculty of Mathematics

More information

A meshfree weak-strong form method

A meshfree weak-strong form method A meshfree weak-strong form method G. R. & Y. T. GU' 'centre for Advanced Computations in Engineering Science (ACES) Dept. of Mechanical Engineering, National University of Singapore 2~~~ Fellow, Singapore-MIT

More information

Numerical Modeling of Flow Around Groynes with Different Shapes Using TELEMAC-3D Software

Numerical Modeling of Flow Around Groynes with Different Shapes Using TELEMAC-3D Software American Journal of Water Science and Engineering 2016; 2(6): 43-52 http://www.sciencepublishinggroup.com/j/ajwse doi: 10.11648/j.ajwse.20160206.11 Numerical Modeling of Flow Around Groynes with Different

More information

Numerical Simulations of Fluid-Structure Interaction Problems using MpCCI

Numerical Simulations of Fluid-Structure Interaction Problems using MpCCI Numerical Simulations of Fluid-Structure Interaction Problems using MpCCI François Thirifay and Philippe Geuzaine CENAERO, Avenue Jean Mermoz 30, B-6041 Gosselies, Belgium Abstract. This paper reports

More information

WAVE PATTERNS, WAVE INDUCED FORCES AND MOMENTS FOR A GRAVITY BASED STRUCTURE PREDICTED USING CFD

WAVE PATTERNS, WAVE INDUCED FORCES AND MOMENTS FOR A GRAVITY BASED STRUCTURE PREDICTED USING CFD Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering OMAE2011 June 19-24, 2011, Rotterdam, The Netherlands OMAE2011-49593 WAVE PATTERNS, WAVE INDUCED FORCES

More information

A NEW MIXED PRECONDITIONING METHOD BASED ON THE CLUSTERED ELEMENT -BY -ELEMENT PRECONDITIONERS

A NEW MIXED PRECONDITIONING METHOD BASED ON THE CLUSTERED ELEMENT -BY -ELEMENT PRECONDITIONERS Contemporary Mathematics Volume 157, 1994 A NEW MIXED PRECONDITIONING METHOD BASED ON THE CLUSTERED ELEMENT -BY -ELEMENT PRECONDITIONERS T.E. Tezduyar, M. Behr, S.K. Aliabadi, S. Mittal and S.E. Ray ABSTRACT.

More information

We present a high-order accurate space-time discontinuous Galerkin method for solving two-dimensional

We present a high-order accurate space-time discontinuous Galerkin method for solving two-dimensional A High-Order Discontinuous Galerkin Method with Unstructured Space-Time Meshes for Two-Dimensional Compressible Flows on Domains with Large Deformations Luming Wang a, Per-Olof Persson a, a Department

More information

COMPLETE DERIVATION OF 2D SHALLOW-WATER MODEL FROM THE PRIMITIVE EQUATIONS GOVERNING GEOPHYSICAL FLOWS

COMPLETE DERIVATION OF 2D SHALLOW-WATER MODEL FROM THE PRIMITIVE EQUATIONS GOVERNING GEOPHYSICAL FLOWS COMPLETE DERIVATION OF 2D SHALLOW-WATER MODEL FROM THE PRIMITIVE EQUATIONS GOVERNING GEOPHYSICAL FLOWS Muhammad Salihi Bin Abdul Hadi, Mohd Zaini Bin Mustapa & Shahbudin Bin Saad Institute of Oceanography

More information

Geometry based pre-processor for parallel fluid dynamic simulations using a hierarchical basis

Geometry based pre-processor for parallel fluid dynamic simulations using a hierarchical basis Geometry based pre-processor for parallel fluid dynamic simulations using a hierarchical basis Anil Kumar Karanam Scientific Computation Research Center, RPI Kenneth E. Jansen Scientific Computation Research

More information

Developing the TELEMAC system for HECToR (phase 2b & beyond) Zhi Shang

Developing the TELEMAC system for HECToR (phase 2b & beyond) Zhi Shang Developing the TELEMAC system for HECToR (phase 2b & beyond) Zhi Shang Outline of the Talk Introduction to the TELEMAC System and to TELEMAC-2D Code Developments Data Reordering Strategy Results Conclusions

More information

SIMULATION OF FLOW AROUND KCS-HULL

SIMULATION OF FLOW AROUND KCS-HULL SIMULATION OF FLOW AROUND KCS-HULL Sven Enger (CD-adapco, Germany) Milovan Perić (CD-adapco, Germany) Robinson Perić (University of Erlangen-Nürnberg, Germany) 1.SUMMARY The paper describes results of

More information

Module 1: Introduction to Finite Element Analysis. Lecture 4: Steps in Finite Element Analysis

Module 1: Introduction to Finite Element Analysis. Lecture 4: Steps in Finite Element Analysis 25 Module 1: Introduction to Finite Element Analysis Lecture 4: Steps in Finite Element Analysis 1.4.1 Loading Conditions There are multiple loading conditions which may be applied to a system. The load

More information

ATM 298, Spring 2013 Lecture 4 Numerical Methods: Horizontal DiscreDzaDons April 10, Paul A. Ullrich (HH 251)

ATM 298, Spring 2013 Lecture 4 Numerical Methods: Horizontal DiscreDzaDons April 10, Paul A. Ullrich (HH 251) ATM 298, Spring 2013 Lecture 4 Numerical Methods: Horizontal DiscreDzaDons April 10, 2013 Paul A. Ullrich (HH 251) paullrich@ucdavis.edu Outline 1. Introduction / Motivation 2. Finite Difference Methods

More information

Corrected/Updated References

Corrected/Updated References K. Kashiyama, Y. Ohba, T. Takagi, M. Behr, and T. Tezduyar, Parallel finite element method utilizing the mode splitting and sigma coordinate for shallow water flows, Computational Mechanics, 23 (1999)

More information

Post Processing, Visualization, and Sample Output

Post Processing, Visualization, and Sample Output Chapter 7 Post Processing, Visualization, and Sample Output Upon successful execution of an ADCIRC run, a number of output files will be created. Specifically which files are created depends upon how the

More information

Techniques for Using the Method of Manufactured Solutions for Verification and Uncertainty Quantification of CFD Simulations Having Discontinuities

Techniques for Using the Method of Manufactured Solutions for Verification and Uncertainty Quantification of CFD Simulations Having Discontinuities Techniques for Using the Method of Manufactured Solutions for Verification and Uncertainty Quantification of CFD Simulations Having Discontinuities Ben Grier Clemson University Richard Figliola, Larry

More information

Final drive lubrication modeling

Final drive lubrication modeling Final drive lubrication modeling E. Avdeev a,b 1, V. Ovchinnikov b a Samara University, b Laduga Automotive Engineering Abstract. In this paper we describe the method, which is the composition of finite

More information

Comparison of CFD Simulation of a Hyundai I20 Model with Four Different Turbulence Models

Comparison of CFD Simulation of a Hyundai I20 Model with Four Different Turbulence Models RESEARCH ARTICLE OPEN ACCESS Comparison of CFD Simulation of a Hyundai I20 with Four Different Turbulence s M. Vivekanandan*, R. Sivakumar**, Aashis. S. Roy*** *(Uttam Industrial Engg. Pvt. Ltd., Tiruchirapalli,

More information

Parallel Adaptive Tsunami Modelling with Triangular Discontinuous Galerkin Schemes

Parallel Adaptive Tsunami Modelling with Triangular Discontinuous Galerkin Schemes Parallel Adaptive Tsunami Modelling with Triangular Discontinuous Galerkin Schemes Stefan Vater 1 Kaveh Rahnema 2 Jörn Behrens 1 Michael Bader 2 1 Universität Hamburg 2014 PDES Workshop 2 TU München Partial

More information

Curved Mesh Generation and Mesh Refinement using Lagrangian Solid Mechanics

Curved Mesh Generation and Mesh Refinement using Lagrangian Solid Mechanics Curved Mesh Generation and Mesh Refinement using Lagrangian Solid Mechanics Per-Olof Persson University of California, Berkeley, Berkeley, CA 9472-384, U.S.A. Jaime Peraire Massachusetts Institute of Technology,

More information

CHAPTER 1. Introduction

CHAPTER 1. Introduction ME 475: Computer-Aided Design of Structures 1-1 CHAPTER 1 Introduction 1.1 Analysis versus Design 1.2 Basic Steps in Analysis 1.3 What is the Finite Element Method? 1.4 Geometrical Representation, Discretization

More information

Improvement of Reduced Order Modeling based on POD

Improvement of Reduced Order Modeling based on POD Author manuscript, published in "The Fifth International Conference on Computational Fluid Dynamics (28)" Improvement of Reduced Order Modeling based on POD M. Bergmann 1, C.-H. Bruneau 2, and A. Iollo

More information

Coupling of STAR-CCM+ to Other Theoretical or Numerical Solutions. Milovan Perić

Coupling of STAR-CCM+ to Other Theoretical or Numerical Solutions. Milovan Perić Coupling of STAR-CCM+ to Other Theoretical or Numerical Solutions Milovan Perić Contents The need to couple STAR-CCM+ with other theoretical or numerical solutions Coupling approaches: surface and volume

More information

STABILIZED FINITE ELEMENT METHOD WITH AN ALE STRATEGY TO SOLVE MOVING BOUNDARIES PROBLEMS

STABILIZED FINITE ELEMENT METHOD WITH AN ALE STRATEGY TO SOLVE MOVING BOUNDARIES PROBLEMS STABILIZED FINITE ELEMENT METHOD WITH AN ALE STRATEGY TO SOLVE MOVING BOUNDARIES PROBLEMS M. Viale and N. Nigro Universidad Nacional de Rosario Pelegrini 5, () Rosario, Argentina nnigro@intec.unl.edu.ar

More information

On the high order FV schemes for compressible flows

On the high order FV schemes for compressible flows Applied and Computational Mechanics 1 (2007) 453-460 On the high order FV schemes for compressible flows J. Fürst a, a Faculty of Mechanical Engineering, CTU in Prague, Karlovo nám. 13, 121 35 Praha, Czech

More information

A Scalable GPU-Based Compressible Fluid Flow Solver for Unstructured Grids

A Scalable GPU-Based Compressible Fluid Flow Solver for Unstructured Grids A Scalable GPU-Based Compressible Fluid Flow Solver for Unstructured Grids Patrice Castonguay and Antony Jameson Aerospace Computing Lab, Stanford University GTC Asia, Beijing, China December 15 th, 2011

More information

Fluent User Services Center

Fluent User Services Center Solver Settings 5-1 Using the Solver Setting Solver Parameters Convergence Definition Monitoring Stability Accelerating Convergence Accuracy Grid Independence Adaption Appendix: Background Finite Volume

More information

Advanced Numerical Methods for Numerical Weather Prediction

Advanced Numerical Methods for Numerical Weather Prediction Advanced Numerical Methods for Numerical Weather Prediction Francis X. Giraldo Naval Research Laboratory Monterey, CA 93943-5502 phone: (831) 656-4882 fax: (831) 656-4769 e-mail: giraldo@nrlmry.navy.mil

More information

A MESH ADAPTATION METHOD FOR SIMULATION OF UNSTEADY FLOWS

A MESH ADAPTATION METHOD FOR SIMULATION OF UNSTEADY FLOWS A MESH ADAPTATION METHOD FOR SIMULATION OF UNSTEAD FLOWS C. H. Zhou* * Department of Aerodynamics, Nanjing University of Aeronautics and Astronautics, Nanjing, 6, China Keywords: mesh adaptation, unsteady

More information

CFD MODELING FOR PNEUMATIC CONVEYING

CFD MODELING FOR PNEUMATIC CONVEYING CFD MODELING FOR PNEUMATIC CONVEYING Arvind Kumar 1, D.R. Kaushal 2, Navneet Kumar 3 1 Associate Professor YMCAUST, Faridabad 2 Associate Professor, IIT, Delhi 3 Research Scholar IIT, Delhi e-mail: arvindeem@yahoo.co.in

More information

Example 13 - Shock Tube

Example 13 - Shock Tube Example 13 - Shock Tube Summary This famous experiment is interesting for observing the shock-wave propagation. Moreover, this case uses the representation of perfect gas and compares the different formulations:

More information

Simulation in Computer Graphics. Particles. Matthias Teschner. Computer Science Department University of Freiburg

Simulation in Computer Graphics. Particles. Matthias Teschner. Computer Science Department University of Freiburg Simulation in Computer Graphics Particles Matthias Teschner Computer Science Department University of Freiburg Outline introduction particle motion finite differences system of first order ODEs second

More information