Prof. B.S. Thandaveswara. The computation of a flood wave resulting from a dam break basically involves two

Size: px
Start display at page:

Download "Prof. B.S. Thandaveswara. The computation of a flood wave resulting from a dam break basically involves two"

Transcription

1 41.4 Routing The computation of a flood wave resulting from a dam break basically involves two problems, which may be considered jointly or seperately: 1. Determination of the outflow hydrograph from the reservoir for flow through the breach. 2. Routing of the outflow from the dam in the downstream reach of the channel Input Required (a) Water discharges entering into and flowing along the body of water from which the impound water is released. (b) Water discharges (s) flowing out from the body of water before the sudden release. (c) Water discharges (s) flowing along the bodies of water into which impound water is suddenly received. (d) The flow regime (such as GVF, Uniform) associated with both the bodies which releases and receives. (e) Water surface elevation (f) Submergence effect. (g) Time function of breaching (or closing and opening of gates in canals). The above information may be in the form of parameters or functions Breach Outflow Hydrograph This is the outflow resulting from a dam collapse from the initiation of the breach till the reservoir water level reaches the final breach bottom level, or the contents of reservoir gets exhaused whichever is earlier (as in multiple breaches, the extent of breach could be different). The breach outflow hydrograph may be obtained by using reservoir routing method. In case of a dam break problem, the following functions are required: (a) Inflow hydrograph (f 1 (t)); (b) Outflow hydrograph (Outflow through openings) (f 2 (t));

2 (c) Stage hydrograph (f 3 (h) h is the depth); (d) Outflow rating curve (f 4 (H), H is the head); and (e) Storage function (a function of elevation) Reservoir routing can be accomplished with any one of the hydrologic routing methods (puls, storage indication method) based on the equation ds = I - Q dt in which I is the inflow into the reservoir, Q is the outflow from the reservoir and, ds is the rate of change of storage in the reservoir dt Commonly used method is modified Puls method. The other method for solving equation is Standard Runge - Kutta method, in which the water surface elevation and water spread area are used. This approach does not require the computation of special storage outflow (as in the case of modified Puls method), but is more closely related to hydraulics of flow through the reservoir. The 3 rd Order Runge - Kutta method involves dividing each time step interval into three increments and calculating successive values of water surface elevation and reservoir discharge. This method has proved to be easier for programming and computations as the trial and error procedure is eliminated. Determination of breach outflow hydrograph requires knowledge of rate of breaching. Models for this purpose are available in standard commercial software Channel Routing This is a mathematical procedure used for tracking the flow along the channel. This involves the determination of discharge, water surface elevation, and time of arrival of peak, along the channel reaches, by using St. Venant's equation. i.e. unsteady free surface flow equation. One may note that, kinematic wave approximation also known as

3 lumped method routing will lead to "channel routing". Otherwise the routing using the Saint Venant equations is called the distributed flow routing Boundary Condtions Upstream Boundary: Computed breach outflow hydrograph Downstream Boundary: The stage discharge relationship Internal Boundary Condtions There are many types of internal boundaries and some of them are shown in Figure Rising Flood Falling Flood Main Channel Parallel to Bank Transverse Slope Left Flood Plain Right Flood Plain Meandering

4 Weir Expansion or Contraction Levee Drops or Steps Dam Lock Dam and Lock

5 Bridge Emabankment Bridge Breach Flood Detention Basin Existing Levee Intake River Loop River Flood Plain Formation of Cells 1. Agricultural Land 2. Urban Land (Islands) 2 3 H Intake for detention basin acts as a weir-bi-directional flow Constant Level H Intake Flow Possible Super Critical Flow Figure Some of the Interior Boundaries

6 Information Required for Routing the Dam Break Flow (1) The model and scheme that is to be adopted. (2) Lateral Flow - whether distributed or lumped inflow and outflow and its characteristics with respect to time. The lateral flows include (i) Contribution of rainfall on the free surface (ii) Overland flow (iii) Infiltration (iv) Evaporation (v) Seepage (3) Cross sectional details (a) Prismatics or (b) Non-uniform properties of natural rivers. Following methods are used for representing the cross sections Replacing of actual river by unform channel for total length such as Trapezoidal section. Repacing of actual river by series of prismatic channel. Representing cross sections by Polygonal sections. Replacing of surveyed sections by Polynomials. Interpolation of cross sections. Stochastic generation of cross sections. (4) RESISTANCE PROPERTIES: Any resistance law such as Chezy's, Manning's, Darcy- Weisbach's may be used. The relevant coefficients need to be defined as a function of length (or section) and its variational function with respect to depth should be known. (5) Details of channel network in Flood plains : Numerical Methods for Solving the Governing Equations Any of the following numerical methods may be used for solving the governing Saintvenant equations in conservation form. Many schemes such as Total Variation Diminishing (TVD), Essentially Non-Oscillating (ENO) have been proposed in recent years for correct numerical solution of the governing equations.

7 (i) Explicit - Lax Wendroff (ii) Diffusive scheme (iii) Method of characteristics - irregular grid using predictor - corrector scheme. (iv) Explicit with - Two dimensional characteristic Network model with moving grid - Reservoirs as nodes channels as links. (v) Four point implicit (nonlinear Finite Difference Scheme) (vii) Galerkin Finite element method Steps in Mathematical Formulation 1. To identify the model and technique to be used. 2. INPUT THE DATA regarding (a) Physical system (Figure 41.3) including internal boundaries. Spillway Q t Reservoir Tributary Inflow Hydrograph Bridge Cells Over topping Piping

8 Branched Looped Figure 41.3 Cell groups (Two dimensional) (b) Types of precipitation distribution, Spillway rating curve. (c) Shape, size and progress of breach with time or piping, time of starting of breach. 3. To write the finite difference approximations for all situations that are to be incorporated. 4. To choose the method of averaging the Sf Arithmetic, Geometric, Harmonic). 5. Softwares regarding Newton Raphson technique, Matrix method, Space matrix converter to normal matrix, (if possible) such as Band solver and program for reservoir routing, dynamic channel routing, are required Available Software Two models namely HEC Dam break model and, DAMBRK / DWOPER models developed by Fread for National weather service are available for dambreak flow analysis. A new model FLDWAV has been developed in 1985 by Fread. The FLDWAV model is a system of DWOPER and DAMBRK. This is a generalised dynamic wave model for one dimensional unsteady flows in a single or branched water way. It is based on Four point nonlinear implicit F.D. model. The following special features are included in that model. (i) Variable t and x grid. (ii) Irregular cross sectional geometry. (iii) off channel storage.

9 (iv) Roughness coefficient as a function of discharge on water surface elevation and along the distance. (v) Linearly interpolated cross sections and roughness coefficients. (vi) Automatic computation of initial steady state. (vii) Time dependent leteral flows. (viii) Can account for Supercritical/ Subcritical flows.

CHAPTER 7 FLOOD HYDRAULICS & HYDROLOGIC VIVEK VERMA

CHAPTER 7 FLOOD HYDRAULICS & HYDROLOGIC VIVEK VERMA CHAPTER 7 FLOOD HYDRAULICS & HYDROLOGIC VIVEK VERMA CONTENTS 1. Flow Classification 2. Chezy s and Manning Equation 3. Specific Energy 4. Surface Water Profiles 5. Hydraulic Jump 6. HEC-RAS 7. HEC-HMS

More information

Day 1. HEC-RAS 1-D Training. Rob Keller and Mark Forest. Break (9:45 am to 10:00 am) Lunch (12:00 pm to 1:00 pm)

Day 1. HEC-RAS 1-D Training. Rob Keller and Mark Forest. Break (9:45 am to 10:00 am) Lunch (12:00 pm to 1:00 pm) Day 1 HEC-RAS 1-D Training Rob Keller and Mark Forest Introductions and Course Objectives (8:00 am to 8:15 am) Introductions: Class and Content Module 1 Open Channel Hydraulics (8:15 am to 9:45 am) Lecture

More information

Introducion to Hydrologic Engineering Centers River Analysis System (HEC- RAS) Neena Isaac Scientist D CWPRS, Pune -24

Introducion to Hydrologic Engineering Centers River Analysis System (HEC- RAS) Neena Isaac Scientist D CWPRS, Pune -24 Introducion to Hydrologic Engineering Centers River Analysis System (HEC- RAS) Neena Isaac Scientist D CWPRS, Pune -24 One dimensional river models (1-D models) Assumptions Flow is one dimensional Streamline

More information

INTRODUCTION TO HEC-RAS

INTRODUCTION TO HEC-RAS INTRODUCTION TO HEC-RAS HEC- RAS stands for Hydrologic Engineering Center s River Analysis System By U.S. Army Corps of Engineers One dimensional analysis of : 1. Steady flow 2. Unsteady flow 3. Sediment

More information

Advanced 1D/2D Modeling Using HEC-RAS

Advanced 1D/2D Modeling Using HEC-RAS Advanced 1D/2D Modeling Using HEC-RAS Davis, California Objectives This is an advanced course in applying computer program HEC-RAS. The course provides participants with the knowledge to effectively use

More information

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 3, 2012

INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 3, 2012 INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 2, No 3, 2012 Copyright 2010 All rights reserved Integrated Publishing services Research article ISSN 0976 4399 Efficiency and performances

More information

Prepared for CIVE 401 Hydraulic Engineering By Kennard Lai, Patrick Ndolo Goy & Dr. Pierre Julien Fall 2015

Prepared for CIVE 401 Hydraulic Engineering By Kennard Lai, Patrick Ndolo Goy & Dr. Pierre Julien Fall 2015 Prepared for CIVE 401 Hydraulic Engineering By Kennard Lai, Patrick Ndolo Goy & Dr. Pierre Julien Fall 2015 Contents Introduction General Philosophy Overview of Capabilities Applications Computational

More information

RESCDAM DEVELOPMENT OF RESCUE ACTIONS BASED ON DAM BREAK FLOOD ANALYSI A PREVENTION PROJECT UNDER THE EUROPEAN COMMUNITY ACTION PROGRAMME

RESCDAM DEVELOPMENT OF RESCUE ACTIONS BASED ON DAM BREAK FLOOD ANALYSI A PREVENTION PROJECT UNDER THE EUROPEAN COMMUNITY ACTION PROGRAMME RESCDAM DEVELOPMENT OF RESCUE ACTIONS BASED ON DAM BREAK FLOOD ANALYSI A PREVENTION PROJECT UNDER THE EUROPEAN COMMUNITY ACTION PROGRAMME 1-DIMENSIONAL FLOW SIMULATIONS FOR THE KYRKÖSJÄRVI DAM BREAK HAZARD

More information

Cross Sections, Profiles, and Rating Curves. Viewing Results From The River System Schematic. Viewing Data Contained in an HEC-DSS File

Cross Sections, Profiles, and Rating Curves. Viewing Results From The River System Schematic. Viewing Data Contained in an HEC-DSS File C H A P T E R 9 Viewing Results After the model has finished the steady or unsteady flow computations the user can begin to view the output. Output is available in a graphical and tabular format. The current

More information

HECRAS 2D: Are you ready for the revolution in the world of hydraulic modeling?

HECRAS 2D: Are you ready for the revolution in the world of hydraulic modeling? HECRAS 2D: Are you ready for the revolution in the world of hydraulic modeling? Rishab Mahajan, Emily Campbell and Matt Bardol March 8, 2017 Outline Reasons for hydraulic modeling 1D Modeling 2D Modeling-

More information

GRADUALLY VARIED FLOW

GRADUALLY VARIED FLOW CVE 341 Water Resources Lecture Notes 5: (Chapter 14) GRADUALLY VARIED FLOW FLOW CLASSIFICATION Uniform (normal) flow: Depth is constant at every section along length of channel Non-uniform (varied) flow:

More information

Comparing HEC-RAS v5.0 2-D Results with Verification Datasets

Comparing HEC-RAS v5.0 2-D Results with Verification Datasets Comparing HEC-RAS v5.0 2-D Results with Verification Datasets Tom Molls 1, Gary Brunner 2, & Alejandro Sanchez 2 1. David Ford Consulting Engineers, Inc., Sacramento, CA 2. USACE Hydrologic Engineering

More information

Module 9. Lecture 3: Major hydrologic models-hspf, HEC and MIKE

Module 9. Lecture 3: Major hydrologic models-hspf, HEC and MIKE Lecture 3: Major hydrologic models-hspf, HEC and MIKE Major Hydrologic Models HSPF (SWM) HEC MIKE Hydrological Simulation Program-Fortran (HSPF) Commercial successor of the Stanford Watershed Model (SWM-IV)

More information

HEC-RAS. A Tutorial (Model Development of a Small Flume)

HEC-RAS. A Tutorial (Model Development of a Small Flume) HEC-RAS A Tutorial (Model Development of a Small Flume) HEC-RAS Hydraulic Engineering Center:River Analysis System 1-D step backwater model Utilizes energy equation to compute water surface elevation for

More information

Linear Routing: Floodrouting. HEC-RAS Introduction. Brays Bayou. Uniform Open Channel Flow. v = 1 n R2/3. S S.I. units

Linear Routing: Floodrouting. HEC-RAS Introduction. Brays Bayou. Uniform Open Channel Flow. v = 1 n R2/3. S S.I. units Linear Routing: Floodrouting HEC-RAS Introduction Shirley Clark Penn State Harrisburg Robert Pitt University of Alabama April 26, 2004 Two (2) types of floodrouting of a hydrograph Linear Muskingum Reservoir

More information

FLOODPLAIN MODELING USING HEC-RAS

FLOODPLAIN MODELING USING HEC-RAS H A E S T A D M E T H O D S FLOODPLAIN MODELING USING HEC-RAS F i r s t E d i t i o n Authors Haestad Methods Gary Dyhouse Jennifer Hatchett Jeremy Benn Managing Editor Colleen Totz Editors David Klotz,

More information

Automating Hydraulic Analysis v 1.0.

Automating Hydraulic Analysis v 1.0. 2011 Automating Hydraulic Analysis v 1.0. Basic tutorial and introduction Automating Hydraulic Analysis (AHYDRA) is a freeware application that automates some specific features of HEC RAS or other hydraulic

More information

River inundation modelling for risk analysis

River inundation modelling for risk analysis River inundation modelling for risk analysis L. H. C. Chua, F. Merting & K. P. Holz Institute for Bauinformatik, Brandenburg Technical University, Germany Abstract This paper presents the results of an

More information

Efficiency and Accuracy of Importing HEC RAS Datafiles into PCSWMM and SWMM5

Efficiency and Accuracy of Importing HEC RAS Datafiles into PCSWMM and SWMM5 5 Efficiency and Accuracy of Importing HEC RAS Datafiles into PCSWMM and SWMM5 Karen Finney, Rob James, William James and Tiehong Xiao An advantage of USEPA s SWMM5 is its capability to dynamically model

More information

Lax-Wendroff and McCormack Schemes for Numerical Simulation of Unsteady Gradually and Rapidly Varied Open Channel Flow

Lax-Wendroff and McCormack Schemes for Numerical Simulation of Unsteady Gradually and Rapidly Varied Open Channel Flow Archives of Hydro-Engineering and Environmental Mechanics Vol. 60 (2013), No. 1 4, pp. 51 62 DOI: 10.2478/heem-2013-0008 IBW PAN, ISSN 1231 3726 Lax-Wendroff and McCormack Schemes for Numerical Simulation

More information

Introduction to MIKE FLOOD

Introduction to MIKE FLOOD Introduction to MIKE FLOOD HYDROEUROPE, Sophia-Antipolis, February 2011 Julie Landrein, DHI Denmark Introduction to MIKE FLOOD - Introduction to MIKE FLOOD - 1D Modelling: MIKE 11, MIKE URBAN - 2D Modelling:

More information

Application Description

Application Description USER S GUIDE FOR SDB GUI (SDB-J) Modifications by Janice Sylvestre Based on NWS Document THE NWS SIMPLIFIED DAM-BREAK FLOOD FORECASTING MODEL 1 By Danny L. Fread, Janice M. Lewis, and Stephen M. Wiele

More information

Use of measured and interpolated crosssections

Use of measured and interpolated crosssections Use of measured and interpolated crosssections in hydraulic river modelling Y. Chen/, R. Crowded & R. A. Falconer^ ^ Department of Civil & Environmental Engineering, University ofbradford, Bradford, West

More information

Verification and Validation of HEC-RAS 5.1

Verification and Validation of HEC-RAS 5.1 Verification and Validation of HEC-RAS 5.1 Gary Brunner 1, P.E., D. WRE, M.ASCE Dr. Alex Sanchez 1 Dr. Tom Molls 2 Dr. David Parr 3 1. USACE Hydrologic Engineering Center, Davis, CA 2. David Ford Consulting

More information

2D Hydrodynamic Model for Reservoirs: Case Study High Aswan Dam Reservoir

2D Hydrodynamic Model for Reservoirs: Case Study High Aswan Dam Reservoir D Hydrodynamic Model for Reservoirs: Case Study High Aswan Dam Reservoir M. M. Soliman 1, M. A. Gad, Ashraf M. El-Moustafa 3 Abstract High Aswan Dam (HAD) is one of the most important projects in the history

More information

PRACTICAL UNIT 1 exercise task

PRACTICAL UNIT 1 exercise task Practical Unit 1 1 1 PRACTICAL UNIT 1 exercise task Developing a hydraulic model with HEC RAS using schematic river geometry data In the course of practical unit 1 we prepare the input for the execution

More information

THE NWS SIMPLIFIED DAM-BREAK FLOOD FORECASTING MODEL

THE NWS SIMPLIFIED DAM-BREAK FLOOD FORECASTING MODEL THE NWS SIMPLIFIED DAM-BREAK FLOOD FORECASTING MODEL by Jonathan N. Wetmore and Danny L. Fread 1 (Revised 12/18/91) by Danny L. Fread, Janice M. Lewis 2, and Stephen M. Wiele 2 SYNOPSIS The National Weather

More information

Watershed Analysis with the Hydrologic Engineering Center s River Analysis System (HEC-RAS)

Watershed Analysis with the Hydrologic Engineering Center s River Analysis System (HEC-RAS) Watershed Analysis with the Hydrologic Engineering Center s River Analysis System (HEC-RAS) by Christopher R. Goodell and Gary W. Brunner PURPOSE: The objectives of this document are to provide a general

More information

Flood Inundation Mapping using HEC-RAS

Flood Inundation Mapping using HEC-RAS Flood Inundation Mapping using HEC-RAS Goodell, C. 1 ; Warren, C. 2 WEST Consultants, 2601 25 th St SE, Suite 450, Salem, OR 97302. Abstract Flood inundation mapping is an important tool for municipal

More information

Package rivr. March 15, 2016

Package rivr. March 15, 2016 Type Package Package rivr March 15, 2016 Title Steady and Unsteady Open-Channel Flow Computation Version 1.2 Date 2016-03-11 Author Michael C Koohafkan [aut, cre] Maintainer Michael C Koohafkan

More information

2-D Hydraulic Modeling Theory & Practice

2-D Hydraulic Modeling Theory & Practice 2-D Hydraulic Modeling Theory & Practice Author: Maged A. Aboelata, PhD, PE, CFM Presenter: Heather Zhao, PE, CFM October 2017 Presentation Outline * 1-D vs. 2-D modeling * Theory of 2-D simulation * Commonly

More information

FLOODPLAIN MODELING MANUAL. HEC-RAS Procedures for HEC-2 Modelers

FLOODPLAIN MODELING MANUAL. HEC-RAS Procedures for HEC-2 Modelers FLOODPLAIN MODELING MANUAL HEC-RAS Procedures for HEC-2 Modelers Federal Emergency Management Agency Mitigation Directorate 500 C Street, SW Washington, DC 20472 April 2002 Floodplain Modeling Manual HEC-RAS

More information

Watershed Modeling HEC-HMS Interface

Watershed Modeling HEC-HMS Interface v. 10.1 WMS 10.1 Tutorial Learn how to set up a basic HEC-HMS model using WMS Objectives Build a basic HEC-HMS model from scratch using a DEM, land use, and soil data. Compute the geometric and hydrologic

More information

Steady Flow Water Surface Profile Computation Using HEC-RAS

Steady Flow Water Surface Profile Computation Using HEC-RAS Steady Flow Water Surface Profile Computation Using HEC-RAS Objectives The objective of the course is to enable the participants to perform water surface profile computations using computer program HEC-RAS

More information

WMS 9.1 Tutorial GSSHA Modeling Basics Stream Flow Integrate stream flow with your GSSHA overland flow model

WMS 9.1 Tutorial GSSHA Modeling Basics Stream Flow Integrate stream flow with your GSSHA overland flow model v. 9.1 WMS 9.1 Tutorial Integrate stream flow with your GSSHA overland flow model Objectives Learn how to add hydraulic channel routing to your GSSHA model and how to define channel properties. Learn how

More information

Watershed Modeling Rational Method Interface. Learn how to model urban areas using WMS' rational method interface

Watershed Modeling Rational Method Interface. Learn how to model urban areas using WMS' rational method interface v. 10.1 WMS 10.1 Tutorial Learn how to model urban areas using WMS' rational method interface Objectives Learn how to model urban areas using the Rational method, including how to compute rainfall intensity,

More information

Hydraulics and Floodplain Modeling Modeling with the Hydraulic Toolbox

Hydraulics and Floodplain Modeling Modeling with the Hydraulic Toolbox v. 9.1 WMS 9.1 Tutorial Hydraulics and Floodplain Modeling Modeling with the Hydraulic Toolbox Learn how to design inlet grates, detention basins, channels, and riprap using the FHWA Hydraulic Toolbox

More information

A fuzzy dynamic flood routing model for natural channels

A fuzzy dynamic flood routing model for natural channels HYDROLOGICAL PROCESSES Hydrol. Process. (29) Published online in Wiley InterScience (www.interscience.wiley.com) DOI:.2/hyp.73 A fuzzy dynamic flood routing model for natural channels R. Gopakumar and

More information

ISIS 1D. Quick Start Guide. Cost effective, integrated software solutions ch2mhill.com/isis

ISIS 1D. Quick Start Guide. Cost effective, integrated software solutions ch2mhill.com/isis ISIS 1D Quick Start Guide Cost effective, integrated software solutions 0845 094 7990 ch2mhill.com/isis softwaresupport@ch2m.com Table of Contents Overview... 3 1. Starting ISIS and Basic Concepts... 3

More information

NUMERICAL SOLUTION WITH GRAPH THEORY FOR FLOOD FLOW IN RIVER NETWORKS

NUMERICAL SOLUTION WITH GRAPH THEORY FOR FLOOD FLOW IN RIVER NETWORKS Annual Journal of Hydraulic Engineering, JSCE, VOL.45, 2001, February NUMERICAL SOLUTION WITH GRAPH THEORY FOR FLOOD FLOW IN RIVER NETWORKS Tuan NGUYEN Le1 and Satoru SUGIO2 Student Member of JSCE, Graduate

More information

25 Using Numerical Methods, GIS & Remote Sensing 1

25 Using Numerical Methods, GIS & Remote Sensing 1 Module 6 (L22 L26): Use of Modern Techniques es in Watershed Management Applications of Geographical Information System and Remote Sensing in Watershed Management, Role of Decision Support System in Watershed

More information

ENV3104 Hydraulics II 2017 Assignment 1. Gradually Varied Flow Profiles and Numerical Solution of the Kinematic Equations:

ENV3104 Hydraulics II 2017 Assignment 1. Gradually Varied Flow Profiles and Numerical Solution of the Kinematic Equations: ENV3104 Hydraulics II 2017 Assignment 1 Assignment 1 Gradually Varied Flow Profiles and Numerical Solution of the Kinematic Equations: Examiner: Jahangir Alam Due Date: 27 Apr 2017 Weighting: 1% Objectives

More information

Numerical Hydraulics

Numerical Hydraulics ETHZ, Fall 2017 Numerical Hydraulics Assignment 3 Comparison of two numerical solutions of river flow: use of Finite Elements (HEC-RAS) and Finite Volumes (BASEMENT) 1 Introduction In the course, two different

More information

Connecting 1D and 2D Domains

Connecting 1D and 2D Domains Connecting 1D and 2D Domains XP Solutions has a long history of Providing original, high-performing software solutions Leading the industry in customer service and support Educating our customers to be

More information

Build a MODRAT model by defining a hydrologic schematic

Build a MODRAT model by defining a hydrologic schematic v. 11.0 WMS 11.0 Tutorial Build a MODRAT model by defining a hydrologic schematic Objectives Learn how to define a basic MODRAT model using the hydrologic schematic tree in WMS by building a tree and defining

More information

lecture 8 Groundwater Modelling -1

lecture 8 Groundwater Modelling -1 The Islamic University of Gaza Faculty of Engineering Civil Engineering Department Water Resources Msc. Groundwater Hydrology- ENGC 6301 lecture 8 Groundwater Modelling -1 Instructor: Dr. Yunes Mogheir

More information

HEC-RAS 3.0 January, 2001 Release Notes

HEC-RAS 3.0 January, 2001 Release Notes HEC-RAS 3.0 January, 2001 Release Notes A new version of HEC-RAS (3.0) has been released with significant new features over the previous version (2.21). Version 3.0 includes unsteady flow routing capabilities,

More information

River Analysis System HEC-RAS

River Analysis System HEC-RAS Hydrologic Engineering Center River Analysis System HEC-RAS Release Notes Version 4.0.0 March 2008 Approved for Public Release Distribution Unlimited 1 Introduction Version 4.0.0 of the River Analysis

More information

Gavin Fields Senior Water Resources Engineer XP Solutions

Gavin Fields Senior Water Resources Engineer XP Solutions Hydraulics 101 Gavin Fields Senior Water Resources Engineer XP Solutions Hydraulics 101 Introduction Structures Hydraulic Model Building Q&A XP Solutions Software for modeling wastewater, stormwater, and

More information

Harris County Flood Control District HEC-RAS 2D Modeling Guidelines (Standardizing HEC-RAS 2D Models for Submittal Within Harris County)

Harris County Flood Control District HEC-RAS 2D Modeling Guidelines (Standardizing HEC-RAS 2D Models for Submittal Within Harris County) Harris County Flood Control District HEC-RAS 2D Modeling Guidelines (Standardizing HEC-RAS 2D Models for Submittal Within Harris County) Presented by: April 27, 2017 Matthew Zeve, P.E., CFM Harris County

More information

CEE3430 Engineering Hydrology

CEE3430 Engineering Hydrology CEE3430 Engineering Hydrology Homework 8. Step by Step Guidance for using HEC HMS to solve homework problems 1. Solve Part 1, problem 3 above using HEC-HMS. The standard lag referred to in the inputs (and

More information

Appendix E. HEC-RAS and HEC-Ecosystem Functions Models

Appendix E. HEC-RAS and HEC-Ecosystem Functions Models Appendix E HEC-RAS and HEC-Ecosystem Functions Models 1 Appendix E: Modeled Reaches for the Connecticut River Watershed application of HEC-RAS Separate from the report for the Decision Support System of

More information

v SMS Tutorials SRH-2D Prerequisites Requirements SRH-2D Model Map Module Mesh Module Data files Time

v SMS Tutorials SRH-2D Prerequisites Requirements SRH-2D Model Map Module Mesh Module Data files Time v. 11.2 SMS 11.2 Tutorial Objectives This tutorial shows how to build a Sedimentation and River Hydraulics Two-Dimensional () simulation using SMS version 11.2 or later. Prerequisites SMS Overview tutorial

More information

The CaMa-Flood model description

The CaMa-Flood model description Japan Agency for Marine-Earth cience and Technology The CaMa-Flood model description Dai Yamazaki JAMTEC Japan Agency for Marine-Earth cience and Technology 4 th ep, 2015 Concepts of the CaMa-Flood development

More information

The HEC-RAS Model Refresher

The HEC-RAS Model Refresher The HEC-RAS Model Refresher Minmin Shu P.E. Transportation Review Unit Water Resources Division Michigan Department of Environmental Quality 12-6-2018 What Does the HEC-RAS Mean RAS----River Analysis System

More information

Numerical modeling of rapidly varying flows using HEC RAS and WSPG models

Numerical modeling of rapidly varying flows using HEC RAS and WSPG models DOI 10.1186/s40064-016-2199-0 TECHNICAL NOTE Open Access Numerical modeling of rapidly varying flows using HEC RAS and WSPG models Prasada Rao 1* and Theodore V. Hromadka II 2 *Correspondence: prasad@fullerton.edu

More information

WMS 10.0 Tutorial Watershed Modeling MODRAT Interface Schematic Build a MODRAT model by defining a hydrologic schematic

WMS 10.0 Tutorial Watershed Modeling MODRAT Interface Schematic Build a MODRAT model by defining a hydrologic schematic v. 10.0 WMS 10.0 Tutorial Watershed Modeling MODRAT Interface Schematic Build a MODRAT model by defining a hydrologic schematic Objectives This tutorial shows users how to define a basic MODRAT model using

More information

Required: 486DX-33, 8MB RAM, HDD w. 20 MB free, VGA, Win95. Recommended: Pentium 60, 16 MB RAM, SVGA, Win95 or NT

Required: 486DX-33, 8MB RAM, HDD w. 20 MB free, VGA, Win95. Recommended: Pentium 60, 16 MB RAM, SVGA, Win95 or NT Evaluation Form Evaluator Information Name: Jeff Hagan Date: Feb. 17, 2000 Software Information Title of Software: Purpose: Publisher: CulvertMaster Culvert Hydraulic Design Haestad Methods, Inc. Version:

More information

Channel Routing & Lakes/Reservoirs in WRF-Hydro

Channel Routing & Lakes/Reservoirs in WRF-Hydro Channel Routing & Lakes/Reservoirs in WRF-Hydro L. Read, D. Yates National Center for Atmospheric Research Channel Routing Channel Routing Methods Set in hydro.namelist with the channel_option = 1, 2 or

More information

OPEN CHANNEL FLOW. An Introduction. -

OPEN CHANNEL FLOW. An Introduction.   - OPEN CHANNEL FLOW An Introduction http://tsaad.utsi.edu - tsaad@utsi.edu OUTLINE General characteristics Surface Waves & Froude Number Effects Types of Channel flows The Hydraulic Jump Conclusion General

More information

v. 9.1 WMS 9.1 Tutorial Watershed Modeling HEC-1 Interface Learn how to setup a basic HEC-1 model using WMS

v. 9.1 WMS 9.1 Tutorial Watershed Modeling HEC-1 Interface Learn how to setup a basic HEC-1 model using WMS v. 9.1 WMS 9.1 Tutorial Learn how to setup a basic HEC-1 model using WMS Objectives Build a basic HEC-1 model from scratch using a DEM, land use, and soil data. Compute the geometric and hydrologic parameters

More information

This tutorial shows how to build a Sedimentation and River Hydraulics Two-Dimensional (SRH-2D) simulation. Requirements

This tutorial shows how to build a Sedimentation and River Hydraulics Two-Dimensional (SRH-2D) simulation. Requirements v. 13.0 SMS 13.0 Tutorial Objectives This tutorial shows how to build a Sedimentation and River Hydraulics Two-Dimensional () simulation. Prerequisites SMS Overview tutorial Requirements Model Map Module

More information

HEC-RAS Verification and Validation Tests

HEC-RAS Verification and Validation Tests HEC-RAS Verification and Validation Tests April 2018 Approved for Public Release. Distribution Unlimited. RD-52 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 The public reporting burden for

More information

2D Model Implementation for Complex Floodplain Studies. Sam Crampton, P.E., CFM Dewberry

2D Model Implementation for Complex Floodplain Studies. Sam Crampton, P.E., CFM Dewberry 2D Model Implementation for Complex Floodplain Studies Sam Crampton, P.E., CFM Dewberry 2D Case Studies Case Study 1 Rain-on-Grid 2D floodplain simulation for unconfined flat topography in coastal plain

More information

MIKE 1D. What is included in MIKE 1D 2017?

MIKE 1D. What is included in MIKE 1D 2017? MIKE 1D What is included in MIKE 1D 2017? MIKE 2017 DHI headquarters Agern Allé 5 DK-2970 Hørsholm Denmark +45 4516 9200 Telephone +45 4516 9333 Support +45 4516 9292 Telefax mike@dhigroup.com www.mikepoweredbydhi.com

More information

2D Hydraulic Modeling, Steering Stream Restoration Design

2D Hydraulic Modeling, Steering Stream Restoration Design 2D Hydraulic Modeling, Steering Stream Restoration Design PREPARED FOR: EcoStream 2018 Stream Ecology & Restoration Conference Presented By: Matthew D. Gramza, P.E., CFM, CPESC Civil & Environmental Consultants,

More information

v Prerequisite Tutorials GSSHA Modeling Basics Stream Flow GSSHA WMS Basics Creating Feature Objects and Mapping their Attributes to the 2D Grid

v Prerequisite Tutorials GSSHA Modeling Basics Stream Flow GSSHA WMS Basics Creating Feature Objects and Mapping their Attributes to the 2D Grid v. 10.1 WMS 10.1 Tutorial GSSHA Modeling Basics Developing a GSSHA Model Using the Hydrologic Modeling Wizard in WMS Learn how to setup a basic GSSHA model using the hydrologic modeling wizard Objectives

More information

Introduction Surface Water Modeling System (SMS) & Case Study using SMS 2D Modeling Software

Introduction Surface Water Modeling System (SMS) & Case Study using SMS 2D Modeling Software A.D. Latornell Conservation Symposium November 18, 2015 Introduction Surface Water Modeling System (SMS) & Case Study using SMS 2D Modeling Software Dr. Bahar SM P.Geo.(Ltd), P Eng 1 Topics Education,

More information

ISIS Free & ISIS Professional Quick Start Guide

ISIS Free & ISIS Professional Quick Start Guide ISIS Free & ISIS Professional Cost effective, integrated modelling solutions Think saving, think ISIS, think Halcrow This quick start guide enables first time users to quickly understand how to use ISIS

More information

WMS 8.4 Tutorial Watershed Modeling MODRAT Interface Schematic Build a MODRAT model by defining a hydrologic schematic

WMS 8.4 Tutorial Watershed Modeling MODRAT Interface Schematic Build a MODRAT model by defining a hydrologic schematic v. 8.4 WMS 8.4 Tutorial Watershed Modeling MODRAT Interface Schematic Build a MODRAT model by defining a hydrologic schematic Objectives This tutorial shows you how to define a basic MODRAT model using

More information

This tutorial introduces the HEC-RAS model and how it can be used to generate files for use with the HEC-RAS software.

This tutorial introduces the HEC-RAS model and how it can be used to generate files for use with the HEC-RAS software. v. 12.3 SMS 12.3 Tutorial Objectives This tutorial introduces the model and how it can be used to generate files for use with the software. Prerequisites Overview Tutorial Requirements 5.0 Mesh Module

More information

HEC-RAS River Analysis System

HEC-RAS River Analysis System HEC-RAS River Analysis System Version 5.0.7 March 2019 Approved for Public Release. Distribution Unlimited. Introduction Version 5.0.7 of the River Analysis System (HEC-RAS) is now available. This Version

More information

Objectives This tutorial shows how to build a Sedimentation and River Hydraulics Two-Dimensional (SRH-2D) simulation.

Objectives This tutorial shows how to build a Sedimentation and River Hydraulics Two-Dimensional (SRH-2D) simulation. v. 12.1 SMS 12.1 Tutorial Objectives This tutorial shows how to build a Sedimentation and River Hydraulics Two-Dimensional () simulation. Prerequisites SMS Overview tutorial Requirements Model Map Module

More information

COMPARISON OF NUMERICAL HYDRAULIC MODELS APPLIED TO THE REMOVAL OF SAVAGE RAPIDS DAM NEAR GRANTS PASS, OREGON

COMPARISON OF NUMERICAL HYDRAULIC MODELS APPLIED TO THE REMOVAL OF SAVAGE RAPIDS DAM NEAR GRANTS PASS, OREGON COMPARISON OF NUMERICAL HYDRAULIC MODELS APPLIED TO THE REMOVAL OF SAVAGE RAPIDS DAM NEAR GRANTS PASS, OREGON Jennifer Bountry, Hydraulic Engineer, Bureau of Reclamation, Denver, CO, jbountry@do.usbr.gov;

More information

QUASI-3D SOLVER OF MEANDERING RIVER FLOWS BY CIP-SOROBAN SCHEME IN CYLINDRICAL COORDINATES WITH SUPPORT OF BOUNDARY FITTED COORDINATE METHOD

QUASI-3D SOLVER OF MEANDERING RIVER FLOWS BY CIP-SOROBAN SCHEME IN CYLINDRICAL COORDINATES WITH SUPPORT OF BOUNDARY FITTED COORDINATE METHOD QUASI-3D SOLVER OF MEANDERING RIVER FLOWS BY CIP-SOROBAN SCHEME IN CYLINDRICAL COORDINATES WITH SUPPORT OF BOUNDARY FITTED COORDINATE METHOD Keisuke Yoshida, Tadaharu Ishikawa Dr. Eng., Tokyo Institute

More information

H y d r o C A D. Owner's Manual

H y d r o C A D. Owner's Manual H y d r o C A D Stormwater Modeling System Version 8 Owner's Manual Copyright 2006 HydroCAD Software Solutions LLC. All rights reserved. HydroCAD is a registered trademark of HydroCAD Software Solutions

More information

Urban Floodplain modeling- Application of Two-Dimensional Analyses to Refine Results

Urban Floodplain modeling- Application of Two-Dimensional Analyses to Refine Results Urban Floodplain modeling- Application of Two-Dimensional Analyses to Refine Results Prabharanjani Madduri, P.E., CFM Mathini Sreetharan, Ph.D., P.E., CFM Hydraulic modeling of urban areas and issues Modeling

More information

HEC RAS 2D Methods Guidance: South Dakota Large Scale Automated Engineering

HEC RAS 2D Methods Guidance: South Dakota Large Scale Automated Engineering HEC RAS 2D Methods Guidance: South Dakota Large Scale Automated Engineering January, 2017 Prepared by: Compass PTS JV a JV led by AECOM and CDM Smith 3101 Wilson Boulevard, Suite 900 Arlington, VA 22201

More information

Department of Civil Engineering, Faculty of Engineering, Suranaree University of Technology, Mueang, Nakhon Ratchasima, Thailand.

Department of Civil Engineering, Faculty of Engineering, Suranaree University of Technology, Mueang, Nakhon Ratchasima, Thailand. 0 0 Mapping temporal flood extent of Chiang Mai flooding using a coupled D and quasi D floodplain inundation modeling Chatchai Jothityangkoon and Kowit Boonrawd Department of Civil Engineering, Faculty

More information

iric Software Changing River Science River2D Tutorials

iric Software Changing River Science River2D Tutorials iric Software Changing River Science River2D Tutorials iric Software Changing River Science Confluence of the Colorado River, Blue River and Indian Creek, Colorado, USA 1 TUTORIAL 1: RIVER2D STEADY SOLUTION

More information

Storm Drain Modeling HY-12 Rational Design

Storm Drain Modeling HY-12 Rational Design v. 10.1 WMS 10.1 Tutorial Learn how to design storm drain inlets, pipes, and other components of a storm drain system using FHWA's HY-12 storm drain analysis software and the WMS interface Objectives Define

More information

b ma. The reservoir reduces The storage-outflow function is calculated in the following example, for Q = 57 ma/s, 2s/At b 20,890 ms/s as shown

b ma. The reservoir reduces The storage-outflow function is calculated in the following example, for Q = 57 ma/s, 2s/At b 20,890 ms/s as shown The storage-outflow function is calculated in the following - table using the same method as in Example-48.2.1) in the text ui h A t 2 hrs. for example, for Q = 57 ma/s, 2s/At b + Q = ((2 x 75 x 10 )/(2

More information

Improved understanding of combined sewer systems using the Illinois Conveyance Analysis Program (ICAP)

Improved understanding of combined sewer systems using the Illinois Conveyance Analysis Program (ICAP) Improved understanding of combined sewer systems using the Illinois Conveyance Analysis Program (ICAP) Nils Oberg 1*, Arthur R. Schmidt 1, Blake J. Landry 1, Arturo S. Leon 1,2, Andrew R. Waratuke 1, José

More information

How to correct and complete discharge data Main text

How to correct and complete discharge data Main text Table of Contents. General 2. Completion from another record at the same station 3. Interpolating discharge gaps of short duration 4. Interpolating gaps during recessions 5. Interpolation using regression

More information

Flood Routing for Continuous Simulation Models

Flood Routing for Continuous Simulation Models Improving Life through Science and Technology Flood Routing for Continuous Simulation Models J. Williams, W. Merkel, J. Arnold, J. Jeong 11 International SWAT Conference, Toledo, Spain, June 15-17, 11

More information

Updated on November 10, 2017

Updated on November 10, 2017 CIVE 7397 Unsteady flows in Rivers and Pipe Networks/Stormwater Management and Modeling / Optimization in Water Resources Engineering Updated on November 10, 2017 Tutorial on using HEC-GeoRAS 10.1 (or

More information

A Robust Numerical Algorithm for Efficient Overland-Flow Routing

A Robust Numerical Algorithm for Efficient Overland-Flow Routing th International Conference on Hydroscience & Engineering November -1,, Tainan, Taiwan. A Robust Numerical Algorithm for Efficient Overland-Flow Routing Pin-Chun Huang, Kwan Tun Le Department of River

More information

Comparison of Central and Upwind Flux Averaging in Overlapping Finite Volume Methods for Simulation of Super-Critical Flow with Shock Waves

Comparison of Central and Upwind Flux Averaging in Overlapping Finite Volume Methods for Simulation of Super-Critical Flow with Shock Waves Proceedings of the 9th WSEAS International Conference on Applied Mathematics, Istanbul, Turkey, May 7, 6 (pp55665) Comparison of and Flux Averaging in Overlapping Finite Volume Methods for Simulation of

More information

Objectives This tutorial will introduce how to prepare and run a basic ADH model using the SMS interface.

Objectives This tutorial will introduce how to prepare and run a basic ADH model using the SMS interface. v. 12.1 SMS 12.1 Tutorial Objectives This tutorial will introduce how to prepare and run a basic ADH model using the SMS interface. Prerequisites Overview Tutorial Requirements ADH Mesh Module Scatter

More information

UNDERSTAND HOW TO SET UP AND RUN A HYDRAULIC MODEL IN HEC-RAS CREATE A FLOOD INUNDATION MAP IN ARCGIS.

UNDERSTAND HOW TO SET UP AND RUN A HYDRAULIC MODEL IN HEC-RAS CREATE A FLOOD INUNDATION MAP IN ARCGIS. CE 412/512, Spring 2017 HW9: Introduction to HEC-RAS and Floodplain Mapping Due: end of class, print and hand in. HEC-RAS is a Hydrologic Modeling System that is designed to describe the physical properties

More information

Hydrologic Modeling System HEC-HMS

Hydrologic Modeling System HEC-HMS US Army Corps of Engineers Hydrologic Engineering Center Hydrologic Modeling System HEC-HMS Release Notes Version 2.1.2 June 2001 Approved for Public Release Distribution Unlimited Introduction Installation

More information

P Two-dimensional Modelling of Dam Breach Flooding. Miguel Ángel Corcuera Barrera 1, Peter Torp Larsen 2, Poul Kronborg 2

P Two-dimensional Modelling of Dam Breach Flooding. Miguel Ángel Corcuera Barrera 1, Peter Torp Larsen 2, Poul Kronborg 2 Two-dimensional Modelling of Dam Breach Flooding. Miguel Ángel Corcuera Barrera 1, Peter Torp Larsen 2, Poul Kronborg 2 1 Aguas del Añarbe, España 2 DHI Spain Presenter: Peter Torp Larsen, ptl@dhigroup.com

More information

River Analysis System HEC-RAS

River Analysis System HEC-RAS Hydrologic Engineering Center River Analysis System HEC-RAS Release Notes Version 5.0.2 August 2016 Approved for Public Release Distribution Unlimited 1 Introduction Version 5.0.2 of the River Analysis

More information

UNCERTAINTY ISSUES IN HYDRODYNAMIC FLOOD MODELING

UNCERTAINTY ISSUES IN HYDRODYNAMIC FLOOD MODELING UNCERTAINTY ISSUES IN HYDRODYNAMIC FLOOD MODELING Alemseged T. H. a and T. H. M. Rientjes b a Department of Water Resources, ITC, P.O.Box 6, 7500AA, Enschede, The Netherlands. E-mail: haile07634@itc.nl

More information

Boundaries of 1D 2D modelling. Suzanne Callaway Senior Hydraulic Modeller

Boundaries of 1D 2D modelling. Suzanne Callaway Senior Hydraulic Modeller Boundaries of 1D 2D modelling Suzanne Callaway Senior Hydraulic Modeller Introduction Why is it important to define 1D 2D boundaries carefully? Defining boundaries between 1D and 2D models (Flood Modeller

More information

2014 AWRA Annual Water Resources Conference November 5, 2014 Tysons Corner, VA

2014 AWRA Annual Water Resources Conference November 5, 2014 Tysons Corner, VA 2014 AWRA Annual Water Resources Conference November 5, 2014 Tysons Corner, VA HEC-RAS Overview, History, & Future How HEC-RAS Works Model Development Standard FEMA Assumptions Building A Model FEMA Levels

More information

WMS 9.1 Tutorial Hydraulics and Floodplain Modeling Floodplain Delineation Learn how to us the WMS floodplain delineation tools

WMS 9.1 Tutorial Hydraulics and Floodplain Modeling Floodplain Delineation Learn how to us the WMS floodplain delineation tools v. 9.1 WMS 9.1 Tutorial Hydraulics and Floodplain Modeling Floodplain Delineation Learn how to us the WMS floodplain delineation tools Objectives Experiment with the various floodplain delineation options

More information

Storm Drain Modeling HY-12 Pump Station

Storm Drain Modeling HY-12 Pump Station v. 10.1 WMS 10.1 Tutorial Storm Drain Modeling HY-12 Pump Station Analysis Setup a simple HY-12 pump station storm drain model in the WMS interface with pump and pipe information Objectives Using the HY-12

More information

Hydrodynamic modeling of flow around bridge piers

Hydrodynamic modeling of flow around bridge piers Hydrodynamic modeling of flow around bridge piers E. D. Farsirotou*, J. V. Soulis^, V. D. Dermissis* *Aristotle University of Thessaloniki, Civil Engineering Department, Division of Hydraulics and Environmental

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information