Lecture 14: Minimum Spanning Tree I

Size: px
Start display at page:

Download "Lecture 14: Minimum Spanning Tree I"

Transcription

1 COMPSCI 0: Deign and Analyi of Algorithm October 4, 07 Lecture 4: Minimum Spanning Tree I Lecturer: Rong Ge Scribe: Fred Zhang Overview Thi lecture we finih our dicuion of the hortet path problem and introduce the Bellman-Ford algorithm for dealing with negative edge length. We then introduce the minimum panning tree (MST) problem and prove a key property of MST. Shortet Path with Negative Edge Length Today we would like to deal with problem of finding hortet path in graph when the graph ha negative length edge. One of the common cenario with negative edge i the currency exchange arbitrage.. Motivation: Currency Exchange Suppoe u, v are different currencie, and the exchange rate i C(u, v) (i.e., unit of v i worth C(u, v) unit of u). We et the length of the edge a w(u, v) = log C(u, v). We take the log becaue, in currency exchange, the rate are multiplicative factor, but in hortet path, path length i defined a um of edge length. By thi converion, the length of a path i log of the total exchange rate. Becaue of the logarithm, the edge length w(u, v) can be negative or poitive. It i negative if C(u, v) i le than, and a we mentioned, a negative cycle in the graph mean currency arbitrage. In general, one can walk along a negative cycle infinitely many time, and a path that contain the cycle ha length of negative infinity. Therefore, our algorithm will try to find hortet path, auming there i no negative cycle.. Bellman-Ford Algorithm We have looked at the Bellman-Ford algorithm, which ue the dynamic programming paradigm. Firt, we define the tate. Let d[u, i] be the length of the hortet path to get to vertex u with (exactly) i tep. A a property of hortet path, we know that any ub-path of a hortet path i alo the hortet. Therefore, the tranition function i d[v, i + ] = min (u,v) E w[u, v] }{{} length of the lat tep + d[u, i] }{{} hortet path to a predeceor For thi tranition function, it i eay to figure out the correct ordering of evaluating the entrie. We firt calculate d[v, i] for all v firt and then are able to compute d[v, i + ]. We do not have to worry about the negative cycle, a we did before.. Lecture 4: Minimum Spanning Tree I-

2 . Implementation Before analyzing it running time, let u dicu it implementation. It follow from the guideline for implementing any dynamic programming algorithm. If you have one parameter, write one for loop. If you have two parameter, write a double for loop. Then try to fill in the table in the correct order. For Bellman-Ford, let u lightly modify the definition of tate. Redefine d[u, i] a the length of the hortet path to get to u with at mot i tep. The tranition function i given by { } d[v, i + ] = min d[v, i], min (w [u + v] + d[u, i]). (u,v) E The difference i that we now have the option of reaching to v jut uing (at mot) i tep when computing d[v, i + ]. The econd part of the tranition function i till the ame. The implementation i fairly eay, given below by Algorithm. Algorithm : The Bellman-Ford Algorithm Initialize d[, 0] 0, d[u, 0] for all other vertice u. for i = to n do Initialize d[u, i] d[u, i ] for all i. for all edge (u, v) do if w[u, v] + d[u, i ] d[v, i] then d[v, i] w[u, v] + d[u, i ]. if there i a vertex u uch that d[u, n] d[u, n ] then Report there i a negative cycle. The lat part of the algorithm i to try detecting a negative cycle. Every vertex i reachable within n tep, o if ome vertex ditance to can be decreaed uing n tep, compared to uing n tep, then there i a negative cycle. The proof of thi fact i left a an exercie..4 Example of Running Bellman-Ford Let u now ee how the Bellman-Ford algorithm run on a graph. Conider the graph below with negative edge length but no negative cycle Figure : A graph with edge length and vertex label. Now run the Bellman-Ford algorithm tarting at vertex. For initialization, when i = 0, every vertex ha ditance d[u, 0] =. We thu get Figure a. Lecture 4: Minimum Spanning Tree I-

3 - - (a) The t iteration at i = 0. Vertice are labeled with d[u, 0]. (b) The nd iteration at i =. Vertice are labeled with d[u, ]. Figure : Firt two iteration. When i =, the algorithm conider the two edge incident on (hown in Figure a) and update the two relevant vertice. Their ditance become and ; ee Figure b. Three outgoing edge from thee two vertice will are relevant for the next tep. The red edge i particularly important to notice. If there i no negative edge, we hould not conider it at thi moment, a the Dijktra algorithm would do. But maybe thi edge i negative, and we might get a horter path to the upper vertex by re-routing from the lower left vertex (a) The rd iteration at i =. Vertice are labeled with d[u, ] (b) The 4th iteration at i =. Vertice are labeled with d[u, ] Figure : Next two iteration. When i =, the algorithm conider the three edge, hown in Figure b, and update ditance accordingly. The reult i Figure a. Again, the algorithm will next conider all outgoing edge from vertice that were jut updated. When i =, the algorithm update the ditance of two vertice and prepare to conider their outgoing edge Figure 4: The 5th iteration at i = 4. Vertice are labeled with d[u, 4], the final olution. When i = 4, thi i the lat iteration, becaue n = 5 and we know there i no negative cycle. The algorithm make one more update thi iteration. Lecture 4: Minimum Spanning Tree I-

4 .5 Analyi Correctne. We have undertood that if there i no negative cycle in the input graph, then thi algorithm baed on dynamic programming i correct. However, how can the algorithm correctly detect a negative cycle if there i one? We need two claim. When the graph ha no negative cycle, a hortet path can only contain n edge. Intuitively, thi i becaue if there i no negative cycle, then the hortet path hould not viit a vertex twice. Of coure, if no vertex i repeated in a hortet path, every hortet path i contain at mot n edge. The proof i left a an exercie. On the other hand, we alo want to prove that if the graph ha a negative cycle, then there i a vertex whoe hortet path with n edge i horter than all path with at mot n edge. Then in the lat iteration of the algorithm (i = n), one vertex ditance label will decreae, indicating that there i a negative cycle. Running Time. We have een a naïve implementation of the Bellman-Ford algorithm (Algorithm ). What i it running time? Each iteration take O(m) time, ince the algorithm check, for every edge, if it can be ued to update a hortet path. There are n iteration, o the total running time i O(mn). Thi i clearly lower than the Dijktra algorithm, which run in time O(m log n). The gap here i almot a factor of n. Thi i uually a big deal becaue if you have a graph of jut 0, 000 vertice, then the running time would be 0, 000 lower, and it i pretty bad. In practice, people ue many heuritic, though they do not affect the wort-cae analyi of O(mn). A major heuritic i to only conider outgoing edge from vertice that were updated lat iteration. Oberve that thi i exactly what we have done in Section.4. Minimum Spanning Tree Now let u go to minimum panning tree (MST). The algorithm for MST are fairly eay, but proving correctne i much harder, o we are going to pend more time on that. Formally, MST i the following problem. Input: an undirected graph with edge weight. (There i another verion of the problem defined on directed graph, but it require very different algorithm.) The edge weight w[u, v] i the cot of connecting two vertice u, v. We aume they are non-negative. Goal: elect a ubet of edge uch that every pair of vertice can be connected by thee edge. Minimize the total weight of the edge elected.. Example Now let u take the graph below a an example (Figure 5a) and conider it MST. Our goal i jut to elect a et of edge connecting every vertex. Of coure, if one keep every edge, the graph i connected. But we would like to remove ome to minimize the total weight of edge that are left. The final olution (Figure 5b) doen t look like a tree becaue we didn t draw it upide down and name a root. But in general, a tree i jut a connected graph with no cycle. The graph in Figure 5b clearly qualifie for that. Lecture 4: Minimum Spanning Tree I-4

5 5 4 7 (a) Input graph with non-negative edge weight (b) Solution. An MST of cot. Figure 5: An MST intance. We call thi a panning tree becaue all edge are from the original graph. In other word, we are required to return a tree a a ubgraph of the input. Moreover, to connect every vertex, we hould pick a tree for minimum cot. If there i a cycle, we could remove an edge from the cycle, and the graph remain connected. 4 Key Property of MST Previouly in hortet path, we identified the hortet path property. Thi lead to many dynamic programming-baed algorithm. In MST, we follow the ame idea and look for a key property that enable algorithm deign. Here, one may wonder if an analogy of the hortet path property would hold. Namely, a ubtree T of an MST i alo an MST for the vertice in T. In fact, thi i true becaue if there i another cheaper tree T connecting thee vertice, one hould have picked T intead of T in the large MST, a thi decreae the cot. Now can we ue dynamic programming baed on thi property? The problem i that there are n ubproblem, where we want to find an MST for every ubet of vertice. Thi cannot lead to an efficient algorithm. 4. Swap Operation Let u go back to MST and oberve that adding any non-tree edge to a tree will introduce a cycle and, on the other hand, for a graph with a cycle, removing any edge in the cycle reult in a tree. Now let u make it a baic operation of adding an edge and removing another one in the cycle created, and call thi a wap. Thi operation i ueful. Conider again Figure 5a. 4 4 (a) A uboptimal panning tree of cot. (b) Swapping the red edge give MST. Figure : A wap operation. Lecture 4: Minimum Spanning Tree I-5

6 Why are we conidering thi operation? Becaue we will ue it in the proof of the algorithm correctne. It turn out the MST algorithm are greedy algorithm. Recall that for proving greedy algorithm, the general recipe i to aume optimal olution i different from the current olution. Then try to modify the optimal olution to make it look imilar to the algorithm olution. We will ee oon how the wap operation i ued in the proof. 4. Cut in Graph Before delving into detail, let u define the notion of the cut of a graph. A cut i a et of edge that eparate the vertice into two part. Uually, we pecify a cut by a ubet of vertice ( S, S ), where S i a et of vertice and S i the remaining vertice. Figure 7: A graph cut. The yellow edge are cut edge. Now we want to deign a greedy algorithm. Recall that a greedy algorithm break down the problem into a equence of deciion and for each deciion make the obviou choice. Uually it i eay to come up with the obviou choice, but not o clear in MST. So we need the notion of graph cut. Notice that from every cut ( S, S ), an MST mut elect at leat one edge in order to be connected. Otherwie, a vertex in S i not connected to a vertex in S, o it i not a valid panning tree. Now ince we want to be greedy, let u chooe the cheapet edge for each cut. Thi i the obviou choice. 4. Key Lemma Why i thi greedy rule good? We claim the following key lemma. Lemma (Key Lemma). Suppoe F i a et of edge inide ome MST T. If (S, S) i a cut that doe not contain any edge in F and e i the minimum cot edge in the cut, then it i afe to add e to F. Let u undertand thi claim. Suppoe we already have a ubtree F of ome MST. Let (S, S) be a cut not connected by F yet and e be the cheapet cut edge. The lemma claim that adding e to F keep u on the right track. Formally, F {e} i till a ubtree of ome MST T. Hence, if we keep adding edge in thi manner, we would end up with ome MST. Proof (Key Lemma). The proof will be quite graphical. Fix a cut (S, S) that F ha not connected yet. Conider the MST T that contain F. In Figure 8, green edge are thoe in T but not in F. Now conider we add e into T. A we can ee, it will create a cycle in the middle. Since thi cycle croe the cut (S, S), there mut be another edge e T that i in the cycle and i a cut edge. We wap e and e. The cot of e certainly cannot be le than e, ince we aume e i the cheapet Lecture 4: Minimum Spanning Tree I-

7 e e S S Figure 8: Swap e and e one in the cut. Therefore, the wap doe not increae the cot. Moreover, after the witching, we till get a panning tree. Therefore, if T = T {e} \ {e }, w(t ) w(t ), and the MST T contain F. Thi complete the proof. Lecture 4: Minimum Spanning Tree I-7

Shortest Paths Problem. CS 362, Lecture 20. Today s Outline. Negative Weights

Shortest Paths Problem. CS 362, Lecture 20. Today s Outline. Negative Weights Shortet Path Problem CS 6, Lecture Jared Saia Univerity of New Mexico Another intereting problem for graph i that of finding hortet path Aume we are given a weighted directed graph G = (V, E) with two

More information

Generic Traverse. CS 362, Lecture 19. DFS and BFS. Today s Outline

Generic Traverse. CS 362, Lecture 19. DFS and BFS. Today s Outline Generic Travere CS 62, Lecture 9 Jared Saia Univerity of New Mexico Travere(){ put (nil,) in bag; while (the bag i not empty){ take ome edge (p,v) from the bag if (v i unmarked) mark v; parent(v) = p;

More information

Today s Outline. CS 561, Lecture 23. Negative Weights. Shortest Paths Problem. The presence of a negative cycle might mean that there is

Today s Outline. CS 561, Lecture 23. Negative Weights. Shortest Paths Problem. The presence of a negative cycle might mean that there is Today Outline CS 56, Lecture Jared Saia Univerity of New Mexico The path that can be trodden i not the enduring and unchanging Path. The name that can be named i not the enduring and unchanging Name. -

More information

Contents. shortest paths. Notation. Shortest path problem. Applications. Algorithms and Networks 2010/2011. In the entire course:

Contents. shortest paths. Notation. Shortest path problem. Applications. Algorithms and Networks 2010/2011. In the entire course: Content Shortet path Algorithm and Network 21/211 The hortet path problem: Statement Verion Application Algorithm (for ingle ource p problem) Reminder: relaxation, Dijktra, Variant of Dijktra, Bellman-Ford,

More information

Today s Outline. CS 362, Lecture 19. DFS and BFS. Generic Traverse. BFS and DFS Wrapup Shortest Paths. Jared Saia University of New Mexico

Today s Outline. CS 362, Lecture 19. DFS and BFS. Generic Traverse. BFS and DFS Wrapup Shortest Paths. Jared Saia University of New Mexico Today Outline CS 362, Lecture 9 Jared Saia Univerity of New Mexico BFS and DFS Wrapup Shortet Path Generic Travere DFS and BFS Travere(){ put (nil,) in bag; while (the bag i not empty){ take ome edge (p,v)

More information

1 The secretary problem

1 The secretary problem Thi i new material: if you ee error, pleae email jtyu at tanford dot edu 1 The ecretary problem We will tart by analyzing the expected runtime of an algorithm, a you will be expected to do on your homework.

More information

Delaunay Triangulation: Incremental Construction

Delaunay Triangulation: Incremental Construction Chapter 6 Delaunay Triangulation: Incremental Contruction In the lat lecture, we have learned about the Lawon ip algorithm that compute a Delaunay triangulation of a given n-point et P R 2 with O(n 2 )

More information

Lecture 17: Shortest Paths

Lecture 17: Shortest Paths Lecture 7: Shortet Path CSE 373: Data Structure and Algorithm CSE 373 9 WI - KASEY CHAMPION Adminitrivia How to Ace the Technical Interview Seion today! - 6-8pm - Sieg 34 No BS CS Career Talk Thurday -

More information

Karen L. Collins. Wesleyan University. Middletown, CT and. Mark Hovey MIT. Cambridge, MA Abstract

Karen L. Collins. Wesleyan University. Middletown, CT and. Mark Hovey MIT. Cambridge, MA Abstract Mot Graph are Edge-Cordial Karen L. Collin Dept. of Mathematic Weleyan Univerity Middletown, CT 6457 and Mark Hovey Dept. of Mathematic MIT Cambridge, MA 239 Abtract We extend the definition of edge-cordial

More information

Routing Definition 4.1

Routing Definition 4.1 4 Routing So far, we have only looked at network without dealing with the iue of how to end information in them from one node to another The problem of ending information in a network i known a routing

More information

Lecture Outline. Global flow analysis. Global Optimization. Global constant propagation. Liveness analysis. Local Optimization. Global Optimization

Lecture Outline. Global flow analysis. Global Optimization. Global constant propagation. Liveness analysis. Local Optimization. Global Optimization Lecture Outline Global flow analyi Global Optimization Global contant propagation Livene analyi Adapted from Lecture by Prof. Alex Aiken and George Necula (UCB) CS781(Praad) L27OP 1 CS781(Praad) L27OP

More information

Algorithmic Discrete Mathematics 4. Exercise Sheet

Algorithmic Discrete Mathematics 4. Exercise Sheet Algorithmic Dicrete Mathematic. Exercie Sheet Department of Mathematic SS 0 PD Dr. Ulf Lorenz 0. and. May 0 Dipl.-Math. David Meffert Verion of May, 0 Groupwork Exercie G (Shortet path I) (a) Calculate

More information

Localized Minimum Spanning Tree Based Multicast Routing with Energy-Efficient Guaranteed Delivery in Ad Hoc and Sensor Networks

Localized Minimum Spanning Tree Based Multicast Routing with Energy-Efficient Guaranteed Delivery in Ad Hoc and Sensor Networks Localized Minimum Spanning Tree Baed Multicat Routing with Energy-Efficient Guaranteed Delivery in Ad Hoc and Senor Network Hanne Frey Univerity of Paderborn D-3398 Paderborn hanne.frey@uni-paderborn.de

More information

Minimum congestion spanning trees in bipartite and random graphs

Minimum congestion spanning trees in bipartite and random graphs Minimum congetion panning tree in bipartite and random graph M.I. Otrovkii Department of Mathematic and Computer Science St. John Univerity 8000 Utopia Parkway Queen, NY 11439, USA e-mail: otrovm@tjohn.edu

More information

Uninformed Search Complexity. Informed Search. Search Revisited. Day 2/3 of Search

Uninformed Search Complexity. Informed Search. Search Revisited. Day 2/3 of Search Informed Search ay 2/3 of Search hap. 4, Ruel & Norvig FS IFS US PFS MEM FS IS Uninformed Search omplexity N = Total number of tate = verage number of ucceor (branching factor) L = Length for tart to goal

More information

Graphs: Finding shortest paths

Graphs: Finding shortest paths /0/01 Graph: Finding hortet path Tecniche di Programmazione Summary Definition Floyd-Warhall algorithm Bellman-Ford-Moore algorithm Dijktra algorithm 1 /0/01 Definition Graph: Finding hortet path Definition:

More information

arxiv: v1 [cs.ds] 27 Feb 2018

arxiv: v1 [cs.ds] 27 Feb 2018 Incremental Strong Connectivity and 2-Connectivity in Directed Graph Louka Georgiadi 1, Giueppe F. Italiano 2, and Niko Parotidi 2 arxiv:1802.10189v1 [c.ds] 27 Feb 2018 1 Univerity of Ioannina, Greece.

More information

Operational Semantics Class notes for a lecture given by Mooly Sagiv Tel Aviv University 24/5/2007 By Roy Ganor and Uri Juhasz

Operational Semantics Class notes for a lecture given by Mooly Sagiv Tel Aviv University 24/5/2007 By Roy Ganor and Uri Juhasz Operational emantic Page Operational emantic Cla note for a lecture given by Mooly agiv Tel Aviv Univerity 4/5/7 By Roy Ganor and Uri Juhaz Reference emantic with Application, H. Nielon and F. Nielon,

More information

Lecture 18 Graph-Based Algorithms. CSE373: Design and Analysis of Algorithms

Lecture 18 Graph-Based Algorithms. CSE373: Design and Analysis of Algorithms Lecture 18 Graph-Baed Algorithm CSE: Deign and Anali of Algorithm Shortet Path Problem Modeling problem a graph problem: Road map i a weighted graph: vertice = citie edge = road egment between citie edge

More information

8.1 Shortest Path Trees

8.1 Shortest Path Trees I tudy my Bible a I gather apple. Firt I hake the whole tree, that the ripet might fall. Then I climb the tree and hake each limb, and then each branch and then each twig, and then I look under each leaf.

More information

Drawing Lines in 2 Dimensions

Drawing Lines in 2 Dimensions Drawing Line in 2 Dimenion Drawing a traight line (or an arc) between two end point when one i limited to dicrete pixel require a bit of thought. Conider the following line uperimpoed on a 2 dimenional

More information

Topics. Lecture 37: Global Optimization. Issues. A Simple Example: Copy Propagation X := 3 B > 0 Y := 0 X := 4 Y := Z + W A := 2 * 3X

Topics. Lecture 37: Global Optimization. Issues. A Simple Example: Copy Propagation X := 3 B > 0 Y := 0 X := 4 Y := Z + W A := 2 * 3X Lecture 37: Global Optimization [Adapted from note by R. Bodik and G. Necula] Topic Global optimization refer to program optimization that encompa multiple baic block in a function. (I have ued the term

More information

A Linear Interpolation-Based Algorithm for Path Planning and Replanning on Girds *

A Linear Interpolation-Based Algorithm for Path Planning and Replanning on Girds * Advance in Linear Algebra & Matrix Theory, 2012, 2, 20-24 http://dx.doi.org/10.4236/alamt.2012.22003 Publihed Online June 2012 (http://www.scirp.org/journal/alamt) A Linear Interpolation-Baed Algorithm

More information

Course Updates. Reminders: 1) Assignment #13 due Monday. 2) Mirrors & Lenses. 3) Review for Final: Wednesday, May 5th

Course Updates. Reminders: 1) Assignment #13 due Monday. 2) Mirrors & Lenses. 3) Review for Final: Wednesday, May 5th Coure Update http://www.phy.hawaii.edu/~varner/phys272-spr0/phyic272.html Reminder: ) Aignment #3 due Monday 2) Mirror & Lene 3) Review for Final: Wedneday, May 5th h R- R θ θ -R h Spherical Mirror Infinite

More information

Laboratory Exercise 6

Laboratory Exercise 6 Laboratory Exercie 6 Adder, Subtractor, and Multiplier The purpoe of thi exercie i to examine arithmetic circuit that add, ubtract, and multiply number. Each type of circuit will be implemented in two

More information

Shortest Path Problems

Shortest Path Problems Shortet Path Problem How can we find the hortet route between two point on a road map? Model the problem a a graph problem: Road map i a weighted graph: vertice = citie edge = road egment between citie

More information

Stochastic Search and Graph Techniques for MCM Path Planning Christine D. Piatko, Christopher P. Diehl, Paul McNamee, Cheryl Resch and I-Jeng Wang

Stochastic Search and Graph Techniques for MCM Path Planning Christine D. Piatko, Christopher P. Diehl, Paul McNamee, Cheryl Resch and I-Jeng Wang Stochatic Search and Graph Technique for MCM Path Planning Chritine D. Piatko, Chritopher P. Diehl, Paul McNamee, Cheryl Rech and I-Jeng Wang The John Hopkin Univerity Applied Phyic Laboratory, Laurel,

More information

A note on degenerate and spectrally degenerate graphs

A note on degenerate and spectrally degenerate graphs A note on degenerate and pectrally degenerate graph Noga Alon Abtract A graph G i called pectrally d-degenerate if the larget eigenvalue of each ubgraph of it with maximum degree D i at mot dd. We prove

More information

Midterm 2 March 10, 2014 Name: NetID: # Total Score

Midterm 2 March 10, 2014 Name: NetID: # Total Score CS 3 : Algorithm and Model of Computation, Spring 0 Midterm March 0, 0 Name: NetID: # 3 Total Score Max 0 0 0 0 Grader Don t panic! Pleae print your name and your NetID in the boxe above. Thi i a cloed-book,

More information

CERIAS Tech Report EFFICIENT PARALLEL ALGORITHMS FOR PLANAR st-graphs. by Mikhail J. Atallah, Danny Z. Chen, and Ovidiu Daescu

CERIAS Tech Report EFFICIENT PARALLEL ALGORITHMS FOR PLANAR st-graphs. by Mikhail J. Atallah, Danny Z. Chen, and Ovidiu Daescu CERIAS Tech Report 2003-15 EFFICIENT PARALLEL ALGORITHMS FOR PLANAR t-graphs by Mikhail J. Atallah, Danny Z. Chen, and Ovidiu Daecu Center for Education and Reearch in Information Aurance and Security,

More information

Hassan Ghaziri AUB, OSB Beirut, Lebanon Key words Competitive self-organizing maps, Meta-heuristics, Vehicle routing problem,

Hassan Ghaziri AUB, OSB Beirut, Lebanon Key words Competitive self-organizing maps, Meta-heuristics, Vehicle routing problem, COMPETITIVE PROBABIISTIC SEF-ORGANIZING MAPS FOR ROUTING PROBEMS Haan Ghaziri AUB, OSB Beirut, ebanon ghaziri@aub.edu.lb Abtract In thi paper, we have applied the concept of the elf-organizing map (SOM)

More information

A SIMPLE IMPERATIVE LANGUAGE THE STORE FUNCTION NON-TERMINATING COMMANDS

A SIMPLE IMPERATIVE LANGUAGE THE STORE FUNCTION NON-TERMINATING COMMANDS A SIMPLE IMPERATIVE LANGUAGE Eventually we will preent the emantic of a full-blown language, with declaration, type and looping. However, there are many complication, o we will build up lowly. Our firt

More information

Laboratory Exercise 2

Laboratory Exercise 2 Laoratory Exercie Numer and Diplay Thi i an exercie in deigning cominational circuit that can perform inary-to-decimal numer converion and inary-coded-decimal (BCD) addition. Part I We wih to diplay on

More information

Chapter S:II (continued)

Chapter S:II (continued) Chapter S:II (continued) II. Baic Search Algorithm Sytematic Search Graph Theory Baic State Space Search Depth-Firt Search Backtracking Breadth-Firt Search Uniform-Cot Search AND-OR Graph Baic Depth-Firt

More information

Algorithms. Algorithms 4.4 S HORTEST P ATHS. APIs shortest-paths properties. Dijkstra's algorithm edge-weighted DAGs negative weights

Algorithms. Algorithms 4.4 S HORTEST P ATHS. APIs shortest-paths properties. Dijkstra's algorithm edge-weighted DAGs negative weights Algorithm Shortet path in an edge-weighted digraph R OBERT S EDGEWICK K EVIN W AYNE Given an edge-weighted digraph, find the hortet path from to t. edge-weighted digraph ->. ->. ->7.7 ->7.28 7->.28 ->.2

More information

DAROS: Distributed User-Server Assignment And Replication For Online Social Networking Applications

DAROS: Distributed User-Server Assignment And Replication For Online Social Networking Applications DAROS: Ditributed Uer-Server Aignment And Replication For Online Social Networking Application Thuan Duong-Ba School of EECS Oregon State Univerity Corvalli, OR 97330, USA Email: duongba@eec.oregontate.edu

More information

An Intro to LP and the Simplex Algorithm. Primal Simplex

An Intro to LP and the Simplex Algorithm. Primal Simplex An Intro to LP and the Simplex Algorithm Primal Simplex Linear programming i contrained minimization of a linear objective over a olution pace defined by linear contraint: min cx Ax b l x u A i an m n

More information

Shortest Path Routing in Arbitrary Networks

Shortest Path Routing in Arbitrary Networks Journal of Algorithm, Vol 31(1), 1999 Shortet Path Routing in Arbitrary Network Friedhelm Meyer auf der Heide and Berthold Vöcking Department of Mathematic and Computer Science and Heinz Nixdorf Intitute,

More information

Robert Bryan and Marshall Dodge, Bert and I and Other Stories from Down East (1961) Michelle Shocked, Arkansas Traveler (1992)

Robert Bryan and Marshall Dodge, Bert and I and Other Stories from Down East (1961) Michelle Shocked, Arkansas Traveler (1992) Well, ya turn left by the fire tation in the village and take the old pot road by the reervoir and...no, that won t do. Bet to continue traight on by the tar road until you reach the choolhoue and then

More information

Cutting Stock by Iterated Matching. Andreas Fritsch, Oliver Vornberger. University of Osnabruck. D Osnabruck.

Cutting Stock by Iterated Matching. Andreas Fritsch, Oliver Vornberger. University of Osnabruck. D Osnabruck. Cutting Stock by Iterated Matching Andrea Fritch, Oliver Vornberger Univerity of Onabruck Dept of Math/Computer Science D-4909 Onabruck andy@informatikuni-onabrueckde Abtract The combinatorial optimization

More information

MAT 155: Describing, Exploring, and Comparing Data Page 1 of NotesCh2-3.doc

MAT 155: Describing, Exploring, and Comparing Data Page 1 of NotesCh2-3.doc MAT 155: Decribing, Exploring, and Comparing Data Page 1 of 8 001-oteCh-3.doc ote for Chapter Summarizing and Graphing Data Chapter 3 Decribing, Exploring, and Comparing Data Frequency Ditribution, Graphic

More information

Announcements. CSE332: Data Abstractions Lecture 19: Parallel Prefix and Sorting. The prefix-sum problem. Outline. Parallel prefix-sum

Announcements. CSE332: Data Abstractions Lecture 19: Parallel Prefix and Sorting. The prefix-sum problem. Outline. Parallel prefix-sum Announcement Homework 6 due Friday Feb 25 th at the BEGINNING o lecture CSE332: Data Abtraction Lecture 19: Parallel Preix and Sorting Project 3 the lat programming project! Verion 1 & 2 - Tue March 1,

More information

Distribution-based Microdata Anonymization

Distribution-based Microdata Anonymization Ditribution-baed Microdata Anonymization Nick Kouda niverity of Toronto kouda@c.toronto.edu Ting Yu North Carolina State niverity yu@cc.ncu.edu Diveh Srivatava AT&T Lab Reearch diveh@reearch.att.com Qing

More information

Computer Arithmetic Homework Solutions. 1 An adder for graphics. 2 Partitioned adder. 3 HDL implementation of a partitioned adder

Computer Arithmetic Homework Solutions. 1 An adder for graphics. 2 Partitioned adder. 3 HDL implementation of a partitioned adder Computer Arithmetic Homework 3 2016 2017 Solution 1 An adder for graphic In a normal ripple carry addition of two poitive number, the carry i the ignal for a reult exceeding the maximum. We ue thi ignal

More information

See chapter 8 in the textbook. Dr Muhammad Al Salamah, Industrial Engineering, KFUPM

See chapter 8 in the textbook. Dr Muhammad Al Salamah, Industrial Engineering, KFUPM Goal programming Objective of the topic: Indentify indutrial baed ituation where two or more objective function are required. Write a multi objective function model dla a goal LP Ue weighting um and preemptive

More information

Parallel MATLAB at FSU: Task Computing

Parallel MATLAB at FSU: Task Computing Parallel MATLAB at FSU: Tak John Burkardt Department of Scientific Florida State Univerity... 1:30-2:30 Thurday, 07 April 2011 499 Dirac Science Library... http://people.c.fu.edu/ jburkardt/preentation/...

More information

A Multi-objective Genetic Algorithm for Reliability Optimization Problem

A Multi-objective Genetic Algorithm for Reliability Optimization Problem International Journal of Performability Engineering, Vol. 5, No. 3, April 2009, pp. 227-234. RAMS Conultant Printed in India A Multi-objective Genetic Algorithm for Reliability Optimization Problem AMAR

More information

AVL Tree. The height of the BST be as small as possible

AVL Tree. The height of the BST be as small as possible 1 AVL Tree re and Algorithm The height of the BST be a mall a poible The firt balanced BST. Alo called height-balanced tree. Introduced by Adel on-vel kii and Landi in 1962. BST with the following condition:

More information

Shortest Paths with Single-Point Visibility Constraint

Shortest Paths with Single-Point Visibility Constraint Shortet Path with Single-Point Viibility Contraint Ramtin Khoravi Mohammad Ghodi Department of Computer Engineering Sharif Univerity of Technology Abtract Thi paper tudie the problem of finding a hortet

More information

Bottom Up parsing. Bottom-up parsing. Steps in a shift-reduce parse. 1. s. 2. np. john. john. john. walks. walks.

Bottom Up parsing. Bottom-up parsing. Steps in a shift-reduce parse. 1. s. 2. np. john. john. john. walks. walks. Paring Technologie Outline Paring Technologie Outline Bottom Up paring Paring Technologie Paring Technologie Bottom-up paring Step in a hift-reduce pare top-down: try to grow a tree down from a category

More information

CORRECTNESS ISSUES AND LOOP INVARIANTS

CORRECTNESS ISSUES AND LOOP INVARIANTS The next everal lecture 2 Study algorithm for earching and orting array. Invetigate their complexity how much time and pace they take Formalize the notion of average-cae and wort-cae complexity CORRECTNESS

More information

CS 151. Graph Algorithms. Wednesday, November 28, 12

CS 151. Graph Algorithms. Wednesday, November 28, 12 CS 151 Graph Algorithm 1 Unweighted Shortet Path Problem input: a graph G=(V,E) and a tart vertex goal: determine the length of the hortet path from to every vertex in V (and while you re at it, compute

More information

xy-monotone path existence queries in a rectilinear environment

xy-monotone path existence queries in a rectilinear environment CCCG 2012, Charlottetown, P.E.I., Augut 8 10, 2012 xy-monotone path exitence querie in a rectilinear environment Gregory Bint Anil Mahehwari Michiel Smid Abtract Given a planar environment coniting of

More information

New Structural Decomposition Techniques for Constraint Satisfaction Problems

New Structural Decomposition Techniques for Constraint Satisfaction Problems New Structural Decompoition Technique for Contraint Satifaction Problem Yaling Zheng and Berthe Y. Choueiry Contraint Sytem Laboratory Univerity of Nebraka-Lincoln Email: yzheng choueiry@ce.unl.edu Abtract.

More information

Advanced Encryption Standard and Modes of Operation

Advanced Encryption Standard and Modes of Operation Advanced Encryption Standard and Mode of Operation G. Bertoni L. Breveglieri Foundation of Cryptography - AES pp. 1 / 50 AES Advanced Encryption Standard (AES) i a ymmetric cryptographic algorithm AES

More information

Refining SIRAP with a Dedicated Resource Ceiling for Self-Blocking

Refining SIRAP with a Dedicated Resource Ceiling for Self-Blocking Refining SIRAP with a Dedicated Reource Ceiling for Self-Blocking Mori Behnam, Thoma Nolte Mälardalen Real-Time Reearch Centre P.O. Box 883, SE-721 23 Väterå, Sweden {mori.behnam,thoma.nolte}@mdh.e ABSTRACT

More information

Performance of a Robust Filter-based Approach for Contour Detection in Wireless Sensor Networks

Performance of a Robust Filter-based Approach for Contour Detection in Wireless Sensor Networks Performance of a Robut Filter-baed Approach for Contour Detection in Wirele Senor Network Hadi Alati, William A. Armtrong, Jr., and Ai Naipuri Department of Electrical and Computer Engineering The Univerity

More information

Cut Tree Construction from Massive Graphs

Cut Tree Construction from Massive Graphs Cut Tree Contruction from Maive Graph Takuya Akiba Yoichi Iwata Youke Samehima # Naoto Mizuno Youke Yano # Preferred Network, Inc. National Intitute of Informatic # Recruit Holding Co., Ltd. The Univerity

More information

Size Balanced Tree. Chen Qifeng (Farmer John) Zhongshan Memorial Middle School, Guangdong, China. December 29, 2006.

Size Balanced Tree. Chen Qifeng (Farmer John) Zhongshan Memorial Middle School, Guangdong, China. December 29, 2006. Size Balanced Tree Chen Qifeng (Farmer John) Zhonghan Memorial Middle School, Guangdong, China Email:44687@QQ.com December 9, 006 Abtract Thi paper preent a unique trategy for maintaining balance in dynamically

More information

Markov Random Fields in Image Segmentation

Markov Random Fields in Image Segmentation Preented at SSIP 2011, Szeged, Hungary Markov Random Field in Image Segmentation Zoltan Kato Image Proceing & Computer Graphic Dept. Univerity of Szeged Hungary Zoltan Kato: Markov Random Field in Image

More information

Shortest-Path Routing in Arbitrary Networks

Shortest-Path Routing in Arbitrary Networks Ž. Journal of Algorithm 31, 105131 1999 Article ID jagm.1998.0980, available online at http:www.idealibrary.com on Shortet-Path Routing in Arbitrary Network Friedhelm Meyer auf der Heide and Berthold Vocking

More information

3D SMAP Algorithm. April 11, 2012

3D SMAP Algorithm. April 11, 2012 3D SMAP Algorithm April 11, 2012 Baed on the original SMAP paper [1]. Thi report extend the tructure of MSRF into 3D. The prior ditribution i modified to atify the MRF property. In addition, an iterative

More information

Maneuverable Relays to Improve Energy Efficiency in Sensor Networks

Maneuverable Relays to Improve Energy Efficiency in Sensor Networks Maneuverable Relay to Improve Energy Efficiency in Senor Network Stephan Eidenbenz, Luka Kroc, Jame P. Smith CCS-5, MS M997; Lo Alamo National Laboratory; Lo Alamo, NM 87545. Email: {eidenben, kroc, jpmith}@lanl.gov

More information

Key Terms - MinMin, MaxMin, Sufferage, Task Scheduling, Standard Deviation, Load Balancing.

Key Terms - MinMin, MaxMin, Sufferage, Task Scheduling, Standard Deviation, Load Balancing. Volume 3, Iue 11, November 2013 ISSN: 2277 128X International Journal of Advanced Reearch in Computer Science and Software Engineering Reearch Paper Available online at: www.ijarce.com Tak Aignment in

More information

Brief Announcement: Distributed 3/2-Approximation of the Diameter

Brief Announcement: Distributed 3/2-Approximation of the Diameter Brief Announcement: Ditributed /2-Approximation of the Diameter Preliminary verion of a brief announcement to appear at DISC 14 Stephan Holzer MIT holzer@mit.edu David Peleg Weizmann Intitute david.peleg@weizmann.ac.il

More information

Edits in Xylia Validity Preserving Editing of XML Documents

Edits in Xylia Validity Preserving Editing of XML Documents dit in Xylia Validity Preerving diting of XML Document Pouria Shaker, Theodore S. Norvell, and Denni K. Peter Faculty of ngineering and Applied Science, Memorial Univerity of Newfoundland, St. John, NFLD,

More information

Research Article Longest Path Reroute to Optimize the Optical Multicast Routing in Sparse Splitting WDM Networks

Research Article Longest Path Reroute to Optimize the Optical Multicast Routing in Sparse Splitting WDM Networks International Optic Volume 0, Article ID 9, page http://dxdoiorg/0/0/9 Reearch Article Longet Path Reroute to Optimize the Optical Multicat Routing in Spare Splitting WDM Network Huanlin Liu, Hongyue Dai,

More information

Lemma 1. A 3-connected maximal generalized outerplanar graph is a wheel.

Lemma 1. A 3-connected maximal generalized outerplanar graph is a wheel. 122 (1997) MATHEMATICA BOHEMICA No. 3, 225{230 A LINEAR ALGORITHM TO RECOGNIZE MAXIMAL GENERALIZED OUTERPLANAR GRAPHS Jo C cere, Almer a, Alberto M rquez, Sevilla (Received November 16, 1994, revied May

More information

Exploring Simple Grid Polygons

Exploring Simple Grid Polygons Exploring Simple Grid Polygon Chritian Icking 1, Tom Kamphan 2, Rolf Klein 2, and Elmar Langetepe 2 1 Univerity of Hagen, Praktiche Informatik VI, 58084 Hagen, Germany. 2 Univerity of Bonn, Computer Science

More information

Distributed Fractional Packing and Maximum Weighted b-matching via Tail-Recursive Duality

Distributed Fractional Packing and Maximum Weighted b-matching via Tail-Recursive Duality Ditributed Fractional Packing and Maximum Weighted b-matching via Tail-Recurive Duality Chrito Koufogiannaki, Neal E. Young Department of Computer Science, Univerity of California, Riveride {ckou, neal}@c.ucr.edu

More information

Shortest Paths. Dijkstra's algorithm implementation negative weights. Google maps. Shortest paths in a weighted digraph. Shortest path versions

Shortest Paths. Dijkstra's algorithm implementation negative weights. Google maps. Shortest paths in a weighted digraph. Shortest path versions Google map Shortet Path Dijktra' algorithm implementation negatie eight Reference: Algorithm in Jaa, Chapter http://.c.princeton.edu/alg/p Algorithm in Jaa, th Edition Robert Sedgeick and Kein Wayne Copyright

More information

7. NETWORK FLOW I. Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley Copyright 2013 Kevin Wayne. Last updated on Sep 8, :40 AM

7. NETWORK FLOW I. Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley Copyright 2013 Kevin Wayne. Last updated on Sep 8, :40 AM 7. NETWORK FLOW I max-flow and min-cut problem Ford-Fulkeron algorithm max-flow min-cut theorem capacity-caling algorithm hortet augmenting path blocking-flow algorithm unit-capacity imple network Lecture

More information

Shortest Paths in Directed Graphs

Shortest Paths in Directed Graphs Shortet Path in Direted Graph Jonathan Turner January, 0 Thi note i adapted from Data Struture and Network Algorithm y Tarjan. Let G = (V, E) e a direted graph and let length e a real-valued funtion on

More information

Touring a Sequence of Polygons

Touring a Sequence of Polygons Touring a Sequence of Polygon Mohe Dror (1) Alon Efrat (1) Anna Lubiw (2) Joe Mitchell (3) (1) Univerity of Arizona (2) Univerity of Waterloo (3) Stony Brook Univerity Problem: Given a equence of k polygon

More information

Touring a Sequence of Polygons

Touring a Sequence of Polygons Touring a Sequence of Polygon Mohe Dror (1) Alon Efrat (1) Anna Lubiw (2) Joe Mitchell (3) (1) Univerity of Arizona (2) Univerity of Waterloo (3) Stony Brook Univerity Problem: Given a equence of k polygon

More information

Representations and Transformations. Objectives

Representations and Transformations. Objectives Repreentation and Tranformation Objective Derive homogeneou coordinate tranformation matrice Introduce tandard tranformation - Rotation - Tranlation - Scaling - Shear Scalar, Point, Vector Three baic element

More information

AN ALGORITHM FOR RESTRICTED NORMAL FORM TO SOLVE DUAL TYPE NON-CANONICAL LINEAR FRACTIONAL PROGRAMMING PROBLEM

AN ALGORITHM FOR RESTRICTED NORMAL FORM TO SOLVE DUAL TYPE NON-CANONICAL LINEAR FRACTIONAL PROGRAMMING PROBLEM RAC Univerity Journal, Vol IV, No, 7, pp 87-9 AN ALGORITHM FOR RESTRICTED NORMAL FORM TO SOLVE DUAL TYPE NON-CANONICAL LINEAR FRACTIONAL PROGRAMMING PROLEM Mozzem Hoain Department of Mathematic Ghior Govt

More information

A Boyer-Moore Approach for. Two-Dimensional Matching. Jorma Tarhio. University of California. Berkeley, CA Abstract

A Boyer-Moore Approach for. Two-Dimensional Matching. Jorma Tarhio. University of California. Berkeley, CA Abstract A Boyer-Moore Approach for Two-Dimenional Matching Jorma Tarhio Computer Science Diviion Univerity of California Berkeley, CA 94720 Abtract An imple ublinear algorithm i preented for two-dimenional tring

More information

Lecture 8: More Pipelining

Lecture 8: More Pipelining Overview Lecture 8: More Pipelining David Black-Schaffer davidbb@tanford.edu EE8 Spring 00 Getting Started with Lab Jut get a ingle pixel calculating at one time Then look into filling your pipeline Multiplier

More information

Analyzing Hydra Historical Statistics Part 2

Analyzing Hydra Historical Statistics Part 2 Analyzing Hydra Hitorical Statitic Part Fabio Maimo Ottaviani EPV Technologie White paper 5 hnode HSM Hitorical Record The hnode i the hierarchical data torage management node and ha to perform all the

More information

How to. write a paper. The basics writing a solid paper Different communities/different standards Common errors

How to. write a paper. The basics writing a solid paper Different communities/different standards Common errors How to write a paper The baic writing a olid paper Different communitie/different tandard Common error Reource Raibert eay My grammar point Article on a v. the Bug in writing Clarity Goal Conciene Calling

More information

4.4 Shortest Paths. Dijkstra's algorithm implementation acyclic networks negative weights. Google maps. Shortest path versions

4.4 Shortest Paths. Dijkstra's algorithm implementation acyclic networks negative weights. Google maps. Shortest path versions . Shortet Path Google map Dijktra' algorithm implementation acyclic netork negatie eight Reference: Algorithm in Jaa, th edition, Section. Algorithm in Jaa, th Edition Robert Sedgeick and Kein Wayne Copyright

More information

A Novel Feature Line Segment Approach for Pattern Classification

A Novel Feature Line Segment Approach for Pattern Classification 12th International Conference on Information Fuion Seattle, WA, USA, July 6-9, 2009 A Novel Feature Line Segment Approach for Pattern Claification Yi Yang Intitute of Integrated Automation Xi an Jiaotong

More information

Competitive Online Searching for a Ray in the Plane

Competitive Online Searching for a Ray in the Plane Competitive Online Searching for a Ray in the Plane Andrea Eubeler, Rudolf Fleicher 1, Tom Kamphan, Rolf Klein, Elmar Langetepe, and Gerhard Trippen 3 1 Fudan Univerity, Shanghai Key Laboratory of Intelligent

More information

Multicast with Network Coding in Application-Layer Overlay Networks

Multicast with Network Coding in Application-Layer Overlay Networks IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 22, NO. 1, JANUARY 2004 1 Multicat with Network Coding in Application-Layer Overlay Network Ying Zhu, Baochun Li, Member, IEEE, and Jiang Guo Abtract

More information

A Practical Model for Minimizing Waiting Time in a Transit Network

A Practical Model for Minimizing Waiting Time in a Transit Network A Practical Model for Minimizing Waiting Time in a Tranit Network Leila Dianat, MASc, Department of Civil Engineering, Sharif Univerity of Technology, Tehran, Iran Youef Shafahi, Ph.D. Aociate Profeor,

More information

Laboratory Exercise 6

Laboratory Exercise 6 Laboratory Exercie 6 Adder, Subtractor, and Multiplier a a The purpoe of thi exercie i to examine arithmetic circuit that add, ubtract, and multiply number. Each b c circuit will be decribed in Verilog

More information

Stress-Blended Eddy Simulation (SBES) - A new Paradigm in hybrid RANS-LES Modeling

Stress-Blended Eddy Simulation (SBES) - A new Paradigm in hybrid RANS-LES Modeling Stre-Blended Eddy Simulation (SBES) - A new Paradigm in hybrid RANS-LES Modeling Menter F.R. ANSYS Germany GmbH Introduction It i oberved in many CFD imulation that RANS model how inherent technology limitation

More information

Universität Augsburg. Institut für Informatik. Approximating Optimal Visual Sensor Placement. E. Hörster, R. Lienhart.

Universität Augsburg. Institut für Informatik. Approximating Optimal Visual Sensor Placement. E. Hörster, R. Lienhart. Univerität Augburg à ÊÇÅÍÆ ËÀǼ Approximating Optimal Viual Senor Placement E. Hörter, R. Lienhart Report 2006-01 Januar 2006 Intitut für Informatik D-86135 Augburg Copyright c E. Hörter, R. Lienhart Intitut

More information

The norm Package. November 15, Title Analysis of multivariate normal datasets with missing values

The norm Package. November 15, Title Analysis of multivariate normal datasets with missing values The norm Package November 15, 2003 Verion 1.0-9 Date 2002/05/06 Title Analyi of multivariate normal dataet with miing value Author Ported to R by Alvaro A. Novo . Original by Joeph

More information

CSE 250B Assignment 4 Report

CSE 250B Assignment 4 Report CSE 250B Aignment 4 Report March 24, 2012 Yuncong Chen yuncong@c.ucd.edu Pengfei Chen pec008@ucd.edu Yang Liu yal060@c.ucd.edu Abtract In thi project, we implemented the recurive autoencoder (RAE) a decribed

More information

Aspects of Formal and Graphical Design of a Bus System

Aspects of Formal and Graphical Design of a Bus System Apect of Formal and Graphical Deign of a Bu Sytem Tiberiu Seceleanu Univerity of Turku, Dpt. of Information Technology Turku, Finland tiberiu.eceleanu@utu.fi Tomi Weterlund Turku Centre for Computer Science

More information

AUTOMATIC TEST CASE GENERATION USING UML MODELS

AUTOMATIC TEST CASE GENERATION USING UML MODELS Volume-2, Iue-6, June-2014 AUTOMATIC TEST CASE GENERATION USING UML MODELS 1 SAGARKUMAR P. JAIN, 2 KHUSHBOO S. LALWANI, 3 NIKITA K. MAHAJAN, 4 BHAGYASHREE J. GADEKAR 1,2,3,4 Department of Computer Engineering,

More information

On successive packing approach to multidimensional (M-D) interleaving

On successive packing approach to multidimensional (M-D) interleaving On ucceive packing approach to multidimenional (M-D) interleaving Xi Min Zhang Yun Q. hi ankar Bau Abtract We propoe an interleaving cheme for multidimenional (M-D) interleaving. To achieved by uing a

More information

Distributed Partial Information Management (DPIM) Schemes for Survivable Networks - Part II

Distributed Partial Information Management (DPIM) Schemes for Survivable Networks - Part II IEEE INFOCO 2002 1 Ditributed Partial Information anagement (DPI) Scheme for Survivable Network - Part II Dahai Xu Chunming Qiao Department of Computer Science and Engineering State Univerity of New York

More information

else end while End References

else end while End References 621-630. [RM89] [SK76] Roenfeld, A. and Melter, R. A., Digital geometry, The Mathematical Intelligencer, vol. 11, No. 3, 1989, pp. 69-72. Sklanky, J. and Kibler, D. F., A theory of nonuniformly digitized

More information

Embedding Service Function Tree with Minimum Cost for NFV Enabled Multicast

Embedding Service Function Tree with Minimum Cost for NFV Enabled Multicast 1 Embedding Service Function Tree with Minimum ot for NFV Enabled Multicat angbang Ren, Student Member, IEEE, eke Guo, Senior Member, IEEE, Yulong Shen, Member, IEEE, Guoming Tang, Member, IEEE, Xu Lin,

More information

Increasing Throughput and Reducing Delay in Wireless Sensor Networks Using Interference Alignment

Increasing Throughput and Reducing Delay in Wireless Sensor Networks Using Interference Alignment Int. J. Communication, Network and Sytem Science, 0, 5, 90-97 http://dx.doi.org/0.436/ijcn.0.50 Publihed Online February 0 (http://www.scirp.org/journal/ijcn) Increaing Throughput and Reducing Delay in

More information

Planning of scooping position and approach path for loading operation by wheel loader

Planning of scooping position and approach path for loading operation by wheel loader 22 nd International Sympoium on Automation and Robotic in Contruction ISARC 25 - September 11-14, 25, Ferrara (Italy) 1 Planning of cooping poition and approach path for loading operation by wheel loader

More information

arxiv: v1 [math.co] 18 Jan 2019

arxiv: v1 [math.co] 18 Jan 2019 Anti-Ramey number of path in hypergraph Ran Gu 1, Jiaao Li 2 and Yongtang Shi 3 1 College of Science, Hohai Univerity, Nanjing, Jiangu Province 210098, P.R. China 2 School of Mathematical Science and LPMC

More information