Chapter 6: The Mathematics of Touring

Size: px
Start display at page:

Download "Chapter 6: The Mathematics of Touring"

Transcription

1 Traveling Salesman Problems Chapter 6: The Mathematics of Touring 6.1 What Is a Traveling Salesman Problem? The traveling salesman is a convenient metaphor for many different real-life applications. The next few examples illustrate a few of the many possible settings for a traveling salesman problem, starting, of course, with the traveling salesman s traveling salesman problem. Copyright Pearson Education, Education. Inc. All rights reserved. Excursions in Modern Mathematics, 7e: Example 6.1 A Tour of Five Cities Meet Willy, the traveling salesman. Willy has customers in five cities, which for the sake of brevity we will call A, B, C, D, and E. Willy needs to schedule a sales trip that will start and end at A (that s Willy s hometown) and goes to each of the other four cities once. We will call the trip Willy s sales tour. Other than starting and ending at A, there are no restrictions as to the sequence in which Willy s sales tour visits the other four cities. Example 6.1 A Tour of Five Cities The graph shows the cost of a one-way airline ticket between each pair of cities. Like most people, Willy hates to waste money. Thus, among the many possibilities for his sales tour, Willy wants to find the optimal (cheapest) one. How? We will return to this question soon. Copyright Pearson Education, Education. Inc. All rights reserved. Excursions in Modern Mathematics, 7e: Copyright Pearson Education, Education. Inc. All rights reserved. Excursions in Modern Mathematics, 7e: Example 6.2 Touring the Outer Moons Example 6.2 Touring the Outer Moons It is the year An expedition to explore the outer planetary moons in our solar system is about to be launched from planet Earth. The expedition is scheduled to visit Callisto, Ganymede, Io, Mimas, and Titan (the first three are moons of Jupiter; the last two, of Saturn), collect rock samples at each, and then return to Earth with the loot. The next slide shows the mission time (in years) between any two moons. An important goal of the mission planners is to complete the mission in the least amount of time. What is the optimal (shortest) tour of the outer moons? Copyright Pearson Education, Education. Inc. All rights reserved. Excursions in Modern Mathematics, 7e: Copyright Pearson Education, Education. Inc. All rights reserved. Excursions in Modern Mathematics, 7e:

2 Example 6.3 Roving the Red Planet The figure shows seven locations on Mars where NASA scientists believe there is a good chance of finding evidence of life. Example 6.3 Roving the Red Planet Imagine that you are in charge of planning a samplereturn mission. First, you must land an unmanned rover in the Ares Vallis (A). Then you must direct the rover to travel to each site and collect and analyze soil samples. Finally, you must instruct the rover to return to the Ares Vallis landing site, where a return rocket will bring the best samples back to Earth. A Mars tour like this will take several years and cost several billion dollars, so good planning is critical. Copyright Pearson Education, Education. Inc. All rights reserved. Excursions in Modern Mathematics, 7e: Copyright Pearson Education, Education. Inc. All rights reserved. Excursions in Modern Mathematics, 7e: Example 6.3 Roving the Red Planet Here are the estimated distances (in miles) that a rover would have to travel to get from one Martian site to another. What is the optimal (shortest) tour for the Mars rover? Traveling Salesman Examples In each case the problem is to find a tour of the sites (i.e., a trip that starts and ends at a designated site and visits each of the other sites once) and has the property of being optimal (i.e., has the least total cost). Any problem that shares these common elements (a traveler, a set of sites, a cost function for travel between pairs of sites, a need to tour all the sites, and a desire to minimize the total cost of the tour) is known as a traveling salesman problem, or TSP. Copyright Pearson Education, Education. Inc. All rights reserved. Excursions in Modern Mathematics, 7e: Copyright Pearson Education, Education. Inc. All rights reserved. Excursions in Modern Mathematics, 7e: Routing School Buses Delivering Packages A school bus (the traveler) picks up children in the morning and drops them off at the end of the day at designated stops (the sites). On a typical school bus route there may be 20 to 30 such stops. With school buses, total time on the bus is always the most important variable (students have to get to school on time), and there is a known time of travel (the cost) between any two bus stops. Since children must be picked up at every bus stop, a tour of all the sites (starting and ending at the school) is required. Since the bus repeats its route every day during the school year, finding an optimal tour is crucial. Package delivery companies such as UPS and FedEx deal with TSPs on a daily basis. Each truck is a traveler that must deliver packages to a specific list of delivery destinations (the sites). The travel time between any two delivery sites (the cost) is known or can be estimated. Each day the truck must deliver to all the sites on its list (that s why sometimes you see a UPS truck delivering at 8 P.M.), so a tour is an implied part of the requirements. Since one can assume that the driver would rather be home than out delivering packages, an optimal tour is a highly desirable goal. Copyright Pearson Education, Education. Inc. All rights reserved. Excursions in Modern Mathematics, 7e: Copyright Pearson Education, Education. Inc. All rights reserved. Excursions in Modern Mathematics, 7e:

3 Fabricating Circuit Boards Errands Around Town In the process of fabricating integrated-circuit boards, tens of thousands of tiny holes (the sites) must be drilled in each board. This is done by using a stationary laser beam and moving the board (the traveler). To do this efficiently, the order in which the holes are drilled should be such that the entire drilling sequence (the tour) is completed in the least amount of time (optimal cost). This makes for a very high tech TSP. On a typical Saturday morning, an average Joe or Jane (the traveler) sets out to run a bunch of errands around town, visiting various sites (grocery store, hair salon, bakery, post office). When gas was cheap, time used to be the key cost variable, but with the cost of gas these days, people are more likely to be looking for the tour that minimizes the total distance traveled. Copyright Pearson Education, Education. Inc. All rights reserved. Excursions in Modern Mathematics, 7e: Copyright Pearson Education, Education. Inc. All rights reserved. Excursions in Modern Mathematics, 7e: Modeling a TSP Modeling a TSP Every TSP can be modeled by a weighted graph, that is, a graph such that there is a number associated with each edge (called the weight of the edge). The beauty of this approach is that the model always has the same structure: The vertices of the graph are the sites of the TSP, and there is an edge between X and Y if there is a direct link for the traveler to travel from site X to site Y. Moreover, the weight of the edge XY is the cost of travel between X and Y. In this setting a tour is a Hamilton circuit of the graph, and an optimal tour is the Hamilton circuit of least total weight. In all the applications and examples we will be considering in this chapter, we will make the assumption that there is an edge connecting every pair of sites, which implies that the underlying graph model is always a complete weighted graph. The following is a summary of the preceding observations. Copyright Pearson Education, Education. Inc. All rights reserved. Excursions in Modern Mathematics, 7e: Copyright Pearson Education, Education. Inc. All rights reserved. Excursions in Modern Mathematics, 7e: GRAPH MODEL OF A TRAVELING SALESMAN PROBLEM Sites g vertices of the graph. Costs g weights of the edges. Chapter 6: The Mathematics of Touring Tour g Hamilton circuit. Optimal tour g Hamilton circuit of least total cost 6.2 Hamilton Paths and Circuits Copyright Pearson Education, Education. Inc. All rights reserved. Excursions in Modern Mathematics, 7e: Copyright Pearson Education, Education. Inc. All rights reserved. Excursions in Modern Mathematics, 7e:

4 Hamilton Paths and Hamilton Circuits In Chapter 5 we discussed Euler paths and Euler circuits. There, the name of the game was to find paths or circuits that include every edge of the graph once (and only once). We are now going to discuss a seemingly related game: finding paths and circuits that include every vertex of the graph once and only once. Paths and circuits having this property are called Hamilton paths and Hamilton circuits. HAMILTON PATHS & CIRCUITS A Hamilton path in a graph is a path that includes each vertex of the graph once and only once. A Hamilton circuit is a circuit that includes each vertex of the graph once and only once. (At the end, of course, the circuit must return to the starting vertex.) Copyright Pearson Education, Education. Inc. All rights reserved. Excursions in Modern Mathematics, 7e: Copyright Pearson Education, Education. Inc. All rights reserved. Excursions in Modern Mathematics, 7e: Euler vs. Hamilton Paths & Circuits On the surface, there is a one-word difference between Euler paths/circuits and Hamilton paths/circuits: The former covers all edges; the latter covers all vertices. But oh my, what a difference that one word makes! The figure shows a graph that (1) has Euler circuits (the vertices are all even) and (2) has Hamilton circuits. One such Hamilton circuit is A, F, B, C, G, D, E, A there are plenty more. Copyright Pearson Education, Education. Inc. All rights reserved. Excursions in Modern Mathematics, 7e: Copyright Pearson Education, Education. Inc. All rights reserved. Excursions in Modern Mathematics, 7e: Note that if a graph has a Hamilton circuit, then it automatically has a Hamilton path the Hamilton circuit can always be truncated into a Hamilton path by dropping the last vertex of the circuit. (For example, the Hamilton circuit A, F, B, C, G, D, E, A can be truncated into the Hamilton path A, F, B, C, G, D, E.) Contrast this with the mutually exclusive relationship between Euler circuits and paths: If a graph has an Euler circuit it cannot have an Euler path and vice versa. This figure shows a graph that (1) has no Euler circuits but does have Euler paths (for example C, D, E, B, A, D) and (2) has no Hamilton circuits (sooner or later you have to go to C, and then you are stuck) but does have Hamilton paths (for example, A, B, E, D, C). This illustrates that a graph can have a Hamilton path but no Hamilton circuit! Copyright Pearson Education, Education. Inc. All rights reserved. Excursions in Modern Mathematics, 7e: Copyright Pearson Education, Education. Inc. All rights reserved. Excursions in Modern Mathematics, 7e:

5 This figure shows a graph that (1) has neither Euler circuits nor paths (it has four odd vertices) and (2) has Hamilton circuits (for example A, B, C, D, E, A there are plenty more) and consequently has Hamilton paths (for example, A, B, C, D, E). This figure shows a graph that (1) has Euler circuits (the vertices are all even) and (2) has no Hamilton circuits (no matter what, you are going to have to go through E more than once!) but has Hamilton paths (for example, A, B, E, C, D). Copyright Pearson Education, Education. Inc. All rights reserved. Excursions in Modern Mathematics, 7e: Copyright Pearson Education, Education. Inc. All rights reserved. Excursions in Modern Mathematics, 7e: This figure shows a graph that (1) has no Euler circuits but has Euler paths (F and G are the two odd vertices) and (2) has neither Hamilton circuits nor Hamilton paths. This figure shows a graph that (1) has neither Euler circuits nor Euler paths (too many odd vertices) and (2) has neither Hamilton circuits nor Hamilton paths. Copyright Pearson Education, Education. Inc. All rights reserved. Excursions in Modern Mathematics, 7e: Copyright Pearson Education, Education. Inc. All rights reserved. Excursions in Modern Mathematics, 7e: Summary Euler versus Hamilton The lesson of is that the existence of an Euler path or circuit in a graph tells us nothing about the existence of a Hamilton path or circuit in that graph. This is important because it implies that Euler s circuit and path theorems from Chapter 5 are useless when it comes to identifying Hamilton circuits and paths. But surely, there must be analogous Hamilton circuit and path theorems that we could use to determine if a graph has a Hamilton circuit, a Hamilton path, or neither. Copyright Pearson Education, Education. Inc. All rights reserved. Excursions in Modern Mathematics, 7e: Copyright Pearson Education, Education. Inc. All rights reserved. Excursions in Modern Mathematics, 7e:

6 Euler versus Hamilton Surprisingly, no such theorems exist. Determining when a given graph does or does not have a Hamilton circuit or path can be very easy, but it also can be very hard it all depends on the graph. Copyright Pearson Education, Education. Inc. All rights reserved. Excursions in Modern Mathematics, 7e:

The Traveling Salesman Problem Outline/learning Objectives The Traveling Salesman Problem

The Traveling Salesman Problem Outline/learning Objectives The Traveling Salesman Problem Chapter 6 Hamilton Joins the Circuit Outline/learning Objectives To identify and model Hamilton circuit and Hamilton path problems. To recognize complete graphs and state the number of Hamilton circuits

More information

The Traveling Salesman Problem Outline/learning Objectives The Traveling Salesman Problem

The Traveling Salesman Problem Outline/learning Objectives The Traveling Salesman Problem Chapter 6 Hamilton Joins the Circuit Outline/learning Objectives To identify and model Hamilton circuit and Hamilton path problems. To recognize complete graphs and state the number of Hamilton circuits

More information

Finite Math A Chapter 6 Notes Hamilton Circuits

Finite Math A Chapter 6 Notes Hamilton Circuits Chapter 6: The Mathematics of Touring (Hamilton Circuits) and Hamilton Paths 6.1 Traveling Salesman Problems/ 6.2 Hamilton Paths and Circuits A traveling salesman has clients in 5 different cities. He

More information

Hamilton Circuit. Topics in Contemporary Mathematics MA 103 Summer II, 2013

Hamilton Circuit. Topics in Contemporary Mathematics MA 103 Summer II, 2013 1 Hamilton Circuit Topics in Contemporary Mathematics MA 103 Summer II, 2013 2 Hamilton Paths and Hamilton Circuits In Euler paths and Euler circuits, the game was to find paths or circuits that include

More information

1. The Highway Inspector s Problem

1. The Highway Inspector s Problem MATH 100 Survey of Mathematics Fall 2009 1. The Highway Inspector s Problem The Königsberg Bridges over the river Pregel C c d e A g D a B b Figure 1. Bridges f Is there a path that crosses every bridge

More information

Chapter 5: The Mathematics of Getting Around. 5.4 Eulerizing and Semi to Eulerizing Graphs

Chapter 5: The Mathematics of Getting Around. 5.4 Eulerizing and Semi to Eulerizing Graphs Chapter 5: The Mathematics of Getting Around 5.4 Eulerizing and Semi to Eulerizing Graphs Bell Work Determine if each has an Euler path or an Euler circuit, then describe an example of one. 1. 2. Copyright

More information

10/30/2013. Chapter 7: The Mathematics of Networks. Network. Network. Network. Network. Optimal Network. 7.1 Networks and Trees

10/30/2013. Chapter 7: The Mathematics of Networks. Network. Network. Network. Network. Optimal Network. 7.1 Networks and Trees Network Chapter 7: The Mathematics of Networks Our definition of a network is going to be really simple essentially, a network is a graph that is connected. In this context the term is most commonly used

More information

Lesson 5.2. The Traveling Salesperson Problem. Explore This

Lesson 5.2. The Traveling Salesperson Problem. Explore This Lesson 5.2 The Traveling alesperson Problem In Lesson 4.5, you explored circuits that visited each vertex of your graph exactly once (Hamiltonian circuits). In this lesson, you will extend your thinking

More information

Chapter 5: The Mathematics of Getting Around

Chapter 5: The Mathematics of Getting Around Euler Paths and Circuits Chapter 5: The Mathematics of Getting Around 5.1 Street-Routing Problem Our story begins in the 1700s in the medieval town of Königsberg, in Eastern Europe. At the time, Königsberg

More information

Euler and Hamilton paths. Jorge A. Cobb The University of Texas at Dallas

Euler and Hamilton paths. Jorge A. Cobb The University of Texas at Dallas Euler and Hamilton paths Jorge A. Cobb The University of Texas at Dallas 1 Paths and the adjacency matrix The powers of the adjacency matrix A r (with normal, not boolean multiplication) contain the number

More information

SEVENTH EDITION and EXPANDED SEVENTH EDITION

SEVENTH EDITION and EXPANDED SEVENTH EDITION SEVENTH EDITION and EXPANDED SEVENTH EDITION Slide 14-1 Chapter 14 Graph Theory 14.1 Graphs, Paths and Circuits Definitions A graph is a finite set of points called vertices (singular form is vertex) connected

More information

Notes for Recitation 9

Notes for Recitation 9 6.042/18.062J Mathematics for Computer Science October 8, 2010 Tom Leighton and Marten van Dijk Notes for Recitation 9 1 Traveling Salesperson Problem Now we re going to talk about a famous optimization

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Chapter 6 Test Review Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Solve the problem. 1) The number of edges in K12 is 1) 2) The number of Hamilton

More information

The Traveling Salesman Problem

The Traveling Salesman Problem The Traveling Salesman Problem Hamilton path A path that visits each vertex of the graph once and only once. Hamilton circuit A circuit that visits each vertex of the graph once and only once (at the end,

More information

Study Guide Mods: Date:

Study Guide Mods: Date: Graph Theory Name: Study Guide Mods: Date: Define each of the following. It may be helpful to draw examples that illustrate the vocab word and/or counterexamples to define the word. 1. Graph ~ 2. Vertex

More information

EECS 203 Lecture 20. More Graphs

EECS 203 Lecture 20. More Graphs EECS 203 Lecture 20 More Graphs Admin stuffs Last homework due today Office hour changes starting Friday (also in Piazza) Friday 6/17: 2-5 Mark in his office. Sunday 6/19: 2-5 Jasmine in the UGLI. Monday

More information

2. Line up the digits from 1 to 9 so that any two digit number made of two adjacent digits is divisible by either 7 or 13.

2. Line up the digits from 1 to 9 so that any two digit number made of two adjacent digits is divisible by either 7 or 13. Graphs Graphs. Part 1 In some situations it is convenient to use graphs. Objects are represented by dots while connections between them are represented by lines or arrows. In the language of graphs, dots

More information

1. Read each problem carefully and follow the instructions.

1. Read each problem carefully and follow the instructions. SSII 2014 1 Instructor: Benjamin Wilson Name: 1. Read each problem carefully and follow the instructions. 2. No credit will be given for correct answers without supporting work and/ or explanation. 3.

More information

IE 102 Spring Routing Through Networks - 1

IE 102 Spring Routing Through Networks - 1 IE 102 Spring 2017 Routing Through Networks - 1 The Bridges of Koenigsberg: Euler 1735 Graph Theory began in 1735 Leonard Eüler Visited Koenigsberg People wondered whether it is possible to take a walk,

More information

Excursions in Modern Mathematics Sixth Edition. Chapter 5 Euler Circuits. The Circuit Comes to Town. Peter Tannenbaum

Excursions in Modern Mathematics Sixth Edition. Chapter 5 Euler Circuits. The Circuit Comes to Town. Peter Tannenbaum Excursions in Modern Mathematics Sixth Edition Chapter 5 Peter Tannenbaum The Circuit Comes to Town 1 2 Outline/learning Objectives Outline/learning Objectives (cont.) To identify and model Euler circuit

More information

Note that there are questions printed on both sides of each page!

Note that there are questions printed on both sides of each page! Math 1001 Name: Fall 2007 Test 1 Student ID: 10/5/07 Time allowed: 50 minutes Section: 10:10 11:15 12:20 This exam includes 7 pages, including this one and a sheet for scratch work. There are a total of

More information

Chapter 14 Section 3 - Slide 1

Chapter 14 Section 3 - Slide 1 AND Chapter 14 Section 3 - Slide 1 Chapter 14 Graph Theory Chapter 14 Section 3 - Slide WHAT YOU WILL LEARN Graphs, paths and circuits The Königsberg bridge problem Euler paths and Euler circuits Hamilton

More information

Optimal tour along pubs in the UK

Optimal tour along pubs in the UK 1 From Facebook Optimal tour along 24727 pubs in the UK Road distance (by google maps) see also http://www.math.uwaterloo.ca/tsp/pubs/index.html (part of TSP homepage http://www.math.uwaterloo.ca/tsp/

More information

Graph Theory. 26 March Graph Theory 26 March /29

Graph Theory. 26 March Graph Theory 26 March /29 Graph Theory 26 March 2012 Graph Theory 26 March 2012 1/29 Graph theory was invented by a mathematician named Euler in the 18th century. We will see some of the problems which motivated its study. However,

More information

1. trees does the network shown in figure (a) have? (b) How many different spanning. trees does the network shown in figure (b) have?

1. trees does the network shown in figure (a) have? (b) How many different spanning. trees does the network shown in figure (b) have? 2/28/18, 8:24 M 1. (a) ow many different spanning trees does the network shown in figure (a) have? (b) ow many different spanning trees does the network shown in figure (b) have? L K M P N O L K M P N

More information

Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around

Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around 1 Finite Math A Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around Academic Standards Covered in this Chapter: *************************************************************************************

More information

Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around

Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around 1 Finite Math A Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around Academic Standards Covered in this Chapter: *************************************************************************************

More information

Unit 7 Day 6. Section 5.2 Traveling Salesman Problem & Section 5.3 Finding the Shortest Route

Unit 7 Day 6. Section 5.2 Traveling Salesman Problem & Section 5.3 Finding the Shortest Route Unit 7 Day 6 Section 5.2 Traveling Salesman Problem & Section 5.3 Finding the Shortest Route 1 Warm Up Day 7: 1. Draw a planar graph with 6 vertices. 2. Is a K 9,3 graph planar? Explain your reasoning.

More information

Discrete mathematics

Discrete mathematics Discrete mathematics Petr Kovář petr.kovar@vsb.cz VŠB Technical University of Ostrava DiM 470-2301/02, Winter term 2018/2019 About this file This file is meant to be a guideline for the lecturer. Many

More information

13. (a) G,G. A circuit of length 1 is a loop. 14. (a) E,E. (c) A,B,C,A. 16. (a) BF, FG

13. (a) G,G. A circuit of length 1 is a loop. 14. (a) E,E. (c) A,B,C,A. 16. (a) BF, FG 13. (a) G,G. A circuit of length 1 is a loop. There are none. Such a circuit would consist of two vertices and two (different) edges connecting the vertices. 10. (a) 11. (a) C, B, A, H, F Other answers

More information

Graph Traversals. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari 1

Graph Traversals. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari 1 Graph Traversals CSC 1300 Discrete Structures Villanova University Villanova CSC 1300 - Dr Papalaskari 1 Graph traversals: Euler circuit/path Major Themes Every edge exactly once Hamilton circuit/path

More information

Introduction III. Graphs. Motivations I. Introduction IV

Introduction III. Graphs. Motivations I. Introduction IV Introduction I Graphs Computer Science & Engineering 235: Discrete Mathematics Christopher M. Bourke cbourke@cse.unl.edu Graph theory was introduced in the 18th century by Leonhard Euler via the Königsberg

More information

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture 28 Chinese Postman Problem In this lecture we study the Chinese postman

More information

Using Travelling Salesman Problem Algorithms to. Plan the Most Time-efficient Route for Robots

Using Travelling Salesman Problem Algorithms to. Plan the Most Time-efficient Route for Robots Using Travelling Salesman Problem Algorithms to Plan the Most Time-efficient Route for Robots Zhaoxin Xue The High School Affiliated to Renmin University of China, 14-0646 Using Travelling Salesman Problem

More information

What Time Where Muddy City 10 min MSTLessonPlan.docx MSTWorksheets.pptx Discussion 5 min MSTLessonPlan.docx

What Time Where Muddy City 10 min MSTLessonPlan.docx MSTWorksheets.pptx Discussion 5 min MSTLessonPlan.docx MST Lesson Plan Overview Minimal Spanning Trees Summary Many networks link our society: telephone networks, utility supply networks, computer networks, and road networks. For a particular network there

More information

Travelling Salesman Problem. Algorithms and Networks 2015/2016 Hans L. Bodlaender Johan M. M. van Rooij

Travelling Salesman Problem. Algorithms and Networks 2015/2016 Hans L. Bodlaender Johan M. M. van Rooij Travelling Salesman Problem Algorithms and Networks 2015/2016 Hans L. Bodlaender Johan M. M. van Rooij 1 Contents TSP and its applications Heuristics and approximation algorithms Construction heuristics,

More information

Mathematical Thinking

Mathematical Thinking Mathematical Thinking Chapter 2 Hamiltonian Circuits and Spanning Trees It often happens in mathematics that what appears to be a minor detail in the statement of a problem can have a profound effect on

More information

MA 111 Review for Exam 3

MA 111 Review for Exam 3 MA 111 Review for Exam 3 Exam 3 (given in class on Tuesday, March 27, 2012) will cover Chapter 5. You should: know what a graph is and how to use graphs to model geographic relationships. know how to describe

More information

Simple Graph. General Graph

Simple Graph. General Graph Graph Theory A graph is a collection of points (also called vertices) and lines (also called edges), with each edge ending at a vertex In general, it is allowed for more than one edge to have the same

More information

MITOCW watch?v=zm5mw5nkzjg

MITOCW watch?v=zm5mw5nkzjg MITOCW watch?v=zm5mw5nkzjg The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

More information

Warm -Up. 1. Draw a connected graph with 4 vertices and 7 edges. What is the sum of the degrees of all the vertices?

Warm -Up. 1. Draw a connected graph with 4 vertices and 7 edges. What is the sum of the degrees of all the vertices? Warm -Up 1. Draw a connected graph with 4 vertices and 7 edges. What is the sum of the degrees of all the vertices? 1. Is this graph a. traceable? b. Eulerian? 3. Eulerize this graph. Warm-Up Eulerize

More information

Some Hardness Proofs

Some Hardness Proofs Some Hardness Proofs Magnus Lie Hetland January 2011 This is a very brief overview of some well-known hard (NP Hard and NP complete) problems, and the main ideas behind their hardness proofs. The document

More information

Number Theory and Graph Theory

Number Theory and Graph Theory 1 Number Theory and Graph Theory Chapter 7 Graph properties By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com 2 Module-2: Eulerian

More information

1 5,9,2,7,6,10,4,3,8,1 The first number (5) is automatically the first number of the sorted list

1 5,9,2,7,6,10,4,3,8,1 The first number (5) is automatically the first number of the sorted list Algorithms One of the more challenging aspects of Computer Science are algorithms. An algorithm is a plan that solves a problem. When assembling a bicycle based on the included instructions, in this case,

More information

11-5 Networks. Königsberg Bridge Problem

11-5 Networks. Königsberg Bridge Problem Section 11-5 Networks 1 11-5 Networks In the 1700s, the people of Königsberg, Germany (now Kaliningrad in Russia), used to enjoy walking over the bridges of the Pregel River. There were three landmasses

More information

Sarah Will Math 490 December 2, 2009

Sarah Will Math 490 December 2, 2009 Sarah Will Math 490 December 2, 2009 Euler Circuits INTRODUCTION Euler wrote the first paper on graph theory. It was a study and proof that it was impossible to cross the seven bridges of Königsberg once

More information

Graph theory was invented by a mathematician named Euler in the 18th century. We will see some of the problems which motivated its study.

Graph theory was invented by a mathematician named Euler in the 18th century. We will see some of the problems which motivated its study. Graph Theory Graph theory was invented by a mathematician named Euler in the 18th century. We will see some of the problems which motivated its study. However, it wasn t studied too systematically until

More information

Undirected Network Summary

Undirected Network Summary Undirected Network Summary Notice that the network above has multiple edges joining nodes a to d and the network has a loop at node d. Also c is called an isolated node as it is not connected to any other

More information

Graphs II: Trailblazing

Graphs II: Trailblazing Graphs II: Trailblazing Paths In an undirected graph, a path of length n from u to v, where n is a positive integer, is a sequence of edges e 1,, e n of the graph such that f(e 1 )={x 0,x 1 }, f(e 2 )={x

More information

How can we lay cable at minimum cost to make every telephone reachable from every other? What is the fastest route between two given cities?

How can we lay cable at minimum cost to make every telephone reachable from every other? What is the fastest route between two given cities? 1 Introduction Graph theory is one of the most in-demand (i.e. profitable) and heavily-studied areas of applied mathematics and theoretical computer science. May graph theory questions are applied in this

More information

MATH 103: Contemporary Mathematics Study Guide for Chapter 6: Hamilton Circuits and the TSP

MATH 103: Contemporary Mathematics Study Guide for Chapter 6: Hamilton Circuits and the TSP MTH 3: ontemporary Mathematics Study Guide for hapter 6: Hamilton ircuits and the TSP. nswer the questions above each of the following graphs: (a) ind 3 different Hamilton circuits for the graph below.

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms CS4335: Design and Analysis of Algorithms Who we are: Dr. Lusheng WANG Dept. of Computer Science office: B6422 phone: 2788 9820 e-mail: lwang@cs.cityu.edu.hk Course web site: http://www.cs.cityu.edu.hk/~lwang/ccs3335.html

More information

Math 167 Review 1 (c) Janice Epstein

Math 167 Review 1 (c) Janice Epstein Math 167 Review 1 (c) Janice Epstein HAPTER 1 URBAN SERVIES A graph is a collection of one or more points (vertices). The vertices may be connected by edges. Two vertices are adjacent if they are connected

More information

Grade 7/8 Math Circles Graph Theory - Solutions October 13/14, 2015

Grade 7/8 Math Circles Graph Theory - Solutions October 13/14, 2015 Faculty of Mathematics Waterloo, Ontario N2L 3G1 Centre for Education in Mathematics and Computing Grade 7/8 Math Circles Graph Theory - Solutions October 13/14, 2015 The Seven Bridges of Königsberg In

More information

Section Graphs, Paths, and Circuits. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

Section Graphs, Paths, and Circuits. Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 14.1 Graphs, Paths, and Circuits INB Table of Contents Date Topic Page # January 27, 2014 Test #1 14 January 27, 2014 Test # 1 Corrections 15 January 27, 2014 Section 14.1 Examples 16 January 27,

More information

Topics Covered. Introduction to Graphs Euler s Theorem Hamiltonian Circuits The Traveling Salesman Problem Trees and Kruskal s Algorithm

Topics Covered. Introduction to Graphs Euler s Theorem Hamiltonian Circuits The Traveling Salesman Problem Trees and Kruskal s Algorithm Graph Theory Topics Covered Introduction to Graphs Euler s Theorem Hamiltonian Circuits The Traveling Salesman Problem Trees and Kruskal s Algorithm What is a graph? A collection of points, called vertices

More information

Traveling Salesman Problem. Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij

Traveling Salesman Problem. Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij Traveling Salesman Problem Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij 1 Contents TSP and its applications Heuristics and approximation algorithms Construction heuristics,

More information

Graphs. The ultimate data structure. graphs 1

Graphs. The ultimate data structure. graphs 1 Graphs The ultimate data structure graphs 1 Definition of graph Non-linear data structure consisting of nodes & links between them (like trees in this sense) Unlike trees, graph nodes may be completely

More information

Section Graphs, Paths, and Circuits. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

Section Graphs, Paths, and Circuits. Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 14.1 Graphs, Paths, and Circuits What You Will Learn Graphs Paths Circuits Bridges 14.1-2 Definitions A graph is a finite set of points called vertices (singular form is vertex) connected by line

More information

Chapter 6. The Traveling-Salesman Problem. Section 1. Hamilton circuits and Hamilton paths.

Chapter 6. The Traveling-Salesman Problem. Section 1. Hamilton circuits and Hamilton paths. Chapter 6. The Traveling-Salesman Problem Section 1. Hamilton circuits and Hamilton paths. Recall: an Euler path is a path that travels through every edge of a graph once and only once; an Euler circuit

More information

Instant Insanity Instructor s Guide Make-it and Take-it Kit for AMTNYS 2006

Instant Insanity Instructor s Guide Make-it and Take-it Kit for AMTNYS 2006 Instant Insanity Instructor s Guide Make-it and Take-it Kit for AMTNYS 2006 THE KIT: This kit contains materials for two Instant Insanity games, a student activity sheet with answer key and this instructor

More information

Questions... How does one show the first problem is NP-complete? What goes on in a reduction? How hard are NP-complete problems?

Questions... How does one show the first problem is NP-complete? What goes on in a reduction? How hard are NP-complete problems? Even More NP Questions... How does one show the first problem is NP-complete? What goes on in a reduction? How hard are NP-complete problems? Reduction We say that problem A reduces to problem B, if there

More information

Ma/CS 6b Class 10: Ramsey Theory

Ma/CS 6b Class 10: Ramsey Theory Ma/CS 6b Class 10: Ramsey Theory By Adam Sheffer The Pigeonhole Principle The pigeonhole principle. If n items are put into m containers, such that n > m, then at least one container contains more than

More information

The Human Brain & Graph Theory

The Human Brain & Graph Theory The Human Brain & Graph Theory Graph Theory A graph is a collection of vertices (or points) that are connected by edges (or lines) Edges may overlap Graphs do not need edges Graphs can be directed with

More information

Finite Math A, Chapter 8: Scheduling 1

Finite Math A, Chapter 8: Scheduling 1 Finite Math A, Chapter 8: Scheduling 1 Finite Math A Chapter 8 The Mathematics of Scheduling Chapter 8: The Mathematics of Scheduling Pd 2 & 6 Pd 4 & 7 Lesson Homework Tues Wed 8.1, 8.2 The Basic Elements

More information

(Refer Slide Time: 01:00)

(Refer Slide Time: 01:00) Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture minus 26 Heuristics for TSP In this lecture, we continue our discussion

More information

Modules. 6 Hamilton Graphs (4-8 lectures) Introduction Necessary conditions and sufficient conditions Exercises...

Modules. 6 Hamilton Graphs (4-8 lectures) Introduction Necessary conditions and sufficient conditions Exercises... Modules 6 Hamilton Graphs (4-8 lectures) 135 6.1 Introduction................................ 136 6.2 Necessary conditions and sufficient conditions............. 137 Exercises..................................

More information

Smart Solution for the Traveling Salesman Problem : Using Artificial Intelligent A* algorithm and Hamilton Circuit

Smart Solution for the Traveling Salesman Problem : Using Artificial Intelligent A* algorithm and Hamilton Circuit Smart Solution for the Traveling Salesman Problem : Using Artificial Intelligent A* algorithm and Hamilton Circuit Hatem F. Halaoui Computer Science and Mathematics Division Haigazian University Beirut,

More information

Week 12: Running Time and Performance

Week 12: Running Time and Performance Week 12: Running Time and Performance 1 Most of the problems you have written in this class run in a few seconds or less Some kinds of programs can take much longer: Chess algorithms (Deep Blue) Routing

More information

Ma/CS 6b Class 12: Ramsey Theory

Ma/CS 6b Class 12: Ramsey Theory Ma/CS 6b Class 12: Ramsey Theory By Adam Sheffer The Pigeonhole Principle The pigeonhole principle. If n items are put into m containers, such that n > m, then at least one container contains more than

More information

Questions? You are given the complete graph of Facebook. What questions would you ask? (What questions could we hope to answer?)

Questions? You are given the complete graph of Facebook. What questions would you ask? (What questions could we hope to answer?) P vs. NP What now? Attribution These slides were prepared for the New Jersey Governor s School course The Math Behind the Machine taught in the summer of 2011 by Grant Schoenebeck Large parts of these

More information

Honors ICM- Graph Theory Unit 7 Homework Packet Homework Day 1

Honors ICM- Graph Theory Unit 7 Homework Packet Homework Day 1 Honors ICM- Graph Theory Unit 7 Homework Packet Homework Day 1 Name Period: 6. Construct a graph with three critical paths. 7. Determine the minimum project time and the critical path for the following

More information

DLA Review Printable Version

DLA Review Printable Version 1. In the equation y = 7x + 3, as the value of x decreases by 1, what happens to the value of y?. A cell phone company charges $.00 a month plus an additional $0.10 per call. A competitor charges $10.00

More information

Branch and Bound. Live-node: A node that has not been expanded. It is similar to backtracking technique but uses BFS-like search.

Branch and Bound. Live-node: A node that has not been expanded. It is similar to backtracking technique but uses BFS-like search. Branch and Bound Definitions: Branch and Bound is a state space search method in which all the children of a node are generated before expanding any of its children. Live-node: A node that has not been

More information

Precept 4: Traveling Salesman Problem, Hierarchical Clustering. Qian Zhu 2/23/2011

Precept 4: Traveling Salesman Problem, Hierarchical Clustering. Qian Zhu 2/23/2011 Precept 4: Traveling Salesman Problem, Hierarchical Clustering Qian Zhu 2/23/2011 Agenda Assignment: Traveling salesman problem Hierarchical clustering Example Comparisons with K-means TSP TSP: Given the

More information

MATH 101: Introduction to Contemporary Mathematics

MATH 101: Introduction to Contemporary Mathematics MATH 101: Introduction to Contemporary Mathematics Sections 201-206 Instructor: H. R. Hughes Course web page: http://www.math.siu.edu/hughes/math101.htm Summer 2013 Lecture sessions meet: MTWF 12:10-1:10

More information

I. Mars Exploration II. Science Emphasis for the Moon and Mars III. The Moon to Stay and Mars Exploration IV. Space Resource Utilization

I. Mars Exploration II. Science Emphasis for the Moon and Mars III. The Moon to Stay and Mars Exploration IV. Space Resource Utilization ARCHITECTURES I. Mars Exploration II. Science Emphasis for the Moon and Mars III. The Moon to Stay and Mars Exploration IV. Space Resource Utilization RECOMMENDATIONS 1. Long range strategic plan 2. National

More information

CHAPTER 10 GRAPHS AND TREES. Alessandro Artale UniBZ - artale/z

CHAPTER 10 GRAPHS AND TREES. Alessandro Artale UniBZ -  artale/z CHAPTER 10 GRAPHS AND TREES Alessandro Artale UniBZ - http://www.inf.unibz.it/ artale/z SECTION 10.1 Graphs: Definitions and Basic Properties Copyright Cengage Learning. All rights reserved. Graphs: Definitions

More information

Traveling Salesperson Problem (TSP)

Traveling Salesperson Problem (TSP) TSP-0 Traveling Salesperson Problem (TSP) Input: Undirected edge weighted complete graph G = (V, E, W ), where W : e R +. Tour: Find a path that starts at vertex 1, visits every vertex exactly once, and

More information

V1.0: Seth Gilbert, V1.1: Steven Halim August 30, Abstract. d(e), and we assume that the distance function is non-negative (i.e., d(x, y) 0).

V1.0: Seth Gilbert, V1.1: Steven Halim August 30, Abstract. d(e), and we assume that the distance function is non-negative (i.e., d(x, y) 0). CS4234: Optimisation Algorithms Lecture 4 TRAVELLING-SALESMAN-PROBLEM (4 variants) V1.0: Seth Gilbert, V1.1: Steven Halim August 30, 2016 Abstract The goal of the TRAVELLING-SALESMAN-PROBLEM is to find

More information

3 Euler Tours, Hamilton Cycles, and Their Applications

3 Euler Tours, Hamilton Cycles, and Their Applications 3 Euler Tours, Hamilton Cycles, and Their Applications 3.1 Euler Tours and Applications 3.1.1 Euler tours Carefully review the definition of (closed) walks, trails, and paths from Section 1... Definition

More information

The Traveling Salesman Problem Nearest-Neighbor Algorithm

The Traveling Salesman Problem Nearest-Neighbor Algorithm The Traveling Salesman Problem Nearest-Neighbor Algorithm Lecture 31 Sections 6.4 Robb T. Koether Hampden-Sydney College Fri, Apr 6, 2018 Robb T. Koether (Hampden-Sydney College)The Traveling Salesman

More information

Elements of Graph Theory

Elements of Graph Theory Elements of Graph Theory Quick review of Chapters 9.1 9.5, 9.7 (studied in Mt1348/2008) = all basic concepts must be known New topics we will mostly skip shortest paths (Chapter 9.6), as that was covered

More information

6.2 Initial Problem. Section 6.2 Network Problems. 6.2 Initial Problem, cont d. Weighted Graphs. Weighted Graphs, cont d. Weighted Graphs, cont d

6.2 Initial Problem. Section 6.2 Network Problems. 6.2 Initial Problem, cont d. Weighted Graphs. Weighted Graphs, cont d. Weighted Graphs, cont d Section 6.2 Network Problems Goals Study weighted graphs Study spanning trees Study minimal spanning trees Use Kruskal s algorithm 6.2 Initial Problem Walkways need to be built between the buildings on

More information

5.5 The Travelling Salesman Problem

5.5 The Travelling Salesman Problem 0 Matchings and Independent Sets 5.5 The Travelling Salesman Problem The Travelling Salesman Problem A travelling salesman, starting in his own town, has to visit each of towns where he should go to precisely

More information

14.1 and 14.2.notebook. March 07, Module 14 lessons 1: Distance on a coordinate Plane Lesson 2: Polygons in the Coordinate Plane

14.1 and 14.2.notebook. March 07, Module 14 lessons 1: Distance on a coordinate Plane Lesson 2: Polygons in the Coordinate Plane Module 14 lessons 1: Distance on a coordinate Plane Lesson 2: Reflection: a transformation of a figure that flips across a line Objectives: solve problems by graphing using coordinates and absolute value

More information

GENETIC ALGORITHM with Hands-On exercise

GENETIC ALGORITHM with Hands-On exercise GENETIC ALGORITHM with Hands-On exercise Adopted From Lecture by Michael Negnevitsky, Electrical Engineering & Computer Science University of Tasmania 1 Objective To understand the processes ie. GAs Basic

More information

Chapter 8 Topics in Graph Theory

Chapter 8 Topics in Graph Theory Chapter 8 Topics in Graph Theory Chapter 8: Topics in Graph Theory Section 8.1: Examples {1,2,3} Section 8.2: Examples {1,2,4} Section 8.3: Examples {1} 8.1 Graphs Graph A graph G consists of a finite

More information

Graphs. Reading Assignment. Mandatory: Chapter 3 Sections 3.1 & 3.2. Peeking into Computer Science. Jalal Kawash 2010

Graphs. Reading Assignment. Mandatory: Chapter 3 Sections 3.1 & 3.2. Peeking into Computer Science. Jalal Kawash 2010 Graphs Mandatory: hapter 3 Sections 3.1 & 3.2 Reading ssignment 2 Graphs bstraction of ata 3 t the end of this section, you will be able to: 1.efine directed and undirected graphs 2.Use graphs to model

More information

Section 1.1. Inductive Reasoning. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

Section 1.1. Inductive Reasoning. Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 1.1 Inductive Reasoning What You Will Learn Inductive and deductive reasoning processes 1.1-2 Natural Numbers The set of natural numbers is also called the set of counting numbers. N = {1, 2, 3,

More information

Graphs And Algorithms

Graphs And Algorithms Graphs nd lgorithms Mandatory: hapter 3 Sections 3.1 & 3.2 Reading ssignment 2 1 Graphs bstraction of ata 3 t the end of this section, you will be able to: 1. efine directed and undirected graphs 2. Use

More information

Chapter 8. NP-complete problems

Chapter 8. NP-complete problems Chapter 8. NP-complete problems Search problems E cient algorithms We have developed algorithms for I I I I I finding shortest paths in graphs, minimum spanning trees in graphs, matchings in bipartite

More information

TEACHER RESOURCES. Outel Semiconductor s Recruiting Circuit: Teacher Resources 1. Routing Through Networks: Background

TEACHER RESOURCES. Outel Semiconductor s Recruiting Circuit: Teacher Resources 1. Routing Through Networks: Background Outel Semiconductor s Recruiting Circuit: Teacher Resources 1 Routing Through Networks: Background TEACHER RESOURCES Graphs and networks are collections of nodes and arcs. The nodes are used to represent

More information

Massively Parallel Approximation Algorithms for the Traveling Salesman Problem

Massively Parallel Approximation Algorithms for the Traveling Salesman Problem Massively Parallel Approximation Algorithms for the Traveling Salesman Problem Vaibhav Gandhi May 14, 2015 Abstract This paper introduces the reader to massively parallel approximation algorithms which

More information

14 Graph Theory. Exercise Set 14-1

14 Graph Theory. Exercise Set 14-1 14 Graph Theory Exercise Set 14-1 1. A graph in this chapter consists of vertices and edges. In previous chapters the term was used as a visual picture of a set of ordered pairs defined by a relation or

More information

CHAPTER 6: Scatter plot, Correlation, and Line of Best Fit

CHAPTER 6: Scatter plot, Correlation, and Line of Best Fit CHAPTER 6: Scatter plot, Correlation, and Line of Best Fit Name: Date: 1. A baseball coach graphs some data and finds the line of best fit. The equation for the line of best fit is y = 0.32x.51, where

More information

Section 1.1. Inductive Reasoning. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

Section 1.1. Inductive Reasoning. Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 1.1 Inductive Reasoning What You Will Learn Inductive and deductive reasoning processes 1.1-2 Natural Numbers The set of natural numbers is also called the set of counting numbers. N = {1, 2, 3,

More information

Discrete Optimization

Discrete Optimization Discrete Optimization Quentin Louveaux ULg - Institut Montefiore 2016 Quentin Louveaux (ULg - Institut Montefiore) Discrete Optimization 2016 1 / 28 Discrete optimization problems What is a discrete optimization

More information

Problem Set 6 (Due: Wednesday, December 6, 2006)

Problem Set 6 (Due: Wednesday, December 6, 2006) Urban OR Fall 2006 Problem Set 6 (Due: Wednesday, December 6, 2006) Problem 1 Problem 6.6 in Larson and Odoni Problem 2 Exercise 6.7 (page 442) in Larson and Odoni. Problem Suppose we have a network G(N,

More information

Approximation Algorithms

Approximation Algorithms 15-251: Great Ideas in Theoretical Computer Science Spring 2019, Lecture 14 March 5, 2019 Approximation Algorithms 1 2 SAT 3SAT Clique Hamiltonian- Cycle given a Boolean formula F, is it satisfiable? same,

More information