SEVENTH EDITION and EXPANDED SEVENTH EDITION

Size: px
Start display at page:

Download "SEVENTH EDITION and EXPANDED SEVENTH EDITION"

Transcription

1 SEVENTH EDITION and EXPANDED SEVENTH EDITION Slide 14-1

2 Chapter 14 Graph Theory

3 14.1 Graphs, Paths and Circuits

4 Definitions A graph is a finite set of points called vertices (singular form is vertex) connected by line segments (not necessarily straight) called edges. Loop is an edge that connects a vertex to itself. A Not a vertex B Loop Edge C D Vertex Slide 14-4

5 Example: Map The map shows the states that make up part of the Midwest states from Weather Underground, Inc. Construct a graph to show the states that share a common border. Indiana Michigan Ohio West Virginia Kentucky Slide 14-5

6 Solution Each vertex will represent one of the states. If two states share a common border, connect the respective vertices with an edge. Slide 14-6

7 Solution continued MI Michigan IN OH Ohio KY WV Indiana West Virginia Kentucky Slide 14-7

8 Definitions The degree of a vertex is the number of edges that connect to that vertex. A vertex with an even number of edges connected to it is an even vertex. A vertex with an odd number of edges connected to it is an odd vertex. MI, OH, and WV are even vertices IN, KY are odd vertices MI IN OH KY WV Slide 14-8

9 Definitions A path is a sequence of adjacent vertices and edges connecting them. C, D, A, B is an example of a path. A circuit is a path that begins and ends at the same vertex. A, C, B, D, A forms a circuit. A B C D E Slide 14-9

10 Definitions A graph is connected if, for any two vertices in the graph, there is a path that connects them. Examples of disconnected graphs. B C G H A D K J Slide 14-10

11 Definitions continued A bridge is an edge that if removed from a connected graph would create a disconnected graph. bridge B C G bridge H A D K J Slide 14-11

12 14.2 Euler Paths and Euler Circuits

13 Definitions An Euler path is a path that passes through each edge of a graph exactly one time. An Euler circuit is a circuit that passes through each edge of a graph exactly one time. The difference between an Euler path and an Euler circuit is that an Euler circuit must start and end at the same vertex. Slide 14-13

14 Examples Euler path Euler circuit Slide 14-14

15 Example: Euler Path and Circuits For the graphs shown, determine if an Euler path, an Euler circuit, neither, or both exist. A B C A B C D D E The graph has many Euler circuits, each of which is also an Euler path. This graph has no odd vertices. One example is A, D, B, C, D, B, A. The graph has an Euler path but it does not have an Euler circuit. One Euler path is E, C, B, E, D, B, A, D. Each path must begin or end at vertex D or E. Slide 14-15

16 Euler s Theorem For a connected graph, the following statements are true: 1. A graph with no odd vertices (all even vertices) has at least one Euler path, which is also an Euler circuit. An Euler circuit can be started at any vertex and it will end at the same vertex. 2. A graph with exactly two odd vertices has at least one Euler path but not Euler circuits. Each Euler path must begin at one of the two odd vertices, and it will end at the other odd vertex. 3. A graph with more than two odd vertices has neither an Euler path nor an Euler circuit. Slide 14-16

17 Example: Using Euler s Theorem Use Euler s theorem to determine whether an Euler path or an Euler circuit exists in the figures shown from the previous example. Slide 14-17

18 Example: Using Euler s Theorem continued The graph has no odd vertices (all vertices are even). According to item 1, at least one Euler circuit exists. A B D C An Euler circuit can be determined by starting at any vertex. The Euler circuit will end at the vertex from which is started. Remember that each Euler circuit is also an Euler path. Slide 14-18

19 Example: Using Euler s Theorem continued There are 3 even vertices A B C (A, B, C) and two odd vertices (D, E). Based on D E item 2, we conclude that since there are exactly two odd vertices, at least one Euler path exists but no Euler circuits exists. Each Euler path must begin at one of the odd vertices and end at the other odd vertex. Slide 14-19

20 Example In section 14.1, example 1, we discussed some of the states that make up the Midwest region of the weather map from Weather Underground. We drew a graph that showed the states that share a common border. One of the researchers wants to visit each state within the mapped region. To plan the most efficient trip, the researcher wishes to travel between these states and cross each common state border exactly one time. a) Is it possible to travel among the states and cross each common state border exactly one time? b) If it is possible, can he start and end in the same state? Slide 14-20

21 Solution We are looking for an Euler path, you must use each edge exactly one time. According to item 2, the graph has at least one Euler path but no Euler circuits. IN OH Therefore, yes, it is possible to travel among these states and cross each common border exactly one time. KY WV There is not an Euler circuit, so the researcher cannot start and end in the same state. MI Slide 14-21

22 Fleury s Algorithm To determine an Euler path or an Euler circuit: 1. Use Euler s theorem to determine whether an Euler path or an Euler circuit exists. If one exists, proceed with steps If the graph has no odd vertices (therefore has an Euler circuit, which is also an Euler path), choose any vertex as the starting point. If the graph has exactly two odd vertices (therefore has only an Euler path), choose one of the two odd vertices as the starting point. Slide 14-22

23 Fleury s Algorithm continued 3. Begin to trace the edges as you move through the graph. Number the edges as you trace them. Since you can t trace any edges twice in Euler paths and Euler circuits, once an edge is traced consider it invisible. 4. When faced with a choice of edges to trace, if possible, choose an edge that is not a bridge (i.e., don t create a disconnected graph with your choice of edges). 5. Continue until each edge of the entire graph has been traced once. Slide 14-23

24 Example Use Fluery s algorithm to determine an Euler circuit. There is at least one Euler circuit since there are no odd vertices. Start at any vertex to determine an Euler circuit. F A G B E D C Slide 14-24

25 Example continued Start at C. Choose either CB or CD. Continue to trace from vertex to vertex around the outside of the graph. F 4 A 5 6 B G 8 start here C 1 D 3 2 E Slide 14-25

26 14.3 Hamilton Paths and Hamilton Circuits

27 Definitions A Hamilton path is a path that contains each vertex of a graph exactly once. A Hamilton circuit is a path that begins and ends at the same vertex and passes through all other vertices of the graph exactly one time. Slide 14-27

28 Example: Hamilton Path Graph (a) shown has Hamilton path A, B, C, E, D. The graph also has Hamilton path C, B, A, D, E. Can you find some others? Graph (b) shown has Hamilton path A, B, C, F, H, E, G, D. The graph also has Hamilton path G, D, E, H, F, C, B, A. Can you find some others? Slide 14-28

29 Example: Hamilton Circuit Graph (a) shown has Hamilton circuit A, B, D, G, E, H, F, C, A. A Hamilton circuit starts and ends at the same vertex. Graph (b) shown has Hamilton circuit A, B, C, E, D, A. Can you find another? Slide 14-29

30 Definition A complete graph is a graph that has an edge between each pair of its vertices. Slide 14-30

31 Example: Finding Hamilton Circuits Determine a Hamilton circuit for the complete graph shown. A B C One solution is D A, G, F, E, C, D, B, A G F E Slide 14-31

32 Number of Unique Hamilton Circuits in a Complete Graph The number of unique Hamilton circuits in a complete graph with n vertices is (n 1)! where (n 1)! = (n 1)(n 2)(n 3) (3)(2)(1) Slide 14-32

33 Example: Number of Hamilton Circuits How many unique Hamilton circuits are there in a complete graph with the following number of vertices? a) 4 b) 9 a) 4 = (4 1)! = = 24 b) 9 = (9 1)! = = 40,320 Slide 14-33

34 The Brute Force Method of Solving Traveling Salesman Problems To determine the optimal solution: 1. Represent the problem with a complete, weighted graph. 2. List all possible Hamilton circuits for this graph. 3. Determine the cost (or distance) associated with each of these Hamilton circuits. 4. The Hamilton circuit with the lowest (or shortest distance) is the optimal solution. Slide 14-34

35 Example: Brute Force Method Find a minimum Hamilton circuit for the complete, weighted graph shown. A B 12 List all the Hamilton circuits. Since there are 4 vertices there are (4 1)! = 3! = 6 possible circuits. D 6 C Slide 14-35

36 Example: Brute Force Method continued A 6 B D 6 C Circuit First Leg Second Leg Third Leg Fourth Leg Total A, B, C, D, A A, B, D, C, A A, C, B, D, A A, C, D, B, A A, D, B, C, A A, D, C, B, A The minimum amount for the graph would be 22. Slide 14-36

37 Nearest Neighbor Method of Determining an Approximate Solution to a Traveling Salesman Problem To approximate a optimal solution: 1. Represent the problem with a complete, weighted graph. 2. Identify the starting vertex. 3. Of all the edges attached to the starting vertex, choose the edge that has the smallest weight. This edge is generally either the shortest distance or the lowest cost. Travel along this edge to the second vertex. Slide 14-37

38 Nearest Neighbor Method of Determining an Approximate Solution to a Traveling Salesman Problem continued 4. At the second vertex, choose the edge that has the smallest weight that does not lead to a vertex already visited. Travel along this edge to the third vertex. 5. Continue this process, each time moving along the edge with the smallest weight until all vertices are visited. 6. Travel back to the original vertex. Slide 14-38

39 Example: Nearest Neighbor An appliance repair man must repair four appliances at the locations shown in the graph. The estimated travel time (in minutes) is shown between the four locations. The repair man wants to visit the four locations in an order that takes the least amount of time. Use the nearest neighbor algorithm to find an approximate solution to the problem. Slide 14-39

40 Example: Nearest Neighbor continued Choose a starting vertex. Let s choose vertex A. start here Choose the edge that has the smallest weight. Either AD or AB, lets choose AD (9). At D choose the edge that has the smallest weight DE (5). B A E C 6 D 2 nd vertex Slide 14-40

41 Example: Nearest Neighbor continued Continue moving along the edge with the smallest weight. start here Circuit would be: A, D, E, B, C, A 8 13 A = 37 This route would take about 37 minutes. B E C 6 D 2 nd vertex Slide 14-41

42 Example: Nearest Neighbor continued Other circuits and weights. Starting Vertex B C D E Circuit B, E, D, C, A, B C, D, E, B, A, C D, E, B, A, C, D E, B, D, C, A, E Total Weight = = = = 49 Slide 14-42

43 14.4 Trees

44 Definitions A tree is a connected graph in which each edge is a bridge. A spanning tree is a tree that is created from another graph by removing edges while still maintaining a path to each vertex. Slide 14-44

45 Examples Graphs that are trees. Graph that are not trees. Slide 14-45

46 Example: Determining Spanning Trees Determine two different spanning trees for the graph shown. B E F H A C D G B E F H B E F H A C D G A C D G Slide 14-46

47 Minimum-cost spanning tree A minimum cost spanning tree is the least expensive spanning tree of all spanning trees under consideration. Slide 14-47

48 Kruskal s Algorithm To construct the minimum-cost spanning tree from a weighted graph: 1. Select the lowest-cost edge on the graph. 2. Select the next lowest-cost edge that does not form a circuit with the first edge. 3. Select the next lowest-cost edge that does not form a circuit with the previously selected edges. 4. Continue selecting the lowest-cost edges that doe not form circuits with the previously selected edges. 5. When a spanning tree is complete, you have the minimum-cost spanning tree. Slide 14-48

49 Example: Kruskal s Algorithm Use Kruskal s algorithm to determine the minimum spanning tree for the weighted graph shown. The numbers along the edges represent dollars. A 12 B C D E G 22 F Slide 14-49

50 Solution Pick the lowest-cost edge of the graph, edge CD which is $4. Next we select the next lowest-cost edge that does not form a circuit, we select edge CG which is $5. A 12 B C 5 G D 17 F E Slide 14-50

51 Solution continued Continue selecting edges, being careful not to form a circuit. The total cost would be $12 + $10 + $5 + $14 +$18 + $4 = $63. A 12 B C 5 G D 17 F E Slide 14-51

Chapter 14 Section 3 - Slide 1

Chapter 14 Section 3 - Slide 1 AND Chapter 14 Section 3 - Slide 1 Chapter 14 Graph Theory Chapter 14 Section 3 - Slide WHAT YOU WILL LEARN Graphs, paths and circuits The Königsberg bridge problem Euler paths and Euler circuits Hamilton

More information

Section Graphs, Paths, and Circuits. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

Section Graphs, Paths, and Circuits. Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 14.1 Graphs, Paths, and Circuits INB Table of Contents Date Topic Page # January 27, 2014 Test #1 14 January 27, 2014 Test # 1 Corrections 15 January 27, 2014 Section 14.1 Examples 16 January 27,

More information

Section Graphs, Paths, and Circuits. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

Section Graphs, Paths, and Circuits. Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 14.1 Graphs, Paths, and Circuits What You Will Learn Graphs Paths Circuits Bridges 14.1-2 Definitions A graph is a finite set of points called vertices (singular form is vertex) connected by line

More information

Chapter 8 Topics in Graph Theory

Chapter 8 Topics in Graph Theory Chapter 8 Topics in Graph Theory Chapter 8: Topics in Graph Theory Section 8.1: Examples {1,2,3} Section 8.2: Examples {1,2,4} Section 8.3: Examples {1} 8.1 Graphs Graph A graph G consists of a finite

More information

14 Graph Theory. Exercise Set 14-1

14 Graph Theory. Exercise Set 14-1 14 Graph Theory Exercise Set 14-1 1. A graph in this chapter consists of vertices and edges. In previous chapters the term was used as a visual picture of a set of ordered pairs defined by a relation or

More information

Topics Covered. Introduction to Graphs Euler s Theorem Hamiltonian Circuits The Traveling Salesman Problem Trees and Kruskal s Algorithm

Topics Covered. Introduction to Graphs Euler s Theorem Hamiltonian Circuits The Traveling Salesman Problem Trees and Kruskal s Algorithm Graph Theory Topics Covered Introduction to Graphs Euler s Theorem Hamiltonian Circuits The Traveling Salesman Problem Trees and Kruskal s Algorithm What is a graph? A collection of points, called vertices

More information

The Traveling Salesman Problem Outline/learning Objectives The Traveling Salesman Problem

The Traveling Salesman Problem Outline/learning Objectives The Traveling Salesman Problem Chapter 6 Hamilton Joins the Circuit Outline/learning Objectives To identify and model Hamilton circuit and Hamilton path problems. To recognize complete graphs and state the number of Hamilton circuits

More information

The Traveling Salesman Problem

The Traveling Salesman Problem The Traveling Salesman Problem Hamilton path A path that visits each vertex of the graph once and only once. Hamilton circuit A circuit that visits each vertex of the graph once and only once (at the end,

More information

The Traveling Salesman Problem Outline/learning Objectives The Traveling Salesman Problem

The Traveling Salesman Problem Outline/learning Objectives The Traveling Salesman Problem Chapter 6 Hamilton Joins the Circuit Outline/learning Objectives To identify and model Hamilton circuit and Hamilton path problems. To recognize complete graphs and state the number of Hamilton circuits

More information

Note that there are questions printed on both sides of each page!

Note that there are questions printed on both sides of each page! Math 1001 Name: Fall 2007 Test 1 Student ID: 10/5/07 Time allowed: 50 minutes Section: 10:10 11:15 12:20 This exam includes 7 pages, including this one and a sheet for scratch work. There are a total of

More information

1. Read each problem carefully and follow the instructions.

1. Read each problem carefully and follow the instructions. SSII 2014 1 Instructor: Benjamin Wilson Name: 1. Read each problem carefully and follow the instructions. 2. No credit will be given for correct answers without supporting work and/ or explanation. 3.

More information

Section Hamilton Paths, and Hamilton Circuits. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

Section Hamilton Paths, and Hamilton Circuits. Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 14.3 Hamilton Paths, and Hamilton Circuits What You Will Learn Hamilton Paths Hamilton Circuits Complete Graphs Traveling Salesman Problems 14.3-2 Hamilton Paths A Hamilton path is a path that

More information

Finite Math A Chapter 6 Notes Hamilton Circuits

Finite Math A Chapter 6 Notes Hamilton Circuits Chapter 6: The Mathematics of Touring (Hamilton Circuits) and Hamilton Paths 6.1 Traveling Salesman Problems/ 6.2 Hamilton Paths and Circuits A traveling salesman has clients in 5 different cities. He

More information

Section Hamilton Paths, and Hamilton Circuits. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

Section Hamilton Paths, and Hamilton Circuits. Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 14.3 Hamilton Paths, and Hamilton Circuits INB Table of Contents Date Topic Page # September 11, 2013 Section 14.3 Examples/Handout 18 September 11, 2013 Section 14.3 Notes 19 2.3-2 What You Will

More information

14.2 Euler Paths and Circuits filled in.notebook November 18, Euler Paths and Euler Circuits

14.2 Euler Paths and Circuits filled in.notebook November 18, Euler Paths and Euler Circuits 14.2 Euler Paths and Euler Circuits The study of graph theory can be traced back to the eighteenth century when the people of the town of Konigsberg sought a solution to a popular problem. They had sections

More information

Simple Graph. General Graph

Simple Graph. General Graph Graph Theory A graph is a collection of points (also called vertices) and lines (also called edges), with each edge ending at a vertex In general, it is allowed for more than one edge to have the same

More information

A region is each individual area or separate piece of the plane that is divided up by the network.

A region is each individual area or separate piece of the plane that is divided up by the network. Math 135 Networks and graphs Key terms Vertex (Vertices) ach point of a graph dge n edge is a segment that connects two vertices. Region region is each individual area or separate piece of the plane that

More information

Sections 5.2, 5.3. & 5.4

Sections 5.2, 5.3. & 5.4 MATH 11008: Graph Theory Terminology Sections 5.2, 5.3. & 5.4 Routing problem: A routing problem is concerned with finding ways to route the delivery of good and/or services to an assortment of destinations.

More information

Math for Liberal Arts MAT 110: Chapter 13 Notes

Math for Liberal Arts MAT 110: Chapter 13 Notes Math for Liberal Arts MAT 110: Chapter 13 Notes Graph Theory David J. Gisch Networks and Euler Circuits Network Representation Network: A collection of points or objects that are interconnected in some

More information

Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around

Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around 1 Finite Math A Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around Academic Standards Covered in this Chapter: *************************************************************************************

More information

1. The Highway Inspector s Problem

1. The Highway Inspector s Problem MATH 100 Survey of Mathematics Fall 2009 1. The Highway Inspector s Problem The Königsberg Bridges over the river Pregel C c d e A g D a B b Figure 1. Bridges f Is there a path that crosses every bridge

More information

Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around

Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around 1 Finite Math A Chapter 5: Euler Paths and Circuits The Mathematics of Getting Around Academic Standards Covered in this Chapter: *************************************************************************************

More information

Topic 10 Part 2 [474 marks]

Topic 10 Part 2 [474 marks] Topic Part 2 [474 marks] The complete graph H has the following cost adjacency matrix Consider the travelling salesman problem for H a By first finding a minimum spanning tree on the subgraph of H formed

More information

6.2 Initial Problem. Section 6.2 Network Problems. 6.2 Initial Problem, cont d. Weighted Graphs. Weighted Graphs, cont d. Weighted Graphs, cont d

6.2 Initial Problem. Section 6.2 Network Problems. 6.2 Initial Problem, cont d. Weighted Graphs. Weighted Graphs, cont d. Weighted Graphs, cont d Section 6.2 Network Problems Goals Study weighted graphs Study spanning trees Study minimal spanning trees Use Kruskal s algorithm 6.2 Initial Problem Walkways need to be built between the buildings on

More information

WUCT121. Discrete Mathematics. Graphs

WUCT121. Discrete Mathematics. Graphs WUCT121 Discrete Mathematics Graphs WUCT121 Graphs 1 Section 1. Graphs 1.1. Introduction Graphs are used in many fields that require analysis of routes between locations. These areas include communications,

More information

Undirected Network Summary

Undirected Network Summary Undirected Network Summary Notice that the network above has multiple edges joining nodes a to d and the network has a loop at node d. Also c is called an isolated node as it is not connected to any other

More information

Chapter 6. The Traveling-Salesman Problem. Section 1. Hamilton circuits and Hamilton paths.

Chapter 6. The Traveling-Salesman Problem. Section 1. Hamilton circuits and Hamilton paths. Chapter 6. The Traveling-Salesman Problem Section 1. Hamilton circuits and Hamilton paths. Recall: an Euler path is a path that travels through every edge of a graph once and only once; an Euler circuit

More information

Excursions in Modern Mathematics Sixth Edition. Chapter 5 Euler Circuits. The Circuit Comes to Town. Peter Tannenbaum

Excursions in Modern Mathematics Sixth Edition. Chapter 5 Euler Circuits. The Circuit Comes to Town. Peter Tannenbaum Excursions in Modern Mathematics Sixth Edition Chapter 5 Peter Tannenbaum The Circuit Comes to Town 1 2 Outline/learning Objectives Outline/learning Objectives (cont.) To identify and model Euler circuit

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Chapter 6 Test Review Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Solve the problem. 1) The number of edges in K12 is 1) 2) The number of Hamilton

More information

Warm -Up. 1. Draw a connected graph with 4 vertices and 7 edges. What is the sum of the degrees of all the vertices?

Warm -Up. 1. Draw a connected graph with 4 vertices and 7 edges. What is the sum of the degrees of all the vertices? Warm -Up 1. Draw a connected graph with 4 vertices and 7 edges. What is the sum of the degrees of all the vertices? 1. Is this graph a. traceable? b. Eulerian? 3. Eulerize this graph. Warm-Up Eulerize

More information

Chapter 3: Paths and Cycles

Chapter 3: Paths and Cycles Chapter 3: Paths and Cycles 5 Connectivity 1. Definitions: Walk: finite sequence of edges in which any two consecutive edges are adjacent or identical. (Initial vertex, Final vertex, length) Trail: walk

More information

A path that visits every vertex exactly once is a Hamiltonian path. A circuit that visits every vertex exactly once is a Hamiltonian circuit.

A path that visits every vertex exactly once is a Hamiltonian path. A circuit that visits every vertex exactly once is a Hamiltonian circuit. Math 167 Review of Chapter 2 1 (c) Janice Epstein CHAPTER 2 BUSINESS EFFICENCY A path that visits every vertex exactly once is a Hamiltonian path. A circuit that visits every vertex exactly once is a Hamiltonian

More information

Basic Combinatorics. Math 40210, Section 01 Fall Homework 4 Solutions

Basic Combinatorics. Math 40210, Section 01 Fall Homework 4 Solutions Basic Combinatorics Math 40210, Section 01 Fall 2012 Homework 4 Solutions 1.4.2 2: One possible implementation: Start with abcgfjiea From edge cd build, using previously unmarked edges: cdhlponminjkghc

More information

Packet #6: Counting & Graph Theory. Applied Discrete Mathematics

Packet #6: Counting & Graph Theory. Applied Discrete Mathematics Packet #6: Counting & Graph Theory Applied Discrete Mathematics Table of Contents Counting Pages 1-8 Graph Theory Pages 9-16 Exam Study Sheet Page 17 Counting Information I. Product Rule: A B C = A * B

More information

Ma/CS 6a Class 8: Eulerian Cycles

Ma/CS 6a Class 8: Eulerian Cycles Ma/CS 6a Class 8: Eulerian Cycles By Adam Sheffer The Bridges of Königsberg Can we travel the city while crossing every bridge exactly once? 1 How Graph Theory was Born Leonhard Euler 1736 Eulerian Cycle

More information

PATH FINDING AND GRAPH TRAVERSAL

PATH FINDING AND GRAPH TRAVERSAL GRAPH TRAVERSAL PATH FINDING AND GRAPH TRAVERSAL Path finding refers to determining the shortest path between two vertices in a graph. We discussed the Floyd Warshall algorithm previously, but you may

More information

CHAPTER FOURTEEN GRAPH THEORY

CHAPTER FOURTEEN GRAPH THEORY HPTR OURTN RPH THORY xercise Set 14.1 1. graph is a finite set of points, called vertices, that are connected with line segments, called edges. 2. 3. 4. The degree of a vertex is the number of edges that

More information

Study Guide Mods: Date:

Study Guide Mods: Date: Graph Theory Name: Study Guide Mods: Date: Define each of the following. It may be helpful to draw examples that illustrate the vocab word and/or counterexamples to define the word. 1. Graph ~ 2. Vertex

More information

13. (a) G,G. A circuit of length 1 is a loop. 14. (a) E,E. (c) A,B,C,A. 16. (a) BF, FG

13. (a) G,G. A circuit of length 1 is a loop. 14. (a) E,E. (c) A,B,C,A. 16. (a) BF, FG 13. (a) G,G. A circuit of length 1 is a loop. There are none. Such a circuit would consist of two vertices and two (different) edges connecting the vertices. 10. (a) 11. (a) C, B, A, H, F Other answers

More information

Junior Circle Meeting 3 Circuits and Paths. April 18, 2010

Junior Circle Meeting 3 Circuits and Paths. April 18, 2010 Junior Circle Meeting 3 Circuits and Paths April 18, 2010 We have talked about insect worlds which consist of cities connected by tunnels. Here is an example of an insect world (Antland) which we saw last

More information

Sec 2. Euler Circuits, cont.

Sec 2. Euler Circuits, cont. Sec 2. uler ircuits, cont. uler ircuits traverse each edge of a connected graph exactly once. Recall that all vertices must have even degree in order for an uler ircuit to exist. leury s lgorithm is a

More information

Fundamental Properties of Graphs

Fundamental Properties of Graphs Chapter three In many real-life situations we need to know how robust a graph that represents a certain network is, how edges or vertices can be removed without completely destroying the overall connectivity,

More information

Minimum spanning trees

Minimum spanning trees Carlos Moreno cmoreno @ uwaterloo.ca EI-3 https://ece.uwaterloo.ca/~cmoreno/ece5 Standard reminder to set phones to silent/vibrate mode, please! During today's lesson: Introduce the notion of spanning

More information

Basics of Graph Theory

Basics of Graph Theory Basics of Graph Theory 1 Basic notions A simple graph G = (V, E) consists of V, a nonempty set of vertices, and E, a set of unordered pairs of distinct elements of V called edges. Simple graphs have their

More information

Introduction to Graph Theory

Introduction to Graph Theory Introduction to Graph Theory Tandy Warnow January 20, 2017 Graphs Tandy Warnow Graphs A graph G = (V, E) is an object that contains a vertex set V and an edge set E. We also write V (G) to denote the vertex

More information

Midterm 1 : Correction. Friday, Feb. 23.

Midterm 1 : Correction. Friday, Feb. 23. University of Illinois at Urbana-Champaign Spring 00 Math Group F Midterm : Correction. Friday, Feb... (a) Draw a graph with vertices A, B, C and D in which the valence of vertices A and D is and the valence

More information

8.2 Paths and Cycles

8.2 Paths and Cycles 8.2 Paths and Cycles Degree a b c d e f Definition The degree of a vertex is the number of edges incident to it. A loop contributes 2 to the degree of the vertex. (G) is the maximum degree of G. δ(g) is

More information

Graph Theory. 26 March Graph Theory 26 March /29

Graph Theory. 26 March Graph Theory 26 March /29 Graph Theory 26 March 2012 Graph Theory 26 March 2012 1/29 Graph theory was invented by a mathematician named Euler in the 18th century. We will see some of the problems which motivated its study. However,

More information

MTH-129 Review for Test 4 Luczak

MTH-129 Review for Test 4 Luczak MTH-129 Review for Test 4 Luczak 1. On each of three consecutive days the National Weather Service announces that there is a 50-50 chance of rain. Assuming that they are correct, answer the following:

More information

11.2 Eulerian Trails

11.2 Eulerian Trails 11.2 Eulerian Trails K.. onigsberg, 1736 Graph Representation A B C D Do You Remember... Definition A u v trail is a u v walk where no edge is repeated. Do You Remember... Definition A u v trail is a u

More information

a) Graph 2 and Graph 3 b) Graph 2 and Graph 4 c) Graph 1 and Graph 4 d) Graph 1 and Graph 3 e) Graph 3 and Graph 4 f) None of the above

a) Graph 2 and Graph 3 b) Graph 2 and Graph 4 c) Graph 1 and Graph 4 d) Graph 1 and Graph 3 e) Graph 3 and Graph 4 f) None of the above Mathematics 105: Math as a Liberal Art. Final Exam. Name Instructor: Ramin Naimi Spring 2008 Close book. Closed notes. No Calculators. NO CELL PHONES! Please turn off your cell phones and put them away.

More information

Graph Theory. Connectivity, Coloring, Matching. Arjun Suresh 1. 1 GATE Overflow

Graph Theory. Connectivity, Coloring, Matching. Arjun Suresh 1. 1 GATE Overflow Graph Theory Connectivity, Coloring, Matching Arjun Suresh 1 1 GATE Overflow GO Classroom, August 2018 Thanks to Subarna/Sukanya Das for wonderful figures Arjun, Suresh (GO) Graph Theory GATE 2019 1 /

More information

Honors ICM- Graph Theory Unit 7 Homework Packet Homework Day 1

Honors ICM- Graph Theory Unit 7 Homework Packet Homework Day 1 Honors ICM- Graph Theory Unit 7 Homework Packet Homework Day 1 Name Period: 6. Construct a graph with three critical paths. 7. Determine the minimum project time and the critical path for the following

More information

Eulerian tours. Russell Impagliazzo and Miles Jones Thanks to Janine Tiefenbruck. April 20, 2016

Eulerian tours. Russell Impagliazzo and Miles Jones Thanks to Janine Tiefenbruck.  April 20, 2016 Eulerian tours Russell Impagliazzo and Miles Jones Thanks to Janine Tiefenbruck http://cseweb.ucsd.edu/classes/sp16/cse21-bd/ April 20, 2016 Seven Bridges of Konigsberg Is there a path that crosses each

More information

(Refer Slide Time: 01:00)

(Refer Slide Time: 01:00) Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture minus 26 Heuristics for TSP In this lecture, we continue our discussion

More information

Graphs II: Trailblazing

Graphs II: Trailblazing Graphs II: Trailblazing Paths In an undirected graph, a path of length n from u to v, where n is a positive integer, is a sequence of edges e 1,, e n of the graph such that f(e 1 )={x 0,x 1 }, f(e 2 )={x

More information

Worksheet 28: Wednesday November 18 Euler and Topology

Worksheet 28: Wednesday November 18 Euler and Topology Worksheet 28: Wednesday November 18 Euler and Topology The Konigsberg Problem: The Foundation of Topology The Konigsberg Bridge Problem is a very famous problem solved by Euler in 1735. The process he

More information

The Traveling Salesman Problem (TSP) is where a least cost Hamiltonian circuit is found. CHAPTER 1 URBAN SERVICES

The Traveling Salesman Problem (TSP) is where a least cost Hamiltonian circuit is found. CHAPTER 1 URBAN SERVICES Math 167 eview 1 (c) Janice Epstein HPE 1 UN SEVIES path that visits every vertex exactly once is a Hamiltonian path. circuit that visits every vertex exactly once is a Hamiltonian circuit. Math 167 eview

More information

Graph theory was invented by a mathematician named Euler in the 18th century. We will see some of the problems which motivated its study.

Graph theory was invented by a mathematician named Euler in the 18th century. We will see some of the problems which motivated its study. Graph Theory Graph theory was invented by a mathematician named Euler in the 18th century. We will see some of the problems which motivated its study. However, it wasn t studied too systematically until

More information

Graphs. The ultimate data structure. graphs 1

Graphs. The ultimate data structure. graphs 1 Graphs The ultimate data structure graphs 1 Definition of graph Non-linear data structure consisting of nodes & links between them (like trees in this sense) Unlike trees, graph nodes may be completely

More information

Theory of Computing. Lecture 10 MAS 714 Hartmut Klauck

Theory of Computing. Lecture 10 MAS 714 Hartmut Klauck Theory of Computing Lecture 10 MAS 714 Hartmut Klauck Seven Bridges of Königsberg Can one take a walk that crosses each bridge exactly once? Seven Bridges of Königsberg Model as a graph Is there a path

More information

Precept 4: Traveling Salesman Problem, Hierarchical Clustering. Qian Zhu 2/23/2011

Precept 4: Traveling Salesman Problem, Hierarchical Clustering. Qian Zhu 2/23/2011 Precept 4: Traveling Salesman Problem, Hierarchical Clustering Qian Zhu 2/23/2011 Agenda Assignment: Traveling salesman problem Hierarchical clustering Example Comparisons with K-means TSP TSP: Given the

More information

EECS 203 Lecture 20. More Graphs

EECS 203 Lecture 20. More Graphs EECS 203 Lecture 20 More Graphs Admin stuffs Last homework due today Office hour changes starting Friday (also in Piazza) Friday 6/17: 2-5 Mark in his office. Sunday 6/19: 2-5 Jasmine in the UGLI. Monday

More information

Network Topology and Graph

Network Topology and Graph Network Topology Network Topology and Graph EEE442 Computer Method in Power System Analysis Any lumped network obeys 3 basic laws KVL KCL linear algebraic constraints Ohm s law Anawach Sangswang Dept.

More information

MA 111 Review for Exam 3

MA 111 Review for Exam 3 MA 111 Review for Exam 3 Exam 3 (given in class on Tuesday, March 27, 2012) will cover Chapter 5. You should: know what a graph is and how to use graphs to model geographic relationships. know how to describe

More information

Multi-edges, loops, and two or more pieces are all allowed. Example 4 (Not Graphs). None of the following are graphs.

Multi-edges, loops, and two or more pieces are all allowed. Example 4 (Not Graphs). None of the following are graphs. MA 111, Topic 4: Graph Theory Our last topic in this course is called Graph Theory. This is the mathematics of connections, associations, and relationships. Definition 1. A Graph is a set of points called

More information

Dynamically Random Graphs

Dynamically Random Graphs Dynamically Random Graphs Alexis Byers, Wittenberg University Mallory Reed, Earlham College Laura Rucci, Cabrini College Elle VanTilburg, University of Texas-Austin SUMSRI 203 Miami University July 8,

More information

Sarah Will Math 490 December 2, 2009

Sarah Will Math 490 December 2, 2009 Sarah Will Math 490 December 2, 2009 Euler Circuits INTRODUCTION Euler wrote the first paper on graph theory. It was a study and proof that it was impossible to cross the seven bridges of Königsberg once

More information

Outline. Graphs. Divide and Conquer.

Outline. Graphs. Divide and Conquer. GRAPHS COMP 321 McGill University These slides are mainly compiled from the following resources. - Professor Jaehyun Park slides CS 97SI - Top-coder tutorials. - Programming Challenges books. Outline Graphs.

More information

Euler Characteristic

Euler Characteristic Euler Characteristic Rebecca Robinson May 15, 2007 Euler Characteristic Rebecca Robinson 1 PLANAR GRAPHS 1 Planar graphs v = 5, e = 4, f = 1 v e + f = 2 v = 6, e = 7, f = 3 v = 4, e = 6, f = 4 v e + f

More information

The Human Brain & Graph Theory

The Human Brain & Graph Theory The Human Brain & Graph Theory Graph Theory A graph is a collection of vertices (or points) that are connected by edges (or lines) Edges may overlap Graphs do not need edges Graphs can be directed with

More information

Introduction to Engineering Systems, ESD.00. Networks. Lecturers: Professor Joseph Sussman Dr. Afreen Siddiqi TA: Regina Clewlow

Introduction to Engineering Systems, ESD.00. Networks. Lecturers: Professor Joseph Sussman Dr. Afreen Siddiqi TA: Regina Clewlow Introduction to Engineering Systems, ESD.00 Lecture 7 Networks Lecturers: Professor Joseph Sussman Dr. Afreen Siddiqi TA: Regina Clewlow The Bridges of Königsberg The town of Konigsberg in 18 th century

More information

1. Sorting (assuming sorting into ascending order) a) BUBBLE SORT

1. Sorting (assuming sorting into ascending order) a) BUBBLE SORT DECISION 1 Revision Notes 1. Sorting (assuming sorting into ascending order) a) BUBBLE SORT Make sure you show comparisons clearly and label each pass First Pass 8 4 3 6 1 4 8 3 6 1 4 3 8 6 1 4 3 6 8 1

More information

21-110: Problem Solving in Recreational Mathematics

21-110: Problem Solving in Recreational Mathematics 21-110: Problem Solving in Recreational Mathematics Homework assignment 8 solutions Problem 1. A loop is an edge that joins a vertex to itself. Multiple edges are two or more edges between the same pair

More information

CSE331 Introduction to Algorithms Lecture 15 Minimum Spanning Trees

CSE331 Introduction to Algorithms Lecture 15 Minimum Spanning Trees CSE1 Introduction to Algorithms Lecture 1 Minimum Spanning Trees Antoine Vigneron antoine@unist.ac.kr Ulsan National Institute of Science and Technology July 11, 201 Antoine Vigneron (UNIST) CSE1 Lecture

More information

Module 2: NETWORKS AND DECISION MATHEMATICS

Module 2: NETWORKS AND DECISION MATHEMATICS Further Mathematics 2017 Module 2: NETWORKS AND DECISION MATHEMATICS Chapter 9 Undirected Graphs and Networks Key knowledge the conventions, terminology, properties and types of graphs; edge, face, loop,

More information

Graphs and Algorithms

Graphs and Algorithms Graphs and Algorithms Graphs are a mathematical concept readily adapted into computer programming. Graphs are not just data structures, that is, they are not solutions to simple data storage problems.

More information

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. An Introduction to Graph Theory

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. An Introduction to Graph Theory SCHOOL OF ENGINEERING & BUILT ENVIRONMENT Mathematics An Introduction to Graph Theory. Introduction. Definitions.. Vertices and Edges... The Handshaking Lemma.. Connected Graphs... Cut-Points and Bridges.

More information

Further Mathematics 2016 Module 2: NETWORKS AND DECISION MATHEMATICS Chapter 9 Undirected Graphs and Networks

Further Mathematics 2016 Module 2: NETWORKS AND DECISION MATHEMATICS Chapter 9 Undirected Graphs and Networks Further Mathematics 2016 Module 2: NETWORKS AND DECISION MATHEMATICS Chapter 9 Undirected Graphs and Networks Key knowledge the conventions, terminology, properties and types of graphs; edge, face, loop,

More information

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points MC 0 GRAPH THEORY 0// Solutions to HW # 0 points + XC points ) [CH] p.,..7. This problem introduces an important class of graphs called the hypercubes or k-cubes, Q, Q, Q, etc. I suggest that before you

More information

Graph Theory. Chapter 4.

Graph Theory. Chapter 4. Graph Theory. Chapter 4. Wandering. Here is an algorithm, due to Tarry, that constructs a walk in a connected graph, starting at any vertex v 0, traversing each edge exactly once in each direction, and

More information

Questions? You are given the complete graph of Facebook. What questions would you ask? (What questions could we hope to answer?)

Questions? You are given the complete graph of Facebook. What questions would you ask? (What questions could we hope to answer?) P vs. NP What now? Attribution These slides were prepared for the New Jersey Governor s School course The Math Behind the Machine taught in the summer of 2011 by Grant Schoenebeck Large parts of these

More information

Graph Theory. 1 Introduction to Graphs. Martin Stynes Department of Mathematics, UCC January 26, 2011

Graph Theory. 1 Introduction to Graphs. Martin Stynes Department of Mathematics, UCC   January 26, 2011 Graph Theory Martin Stynes Department of Mathematics, UCC email: m.stynes@ucc.ie January 26, 2011 1 Introduction to Graphs 1 A graph G = (V, E) is a non-empty set of nodes or vertices V and a (possibly

More information

Chapter 14. Graphs Pearson Addison-Wesley. All rights reserved 14 A-1

Chapter 14. Graphs Pearson Addison-Wesley. All rights reserved 14 A-1 Chapter 14 Graphs 2011 Pearson Addison-Wesley. All rights reserved 14 A-1 Terminology G = {V, E} A graph G consists of two sets A set V of vertices, or nodes A set E of edges A subgraph Consists of a subset

More information

Euler and Hamilton paths. Jorge A. Cobb The University of Texas at Dallas

Euler and Hamilton paths. Jorge A. Cobb The University of Texas at Dallas Euler and Hamilton paths Jorge A. Cobb The University of Texas at Dallas 1 Paths and the adjacency matrix The powers of the adjacency matrix A r (with normal, not boolean multiplication) contain the number

More information

Travel Every Edge 3. Example (Travel Every Edge 3) In the graphs above, can you find a circuit that hits every edge without repeating any edges?

Travel Every Edge 3. Example (Travel Every Edge 3) In the graphs above, can you find a circuit that hits every edge without repeating any edges? Travel Every Edge 3 Example (Travel Every Edge 3) In the graphs above, can you find a circuit that hits every edge without repeating any edges? Find the degrees of the vertices of the graphs above! Make

More information

Chapter 11: Graphs and Trees. March 23, 2008

Chapter 11: Graphs and Trees. March 23, 2008 Chapter 11: Graphs and Trees March 23, 2008 Outline 1 11.1 Graphs: An Introduction 2 11.2 Paths and Circuits 3 11.3 Matrix Representations of Graphs 4 11.5 Trees Graphs: Basic Definitions Informally, a

More information

Math 130 Final Exam Study Guide. 1. Voting

Math 130 Final Exam Study Guide. 1. Voting 1 Math 130 Final Exam Study Guide 1. Voting (a) Be able to interpret a top choice ballot, preference ballot and preference schedule (b) Given a preference schedule, be able to: i. find the winner of an

More information

Majority and Friendship Paradoxes

Majority and Friendship Paradoxes Majority and Friendship Paradoxes Majority Paradox Example: Small town is considering a bond initiative in an upcoming election. Some residents are in favor, some are against. Consider a poll asking the

More information

Eulerian Paths and Cycles

Eulerian Paths and Cycles Eulerian Paths and Cycles What is a Eulerian Path Given an graph. Find a path which uses every edge exactly once. This path is called an Eulerian Path. If the path begins and ends at the same vertex, it

More information

Euler and Hamilton circuits. Euler paths and circuits

Euler and Hamilton circuits. Euler paths and circuits 1 7 16 2013. uler and Hamilton circuits uler paths and circuits o The Seven ridges of Konigsberg In the early 1700 s, Konigsberg was the capital of ast Prussia. Konigsberg was later renamed Kaliningrad

More information

Math 443/543 Graph Theory Notes 2: Transportation problems

Math 443/543 Graph Theory Notes 2: Transportation problems Math 443/543 Graph Theory Notes 2: Transportation problems David Glickenstein September 15, 2014 1 Readings This is based on Chartrand Chapter 3 and Bondy-Murty 18.1, 18.3 (part on Closure of a Graph).

More information

How can we lay cable at minimum cost to make every telephone reachable from every other? What is the fastest route between two given cities?

How can we lay cable at minimum cost to make every telephone reachable from every other? What is the fastest route between two given cities? 1 Introduction Graph theory is one of the most in-demand (i.e. profitable) and heavily-studied areas of applied mathematics and theoretical computer science. May graph theory questions are applied in this

More information

Graph Traversals. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari 1

Graph Traversals. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari 1 Graph Traversals CSC 1300 Discrete Structures Villanova University Villanova CSC 1300 - Dr Papalaskari 1 Graph traversals: Euler circuit/path Major Themes Every edge exactly once Hamilton circuit/path

More information

Eulerian Tours and Fleury s Algorithm

Eulerian Tours and Fleury s Algorithm Eulerian Tours and Fleury s Algorithm CSE21 Winter 2017, Day 12 (B00), Day 8 (A00) February 8, 2017 http://vlsicad.ucsd.edu/courses/cse21-w17 Vocabulary Path (or walk): describes a route from one vertex

More information

Graph Theory(Due with the Final Exam)

Graph Theory(Due with the Final Exam) Graph Theory(ue with the Final Exam) Possible Walking Tour.. Is it possible to start someplace(either in a room or outside) and walk through every doorway once and only once? Explain. If it is possible,

More information

Elements of Graph Theory

Elements of Graph Theory Elements of Graph Theory Quick review of Chapters 9.1 9.5, 9.7 (studied in Mt1348/2008) = all basic concepts must be known New topics we will mostly skip shortest paths (Chapter 9.6), as that was covered

More information

CS 311 Discrete Math for Computer Science Dr. William C. Bulko. Graphs

CS 311 Discrete Math for Computer Science Dr. William C. Bulko. Graphs CS 311 Discrete Math for Computer Science Dr. William C. Bulko Graphs 2014 Definitions Definition: A graph G = (V,E) consists of a nonempty set V of vertices (or nodes) and a set E of edges. Each edge

More information

Circuits and Paths. April 13, 2014

Circuits and Paths. April 13, 2014 Circuits and Paths April 13, 2014 Warm Up Problem Quandroland is an insect country that has four cities. Draw all possible ways tunnels can join the cities in Quadroland. (Remember that some cities might

More information

CHAPTER 10 GRAPHS AND TREES. Alessandro Artale UniBZ - artale/z

CHAPTER 10 GRAPHS AND TREES. Alessandro Artale UniBZ -  artale/z CHAPTER 10 GRAPHS AND TREES Alessandro Artale UniBZ - http://www.inf.unibz.it/ artale/z SECTION 10.1 Graphs: Definitions and Basic Properties Copyright Cengage Learning. All rights reserved. Graphs: Definitions

More information