A Neural Algorithm of Artistic Style. Leon A. Gatys, Alexander S. Ecker, Matthias Bethge

Size: px
Start display at page:

Download "A Neural Algorithm of Artistic Style. Leon A. Gatys, Alexander S. Ecker, Matthias Bethge"

Transcription

1 A Neural Algorithm of Artistic Style Leon A. Gatys, Alexander S. Ecker, Matthias Bethge Presented by Shishir Mathur (1 Sept 2016)

2 What is this paper This is the research paper behind Prisma It creates artistic images of high perceptual quality. The system proposed uses neural representation to separate and then recombine content and style of arbitrary images, for creation of artistic images.

3 Introduction The key observation of the author was that the representation of content and style of an image in a Convolutional Neural Network are separable. When CNN are trained for object recognition tasks, then along the process hierarchy of the network the image is transformed into a representation that increasingly cares about the actual content of the image. To capture the style of the image correlations between different layers are mapped. This gives a multi-scale representation of the image which captures the texture information but not the global arrangement giving us the artistic style of the image.

4 Content of Image The feature responses of higher layers of the network capture the content representation. Higher layers in the network capture the high-level content in terms of objects and their arrangement in the input image but do not constrain the exact pixel values of the reconstruction.

5 Artistic Style of the Image To obtain style of the image the author used Gram matrices as Feature Space which were originally used to capture texture information. The Feature space is built on top of filter responses in each layer of the network. This in turn maps the correlations between different layers of the network. By including correlations between different layers, we obtain stationary, multi-scale representation of the image

6

7

8 Method The results were generated based on a pretrained VGG-Network for visual object recognition task. A layer with Nl distinct filters has Nl different feature maps each of size Ml (h x w of the feature map). So the response of in layer l can be stored in a matrix Fl RN x M.

9 Content Visualization To visualize the image information that is encoded at different layers we perform gradient descent on white noise image to find another image which matches the feature responses of the original image. Let p be a original image and x be the white noise image and Pl and Fl be their feature representation at layer l. We then define the squared-error loss between the two feature representation. The derivative of this loss with respect to the activations in layer l is

10 Using the derivative we can compute the the gradient with respect to the image x using standard error back propagation. In every iteration the the initial image x is changed till it generates the same response in certain layer of CNN as the original image p.

11 Style Representation and Visualization To map style Representation we map correlations between the different filter responses over the spatial extent of feature maps. This provide colours and local structures. These feature correlations are given by Gram Matrix Gl RN x N Where Gl is the inner product between vectorised feature map in layer l. To generate a texture that matches the style of the given image we use gradient descent from a white noise image to find another image that matches the style representation of the original image. This is done by minimising the error between entries of gram matrix.

12 Let a be the original image and x be the white noise image and Al and Gl be their respective style representation in layer l. The loss is modelled by And the total loss is Where wl are the weighting factor of contribution of each layer in the total loss. The derivative El W.R.T. activation layer l is This error can then be back propagated to the white noise image to get the style of the image

13 conv1_1 conv1_1 conv2_1 conv1_1 conv2_1 conv3_1 conv1_1 conv2_1 conv3_1 conv4_1 conv1_1 conv2_1 conv3_1 conv4_1 conv5_1

14 To generate image with content from one and artistic style of another we jointly minimise the distance of a white noise image with content representation of the image in one layer of the network and the style representation of the artwork in a number of layers of the CNN The ratio of α/β was either 1 x 10-3 or 1 x 10-4

15

16

17

A Neural Algorithm of Artistic Style. Leon A. Gatys, Alexander S. Ecker, Mattthias Bethge Presented by Weidi Xie (1st Oct 2015 )

A Neural Algorithm of Artistic Style. Leon A. Gatys, Alexander S. Ecker, Mattthias Bethge Presented by Weidi Xie (1st Oct 2015 ) A Neural Algorithm of Artistic Style Leon A. Gatys, Alexander S. Ecker, Mattthias Bethge Presented by Weidi Xie (1st Oct 2015 ) What does the paper do? 2 Create artistic images of high perceptual quality.

More information

arxiv: v1 [cs.cv] 22 Feb 2017

arxiv: v1 [cs.cv] 22 Feb 2017 Synthesising Dynamic Textures using Convolutional Neural Networks arxiv:1702.07006v1 [cs.cv] 22 Feb 2017 Christina M. Funke, 1, 2, 3, Leon A. Gatys, 1, 2, 4, Alexander S. Ecker 1, 2, 5 1, 2, 3, 6 and Matthias

More information

Neural style transfer

Neural style transfer 1/32 Neural style transfer Victor Kitov v.v.kitov@yandex.ru 2/32 Neural style transfer Input: content image, style image. Style transfer - application of artistic style from style image to content image.

More information

CS 229 Final Report: Artistic Style Transfer for Face Portraits

CS 229 Final Report: Artistic Style Transfer for Face Portraits CS 229 Final Report: Artistic Style Transfer for Face Portraits Daniel Hsu, Marcus Pan, Chen Zhu {dwhsu, mpanj, chen0908}@stanford.edu Dec 16, 2016 1 Introduction The goal of our project is to learn the

More information

Transfer Learning. Style Transfer in Deep Learning

Transfer Learning. Style Transfer in Deep Learning Transfer Learning & Style Transfer in Deep Learning 4-DEC-2016 Gal Barzilai, Ram Machlev Deep Learning Seminar School of Electrical Engineering Tel Aviv University Part 1: Transfer Learning in Deep Learning

More information

A Neural Algorithm for Artistic Style Abstract 1. Introduction

A Neural Algorithm for Artistic Style Abstract 1. Introduction A Neural Algorithm for Artistic Style E4040.2016Fall.ASVM.report Aayush Mudgal am4590, Sheallika Singh ss5136, Vibhuti Mahajan vm2486 Columbia University Abstract We aim to transcribe the style of an artwork

More information

Image Transformation via Neural Network Inversion

Image Transformation via Neural Network Inversion Image Transformation via Neural Network Inversion Asha Anoosheh Rishi Kapadia Jared Rulison Abstract While prior experiments have shown it is possible to approximately reconstruct inputs to a neural net

More information

PARTIAL STYLE TRANSFER USING WEAKLY SUPERVISED SEMANTIC SEGMENTATION. Shin Matsuo Wataru Shimoda Keiji Yanai

PARTIAL STYLE TRANSFER USING WEAKLY SUPERVISED SEMANTIC SEGMENTATION. Shin Matsuo Wataru Shimoda Keiji Yanai PARTIAL STYLE TRANSFER USING WEAKLY SUPERVISED SEMANTIC SEGMENTATION Shin Matsuo Wataru Shimoda Keiji Yanai Department of Informatics, The University of Electro-Communications, Tokyo 1-5-1 Chofugaoka,

More information

Arbitrary Style Transfer in Real-Time with Adaptive Instance Normalization. Presented by: Karen Lucknavalai and Alexandr Kuznetsov

Arbitrary Style Transfer in Real-Time with Adaptive Instance Normalization. Presented by: Karen Lucknavalai and Alexandr Kuznetsov Arbitrary Style Transfer in Real-Time with Adaptive Instance Normalization Presented by: Karen Lucknavalai and Alexandr Kuznetsov Example Style Content Result Motivation Transforming content of an image

More information

COMP9444 Neural Networks and Deep Learning 7. Image Processing. COMP9444 c Alan Blair, 2017

COMP9444 Neural Networks and Deep Learning 7. Image Processing. COMP9444 c Alan Blair, 2017 COMP9444 Neural Networks and Deep Learning 7. Image Processing COMP9444 17s2 Image Processing 1 Outline Image Datasets and Tasks Convolution in Detail AlexNet Weight Initialization Batch Normalization

More information

arxiv: v2 [cs.cv] 14 Jul 2018

arxiv: v2 [cs.cv] 14 Jul 2018 Constrained Neural Style Transfer for Decorated Logo Generation arxiv:1803.00686v2 [cs.cv] 14 Jul 2018 Gantugs Atarsaikhan, Brian Kenji Iwana, Seiichi Uchida Graduate School of Information Science and

More information

CS230: Lecture 3 Various Deep Learning Topics

CS230: Lecture 3 Various Deep Learning Topics CS230: Lecture 3 Various Deep Learning Topics Kian Katanforoosh, Andrew Ng Today s outline We will learn how to: - Analyse a problem from a deep learning approach - Choose an architecture - Choose a loss

More information

CS231N Project Final Report - Fast Mixed Style Transfer

CS231N Project Final Report - Fast Mixed Style Transfer CS231N Project Final Report - Fast Mixed Style Transfer Xueyuan Mei Stanford University Computer Science xmei9@stanford.edu Fabian Chan Stanford University Computer Science fabianc@stanford.edu Tianchang

More information

Spatial Control in Neural Style Transfer

Spatial Control in Neural Style Transfer Spatial Control in Neural Style Transfer Tom Henighan Stanford Physics henighan@stanford.edu Abstract Recent studies have shown that convolutional neural networks (convnets) can be used to transfer style

More information

Convolutional Neural Networks + Neural Style Transfer. Justin Johnson 2/1/2017

Convolutional Neural Networks + Neural Style Transfer. Justin Johnson 2/1/2017 Convolutional Neural Networks + Neural Style Transfer Justin Johnson 2/1/2017 Outline Convolutional Neural Networks Convolution Pooling Feature Visualization Neural Style Transfer Feature Inversion Texture

More information

Texture Synthesis Through Convolutional Neural Networks and Spectrum Constraints

Texture Synthesis Through Convolutional Neural Networks and Spectrum Constraints Texture Synthesis Through Convolutional Neural Networks and Spectrum Constraints Gang Liu, Yann Gousseau Telecom-ParisTech, LTCI CNRS 46 Rue Barrault, 75013 Paris, France. {gang.liu, gousseau}@telecom-paristech.fr

More information

What was Monet seeing while painting? Translating artworks to photo-realistic images M. Tomei, L. Baraldi, M. Cornia, R. Cucchiara

What was Monet seeing while painting? Translating artworks to photo-realistic images M. Tomei, L. Baraldi, M. Cornia, R. Cucchiara What was Monet seeing while painting? Translating artworks to photo-realistic images M. Tomei, L. Baraldi, M. Cornia, R. Cucchiara COMPUTER VISION IN THE ARTISTIC DOMAIN The effectiveness of Computer Vision

More information

SON OF ZORN S LEMMA: TARGETED STYLE TRANSFER USING INSTANCE-AWARE SEMANTIC SEGMENTATION

SON OF ZORN S LEMMA: TARGETED STYLE TRANSFER USING INSTANCE-AWARE SEMANTIC SEGMENTATION SON OF ZORN S LEMMA: TARGETED STYLE TRANSFER USING INSTANCE-AWARE SEMANTIC SEGMENTATION Carlos Castillo, Soham De, Xintong Han, Bharat Singh, Abhay Kumar Yadav, and Tom Goldstein Department of Computer

More information

INF 5860 Machine learning for image classification. Lecture 11: Visualization Anne Solberg April 4, 2018

INF 5860 Machine learning for image classification. Lecture 11: Visualization Anne Solberg April 4, 2018 INF 5860 Machine learning for image classification Lecture 11: Visualization Anne Solberg April 4, 2018 Reading material The lecture is based on papers: Deep Dream: https://research.googleblog.com/2015/06/inceptionism-goingdeeper-into-neural.html

More information

Texture Synthesis Using Convolutional Neural Networks

Texture Synthesis Using Convolutional Neural Networks Texture Synthesis Using Convolutional Neural Networks Leon A. Gatys Centre for Integrative Neuroscience, University of Tübingen, Germany Bernstein Center for Computational Neuroscience, Tübingen, Germany

More information

Improving Semantic Style Transfer Using Guided Gram Matrices

Improving Semantic Style Transfer Using Guided Gram Matrices Improving Semantic Style Transfer Using Guided Gram Matrices Chung Nicolas 1,2, Rong Xie 1,2, Li Song 1,2, and Wenjun Zhang 1,2 1 Institute of Image Communication and Network Engineering, Shanghai Jiao

More information

CSE 559A: Computer Vision

CSE 559A: Computer Vision CSE 559A: Computer Vision Fall 2018: T-R: 11:30-1pm @ Lopata 101 Instructor: Ayan Chakrabarti (ayan@wustl.edu). Course Staff: Zhihao Xia, Charlie Wu, Han Liu http://www.cse.wustl.edu/~ayan/courses/cse559a/

More information

Supplemental Document for Deep Photo Style Transfer

Supplemental Document for Deep Photo Style Transfer Supplemental Document for Deep Photo Style Transfer Fujun Luan Cornell University Sylvain Paris Adobe Eli Shechtman Adobe Kavita Bala Cornell University fujun@cs.cornell.edu sparis@adobe.com elishe@adobe.com

More information

CMU Lecture 18: Deep learning and Vision: Convolutional neural networks. Teacher: Gianni A. Di Caro

CMU Lecture 18: Deep learning and Vision: Convolutional neural networks. Teacher: Gianni A. Di Caro CMU 15-781 Lecture 18: Deep learning and Vision: Convolutional neural networks Teacher: Gianni A. Di Caro DEEP, SHALLOW, CONNECTED, SPARSE? Fully connected multi-layer feed-forward perceptrons: More powerful

More information

Localized Style Transfer

Localized Style Transfer Localized Style Transfer Alex Wells Stanford University awells2@stanford.edu Jeremy Wood Stanford University jwood3@stanford.edu Minna Xiao Stanford University mxiao26@stanford.edu Abstract Recent groundbreaking

More information

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Shaoqing Ren Kaiming He Ross Girshick Jian Sun Present by: Yixin Yang Mingdong Wang 1 Object Detection 2 1 Applications Basic

More information

Graph Neural Network. learning algorithm and applications. Shujia Zhang

Graph Neural Network. learning algorithm and applications. Shujia Zhang Graph Neural Network learning algorithm and applications Shujia Zhang What is Deep Learning? Enable computers to mimic human behaviour Artificial Intelligence Machine Learning Subset of ML algorithms using

More information

Face Sketch Synthesis with Style Transfer using Pyramid Column Feature

Face Sketch Synthesis with Style Transfer using Pyramid Column Feature Face Sketch Synthesis with Style Transfer using Pyramid Column Feature Chaofeng Chen 1, Xiao Tan 2, and Kwan-Yee K. Wong 1 1 The University of Hong Kong, 2 Baidu Research {cfchen, kykwong}@cs.hku.hk, tanxchong@gmail.com

More information

arxiv: v1 [cs.gr] 15 Jan 2019

arxiv: v1 [cs.gr] 15 Jan 2019 Image Synthesis and Style Transfer Somnuk Phon-Amnuaisuk 1,2 arxiv:1901.04686v1 [cs.gr] 15 Jan 2019 Media Informatics Special Interest Group, 1 Centre for Innovative Engineering, Universiti Teknologi Brunei,

More information

Controlling Perceptual Factors in Neural Style Transfer

Controlling Perceptual Factors in Neural Style Transfer Controlling Perceptual Factors in Neural Style Transfer Leon A. Gatys 1 Alexander S. Ecker 1 Matthias Bethge 1 Aaron Hertzmann 2 Eli Shechtman 2 1 University of Tübingen 2 Adobe Research (a) Content (b)

More information

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU,

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU, Machine Learning 10-701, Fall 2015 Deep Learning Eric Xing (and Pengtao Xie) Lecture 8, October 6, 2015 Eric Xing @ CMU, 2015 1 A perennial challenge in computer vision: feature engineering SIFT Spin image

More information

C-Brain: A Deep Learning Accelerator

C-Brain: A Deep Learning Accelerator C-Brain: A Deep Learning Accelerator that Tames the Diversity of CNNs through Adaptive Data-level Parallelization Lili Song, Ying Wang, Yinhe Han, Xin Zhao, Bosheng Liu, Xiaowei Li State Key Laboratory

More information

arxiv: v5 [cs.cv] 16 May 2018

arxiv: v5 [cs.cv] 16 May 2018 Neural Style Transfer Neural Style Transfer: A Review Yongcheng Jing Yezhou Yang Zunlei Feng Jingwen Ye Yizhou Yu Mingli Song arxiv:1705.04058v5 [cs.cv] 16 May 2018 Microsoft Visual Perception Laboratory,

More information

A Pragmatic AI Approach to Creating Artistic Visual Variations by Neural Style Transfer

A Pragmatic AI Approach to Creating Artistic Visual Variations by Neural Style Transfer A Pragmatic AI Approach to Creating Artistic Visual Variations by Neural Style Transfer Chaehan So International Design School for Advanced Studies, Design Psychology Lab, Hongik University, Seoul, South

More information

Calibrated Image Acquisition for Multi-view 3D Reconstruction

Calibrated Image Acquisition for Multi-view 3D Reconstruction Calibrated Image Acquisition for Multi-view 3D Reconstruction Sriram Kashyap M S Guide: Prof. Sharat Chandran Indian Institute of Technology, Bombay April 2009 Sriram Kashyap 3D Reconstruction 1/ 42 Motivation

More information

Lecture 2 Notes. Outline. Neural Networks. The Big Idea. Architecture. Instructors: Parth Shah, Riju Pahwa

Lecture 2 Notes. Outline. Neural Networks. The Big Idea. Architecture. Instructors: Parth Shah, Riju Pahwa Instructors: Parth Shah, Riju Pahwa Lecture 2 Notes Outline 1. Neural Networks The Big Idea Architecture SGD and Backpropagation 2. Convolutional Neural Networks Intuition Architecture 3. Recurrent Neural

More information

Exploring Style Transfer: Extensions to Neural Style Transfer

Exploring Style Transfer: Extensions to Neural Style Transfer Exploring Style Transfer: Extensions to Neural Style Transfer Noah Makow Stanford University nmakow@stanford.edu Pablo Hernandez Stanford University pabloh2@stanford.edu Abstract Recent work by Gatys et

More information

Deep Learning and Its Applications

Deep Learning and Its Applications Convolutional Neural Network and Its Application in Image Recognition Oct 28, 2016 Outline 1 A Motivating Example 2 The Convolutional Neural Network (CNN) Model 3 Training the CNN Model 4 Issues and Recent

More information

A Deep Learning Framework for Authorship Classification of Paintings

A Deep Learning Framework for Authorship Classification of Paintings A Deep Learning Framework for Authorship Classification of Paintings Kai-Lung Hua ( 花凱龍 ) Dept. of Computer Science and Information Engineering National Taiwan University of Science and Technology Taipei,

More information

arxiv: v1 [cs.cv] 1 Dec 2017

arxiv: v1 [cs.cv] 1 Dec 2017 GANosaic: Mosaic Creation with Generative Texture Manifolds Nikolay Jetchev nikolay.jetchev@zalando.de Zalando Research Urs Bergmann urs.bergmann@zalando.de Zalando Research Calvin Seward calvin.seward@zalando.de

More information

GLStyleNet: Higher Quality Style Transfer Combining Global and Local Pyramid Features

GLStyleNet: Higher Quality Style Transfer Combining Global and Local Pyramid Features GLStyleNet: Higher Quality Style Transfer Combining Global and Local Pyramid Features Zhizhong Wang*, Lei Zhao*, Wei Xing, Dongming Lu College of Computer Science and Technology, Zhejiang University {endywon,

More information

Fast Patch-based Style Transfer of Arbitrary Style

Fast Patch-based Style Transfer of Arbitrary Style Fast Patch-based Style Transfer of Arbitrary Style Tian Qi Chen Department of Computer Science University of British Columbia tqichen@cs.ubc.ca Mark Schmidt Department of Computer Science University of

More information

Generative Networks. James Hays Computer Vision

Generative Networks. James Hays Computer Vision Generative Networks James Hays Computer Vision Interesting Illusion: Ames Window https://www.youtube.com/watch?v=ahjqe8eukhc https://en.wikipedia.org/wiki/ames_trapezoid Recap Unsupervised Learning Style

More information

COMP 551 Applied Machine Learning Lecture 16: Deep Learning

COMP 551 Applied Machine Learning Lecture 16: Deep Learning COMP 551 Applied Machine Learning Lecture 16: Deep Learning Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551 Unless otherwise noted, all

More information

GANosaic: Mosaic Creation with Generative Texture Manifolds

GANosaic: Mosaic Creation with Generative Texture Manifolds GANosaic: Mosaic Creation with Generative Texture Manifolds Nikolay Jetchev nikolay.jetchev@zalando.de Zalando Research Urs Bergmann urs.bergmann@zalando.de Zalando Research Abstract Calvin Seward calvin.seward@zalando.de

More information

Places Challenge 2017

Places Challenge 2017 Places Challenge 2017 Scene Parsing Task CASIA_IVA_JD Jun Fu, Jing Liu, Longteng Guo, Haijie Tian, Fei Liu, Hanqing Lu Yong Li, Yongjun Bao, Weipeng Yan National Laboratory of Pattern Recognition, Institute

More information

Texture attribute synthesis and transfer using feed-forward CNNs

Texture attribute synthesis and transfer using feed-forward CNNs Texture attribute synthesis and transfer using feed-forward CNNs Thomas Irmer Ruhr University Bochum thomas.irmer@rub.de Tobias Glasmachers Ruhr University Bochum tobias.glasmachers@ini.rub.de Subhransu

More information

DEEP LEARNING OF COMPRESSED SENSING OPERATORS WITH STRUCTURAL SIMILARITY (SSIM) LOSS

DEEP LEARNING OF COMPRESSED SENSING OPERATORS WITH STRUCTURAL SIMILARITY (SSIM) LOSS DEEP LEARNING OF COMPRESSED SENSING OPERATORS WITH STRUCTURAL SIMILARITY (SSIM) LOSS ABSTRACT Compressed sensing (CS) is a signal processing framework for efficiently reconstructing a signal from a small

More information

Perceptron: This is convolution!

Perceptron: This is convolution! Perceptron: This is convolution! v v v Shared weights v Filter = local perceptron. Also called kernel. By pooling responses at different locations, we gain robustness to the exact spatial location of image

More information

INTRODUCTION TO DEEP LEARNING

INTRODUCTION TO DEEP LEARNING INTRODUCTION TO DEEP LEARNING CONTENTS Introduction to deep learning Contents 1. Examples 2. Machine learning 3. Neural networks 4. Deep learning 5. Convolutional neural networks 6. Conclusion 7. Additional

More information

IMPROVING DOCUMENT BINARIZATION VIA ADVERSARIAL NOISE-TEXTURE AUGMENTATION

IMPROVING DOCUMENT BINARIZATION VIA ADVERSARIAL NOISE-TEXTURE AUGMENTATION IMPROVING DOCUMENT BINARIZATION VIA ADVERSARIAL NOISE-TEXTURE AUGMENTATION Ankan Kumar Bhunia 1, Ayan Kumar Bhunia 2, Aneeshan Sain 3, Partha Pratim Roy 4 1 Jadavpur University, India 2 Nanyang Technological

More information

Decoder Network over Lightweight Reconstructed Feature for Fast Semantic Style Transfer

Decoder Network over Lightweight Reconstructed Feature for Fast Semantic Style Transfer Decoder Network over Lightweight Reconstructed Feature for Fast Semantic Style Transfer Ming Lu 1, Hao Zhao 1, Anbang Yao 2, Feng Xu 3, Yurong Chen 2, and Li Zhang 1 1 Department of Electronic Engineering,

More information

ELEC Dr Reji Mathew Electrical Engineering UNSW

ELEC Dr Reji Mathew Electrical Engineering UNSW ELEC 4622 Dr Reji Mathew Electrical Engineering UNSW Review of Motion Modelling and Estimation Introduction to Motion Modelling & Estimation Forward Motion Backward Motion Block Motion Estimation Motion

More information

arxiv: v1 [cs.cv] 27 May 2015

arxiv: v1 [cs.cv] 27 May 2015 Texture synthesis and the controlled generation of natural stimuli using convolutional neural networks arxiv:1505.07376v1 [cs.cv] 27 May 2015 Leon A. Gatys Werner Reichardt Centre for Integrative Neuroscience,

More information

Deep Learning. Deep Learning. Practical Application Automatically Adding Sounds To Silent Movies

Deep Learning. Deep Learning. Practical Application Automatically Adding Sounds To Silent Movies http://blog.csdn.net/zouxy09/article/details/8775360 Automatic Colorization of Black and White Images Automatically Adding Sounds To Silent Movies Traditionally this was done by hand with human effort

More information

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION Yen-Cheng Liu 1, Wei-Chen Chiu 2, Sheng-De Wang 1, and Yu-Chiang Frank Wang 1 1 Graduate Institute of Electrical Engineering,

More information

Deep Learning in Image Processing

Deep Learning in Image Processing Deep Learning in Image Processing Roland Memisevic University of Montreal & TwentyBN ICISP 2016 Roland Memisevic Deep Learning in Image Processing ICISP 2016 f 2? cathedral high-rise f 1 It s the features,

More information

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION

DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION 2017 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 25 28, 2017, TOKYO, JAPAN DOMAIN-ADAPTIVE GENERATIVE ADVERSARIAL NETWORKS FOR SKETCH-TO-PHOTO INVERSION Yen-Cheng Liu 1,

More information

Unsupervised learning in Vision

Unsupervised learning in Vision Chapter 7 Unsupervised learning in Vision The fields of Computer Vision and Machine Learning complement each other in a very natural way: the aim of the former is to extract useful information from visual

More information

Machine Learning 13. week

Machine Learning 13. week Machine Learning 13. week Deep Learning Convolutional Neural Network Recurrent Neural Network 1 Why Deep Learning is so Popular? 1. Increase in the amount of data Thanks to the Internet, huge amount of

More information

arxiv: v1 [cs.cv] 14 Jun 2017

arxiv: v1 [cs.cv] 14 Jun 2017 Photo-realistic Facial Texture Transfer Parneet Kaur Hang Zhang Kristin Dana arxiv:706.0306v [cs.cv] Jun 207 Department of Electrical and Computer Engineering, Rutgers University, New Brunswick, USA parneet@rutgers.edu,

More information

Using Machine Learning for Classification of Cancer Cells

Using Machine Learning for Classification of Cancer Cells Using Machine Learning for Classification of Cancer Cells Camille Biscarrat University of California, Berkeley I Introduction Cell screening is a commonly used technique in the development of new drugs.

More information

Multi-style Transfer: Generalizing Fast Style Transfer to Several Genres

Multi-style Transfer: Generalizing Fast Style Transfer to Several Genres Multi-style Transfer: Generalizing Fast Style Transfer to Several Genres Brandon Cui Stanford University bcui19@stanford.edu Calvin Qi Stanford University calvinqi@stanford.edu Aileen Wang Stanford University

More information

Feature Visualization

Feature Visualization CreativeAI: Deep Learning for Graphics Feature Visualization Niloy Mitra Iasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel UCL UCL UCL TU Munich UCL Timetable Theory and Basics State of the Art

More information

arxiv: v2 [cs.cv] 16 Dec 2017

arxiv: v2 [cs.cv] 16 Dec 2017 CycleGAN, a Master of Steganography Casey Chu Stanford University caseychu@stanford.edu Andrey Zhmoginov Google Inc. azhmogin@google.com Mark Sandler Google Inc. sandler@google.com arxiv:1712.02950v2 [cs.cv]

More information

3D Shape Analysis with Multi-view Convolutional Networks. Evangelos Kalogerakis

3D Shape Analysis with Multi-view Convolutional Networks. Evangelos Kalogerakis 3D Shape Analysis with Multi-view Convolutional Networks Evangelos Kalogerakis 3D model repositories [3D Warehouse - video] 3D geometry acquisition [KinectFusion - video] 3D shapes come in various flavors

More information

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun Presented by Tushar Bansal Objective 1. Get bounding box for all objects

More information

Fuzzy Set Theory in Computer Vision: Example 3, Part II

Fuzzy Set Theory in Computer Vision: Example 3, Part II Fuzzy Set Theory in Computer Vision: Example 3, Part II Derek T. Anderson and James M. Keller FUZZ-IEEE, July 2017 Overview Resource; CS231n: Convolutional Neural Networks for Visual Recognition https://github.com/tuanavu/stanford-

More information

Diversified Texture Synthesis with Feed-forward Networks

Diversified Texture Synthesis with Feed-forward Networks Diversified Texture Synthesis with Feed-forward Networks Yijun Li 1, Chen Fang 2, Jimei Yang 2, Zhaowen Wang 2, Xin Lu 2, and Ming-Hsuan Yang 1 1 University of California, Merced 2 Adobe Research {yli62,mhyang}@ucmerced.edu

More information

arxiv: v1 [cs.cv] 27 Nov 2016

arxiv: v1 [cs.cv] 27 Nov 2016 DEEP DEFORMABLE REGISTRATION: ENHANCING ACCURACY BY FULLY CONVOLUTIONAL NEURAL NET Sayan Ghosal Nilanjan Ray arxiv:1611.08796v1 [cs.cv] 27 Nov 2016 Department of Electronics and Telecom. Engineering, Jadavpur

More information

Universal Style Transfer via Feature Transforms

Universal Style Transfer via Feature Transforms Universal Style Transfer via Feature Transforms Yijun Li UC Merced yli62@ucmerced.edu Chen Fang Adobe Research cfang@adobe.com Jimei Yang Adobe Research jimyang@adobe.com Zhaowen Wang Adobe Research zhawang@adobe.com

More information

arxiv: v1 [cs.cv] 31 Jul 2017

arxiv: v1 [cs.cv] 31 Jul 2017 Fashioning with Networks: Neural Style Transfer to Design Clothes Prutha Date University Of Maryland Baltimore County (UMBC), Baltimore, MD, USA dprutha1@umbc.edu Ashwinkumar Ganesan University Of Maryland

More information

Deep Learning with R. Francesca Lazzeri Data Scientist II - Microsoft, AI Research

Deep Learning with R. Francesca Lazzeri Data Scientist II - Microsoft, AI Research with R Francesca Lazzeri - @frlazzeri Data Scientist II - Microsoft, AI Research Agenda with R What is Demo Better understanding of R DL tools Fundamental concepts in Forward Propagation Algorithm Activation

More information

arxiv: v3 [cs.cv] 22 Feb 2018

arxiv: v3 [cs.cv] 22 Feb 2018 A Closed-form Solution to Photorealistic Image Stylization Yijun Li 1, Ming-Yu Liu 2, Xueting Li 1, Ming-Hsuan Yang 1,2, and Jan Kautz 2 1 University of California, Merced 2 NVIDIA {yli62,xli75,mhyang}@ucmerced.edu

More information

arxiv: v2 [cs.cv] 11 Sep 2018

arxiv: v2 [cs.cv] 11 Sep 2018 Neural omic tyle Transfer: ase tudy Maciej Pęśko and Tomasz Trzciński Warsaw University of Technology, Warsaw, Poland, mpesko@mion.elka.pw.edu.pl t.trzcinski@ii.pw.edu.pl, arxiv:1809.01726v2 [cs.v] 11

More information

Machine Learning. MGS Lecture 3: Deep Learning

Machine Learning. MGS Lecture 3: Deep Learning Dr Michel F. Valstar http://cs.nott.ac.uk/~mfv/ Machine Learning MGS Lecture 3: Deep Learning Dr Michel F. Valstar http://cs.nott.ac.uk/~mfv/ WHAT IS DEEP LEARNING? Shallow network: Only one hidden layer

More information

MACHINE LEARNING CLASSIFIERS ADVANTAGES AND CHALLENGES OF SELECTED METHODS

MACHINE LEARNING CLASSIFIERS ADVANTAGES AND CHALLENGES OF SELECTED METHODS MACHINE LEARNING CLASSIFIERS ADVANTAGES AND CHALLENGES OF SELECTED METHODS FRANK ORBEN, TECHNICAL SUPPORT / DEVELOPER IMAGE PROCESSING, STEMMER IMAGING OUTLINE Introduction Task: Classification Theory

More information

Capsule Networks. Eric Mintun

Capsule Networks. Eric Mintun Capsule Networks Eric Mintun Motivation An improvement* to regular Convolutional Neural Networks. Two goals: Replace max-pooling operation with something more intuitive. Keep more info about an activated

More information

Restricted Boltzmann Machines. Shallow vs. deep networks. Stacked RBMs. Boltzmann Machine learning: Unsupervised version

Restricted Boltzmann Machines. Shallow vs. deep networks. Stacked RBMs. Boltzmann Machine learning: Unsupervised version Shallow vs. deep networks Restricted Boltzmann Machines Shallow: one hidden layer Features can be learned more-or-less independently Arbitrary function approximator (with enough hidden units) Deep: two

More information

AttentionNet for Accurate Localization and Detection of Objects. (To appear in ICCV 2015)

AttentionNet for Accurate Localization and Detection of Objects. (To appear in ICCV 2015) AttentionNet for Accurate Localization and Detection of Objects. (To appear in ICCV 2015) Donggeun Yoo, Sunggyun Park, Joon-Young Lee, Anthony Paek, In So Kweon. State-of-the-art frameworks for object

More information

arxiv: v1 [cs.cv] 5 Mar 2016 Abstract

arxiv: v1 [cs.cv] 5 Mar 2016 Abstract Semantic Style Transfer and Turning Two-Bit Doodles into Fine Artwork Alex J. Champandard nucl.ai Research Laboratory alexjc@nucl.ai nucl.ai Conference 2016 Artificial Intelligence in Creative Industries

More information

Convolution Neural Networks for Chinese Handwriting Recognition

Convolution Neural Networks for Chinese Handwriting Recognition Convolution Neural Networks for Chinese Handwriting Recognition Xu Chen Stanford University 450 Serra Mall, Stanford, CA 94305 xchen91@stanford.edu Abstract Convolutional neural networks have been proven

More information

291 Programming Assignment #3

291 Programming Assignment #3 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

Object Detection. Part1. Presenter: Dae-Yong

Object Detection. Part1. Presenter: Dae-Yong Object Part1 Presenter: Dae-Yong Contents 1. What is an Object? 2. Traditional Object Detector 3. Deep Learning-based Object Detector What is an Object? Subset of Object Recognition What is an Object?

More information

The Mathematics Behind Neural Networks

The Mathematics Behind Neural Networks The Mathematics Behind Neural Networks Pattern Recognition and Machine Learning by Christopher M. Bishop Student: Shivam Agrawal Mentor: Nathaniel Monson Courtesy of xkcd.com The Black Box Training the

More information

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides Deep Learning in Visual Recognition Thanks Da Zhang for the slides Deep Learning is Everywhere 2 Roadmap Introduction Convolutional Neural Network Application Image Classification Object Detection Object

More information

Handwritten Hindi Numerals Recognition System

Handwritten Hindi Numerals Recognition System CS365 Project Report Handwritten Hindi Numerals Recognition System Submitted by: Akarshan Sarkar Kritika Singh Project Mentor: Prof. Amitabha Mukerjee 1 Abstract In this project, we consider the problem

More information

Real-Time Neural Style Transfer for Videos

Real-Time Neural Style Transfer for Videos Real-Time Neural Style Transfer for Videos Haozhi Huang Hao Wang Wenhan Luo Lin Ma Wenhao Jiang Xiaolong Zhu Zhifeng Li Wei Liu Tsinghua University Tencent AI Lab Correspondence: huanghz08@gmail.com wliu@ee.columbia.edu

More information

Know your data - many types of networks

Know your data - many types of networks Architectures Know your data - many types of networks Fixed length representation Variable length representation Online video sequences, or samples of different sizes Images Specific architectures for

More information

CHAPTER 3 DIFFERENT DOMAINS OF WATERMARKING. domain. In spatial domain the watermark bits directly added to the pixels of the cover

CHAPTER 3 DIFFERENT DOMAINS OF WATERMARKING. domain. In spatial domain the watermark bits directly added to the pixels of the cover 38 CHAPTER 3 DIFFERENT DOMAINS OF WATERMARKING Digital image watermarking can be done in both spatial domain and transform domain. In spatial domain the watermark bits directly added to the pixels of the

More information

Recurrent Convolutional Neural Networks for Scene Labeling

Recurrent Convolutional Neural Networks for Scene Labeling Recurrent Convolutional Neural Networks for Scene Labeling Pedro O. Pinheiro, Ronan Collobert Reviewed by Yizhe Zhang August 14, 2015 Scene labeling task Scene labeling: assign a class label to each pixel

More information

Slides adapted from Marshall Tappen and Bryan Russell. Algorithms in Nature. Non-negative matrix factorization

Slides adapted from Marshall Tappen and Bryan Russell. Algorithms in Nature. Non-negative matrix factorization Slides adapted from Marshall Tappen and Bryan Russell Algorithms in Nature Non-negative matrix factorization Dimensionality Reduction The curse of dimensionality: Too many features makes it difficult to

More information

From processing to learning on graphs

From processing to learning on graphs From processing to learning on graphs Patrick Pérez Maths and Images in Paris IHP, 2 March 2017 Signals on graphs Natural graph: mesh, network, etc., related to a real structure, various signals can live

More information

CNN Basics. Chongruo Wu

CNN Basics. Chongruo Wu CNN Basics Chongruo Wu Overview 1. 2. 3. Forward: compute the output of each layer Back propagation: compute gradient Updating: update the parameters with computed gradient Agenda 1. Forward Conv, Fully

More information

Deep learning for object detection. Slides from Svetlana Lazebnik and many others

Deep learning for object detection. Slides from Svetlana Lazebnik and many others Deep learning for object detection Slides from Svetlana Lazebnik and many others Recent developments in object detection 80% PASCAL VOC mean0average0precision0(map) 70% 60% 50% 40% 30% 20% 10% Before deep

More information

Deep Learning Benchmarks Mumtaz Vauhkonen, Quaizar Vohra, Saurabh Madaan Collaboration with Adam Coates, Stanford Unviersity

Deep Learning Benchmarks Mumtaz Vauhkonen, Quaizar Vohra, Saurabh Madaan Collaboration with Adam Coates, Stanford Unviersity Deep Learning Benchmarks Mumtaz Vauhkonen, Quaizar Vohra, Saurabh Madaan Collaboration with Adam Coates, Stanford Unviersity Abstract: This project aims at creating a benchmark for Deep Learning (DL) algorithms

More information

Today. Motivation. Motivation. Image gradient. Image gradient. Computational Photography

Today. Motivation. Motivation. Image gradient. Image gradient. Computational Photography Computational Photography Matthias Zwicker University of Bern Fall 009 Today Gradient domain image manipulation Introduction Gradient cut & paste Tone mapping Color-to-gray conversion Motivation Cut &

More information

Face Recognition using Rectangular Feature

Face Recognition using Rectangular Feature Face Recognition using Rectangular Feature Sanjay Pagare, Dr. W. U. Khan Computer Engineering Department Shri G.S. Institute of Technology and Science Indore Abstract- Face recognition is the broad area

More information

Artificial Intelligence Introduction Handwriting Recognition Kadir Eren Unal ( ), Jakob Heyder ( )

Artificial Intelligence Introduction Handwriting Recognition Kadir Eren Unal ( ), Jakob Heyder ( ) Structure: 1. Introduction 2. Problem 3. Neural network approach a. Architecture b. Phases of CNN c. Results 4. HTM approach a. Architecture b. Setup c. Results 5. Conclusion 1.) Introduction Artificial

More information

Scaled Machine Learning at Matroid

Scaled Machine Learning at Matroid Scaled Machine Learning at Matroid Reza Zadeh @Reza_Zadeh http://reza-zadeh.com Machine Learning Pipeline Learning Algorithm Replicate model Data Trained Model Serve Model Repeat entire pipeline Scaling

More information