Today. Motivation. Motivation. Image gradient. Image gradient. Computational Photography

Size: px
Start display at page:

Download "Today. Motivation. Motivation. Image gradient. Image gradient. Computational Photography"

Transcription

1 Computational Photography Matthias Zwicker University of Bern Fall 009 Today Gradient domain image manipulation Introduction Gradient cut & paste Tone mapping Color-to-gray conversion Motivation Cut & paste Motivation Cut & paste Cut & paste Cut & paste Gradient cut & paste User input User input Image gradient Gradient: vector of partial derivatives of multivariate function Image gradient à f f(x, y) =, f! x y Vector valued function (vector field) of two variables, like image itself Also called gradient field Will treat color channels separately Image corresponds to three D functions Each has its own gradient Image gradient Discretization with finite differences f f f(x +1,y) f(x, y) x Visualization f(x, y +1) f(x, y) y 1

2 Image gradient Gradient vector points in direction of largest change Length indicates rate of change Image gradient If we know gradient of image, can we reconstruct image itself? Is any D vector field a gradient field of some image? Image gradient M. C. Escher, Ascending and descending Penrose stairs Today Gradient domain image manipulation Introduction Gradient cut & paste Tone mapping Color-to-gray conversion Gradient cut & paste Cut & paste gradients instead of pixel values Reconstruct image with gradients as similar as possible to result of cut & paste Mathematical formulation Optimization problem: Find image f, such that Its gradients are as similar as possible to given gradient field v Satisfies boundary conditions known unknown Cut gradients from source Paste into destination Reconstruct image Guidance field Destination, boundary conditions

3 1D function Matrix formulation f(x) 1 n/a 4 1 n/a x Gradient cut & paste f(x) x Desired gradients 1 n/a ? 1 5? 6? f System of equations to reconstruct function 1 n/a ? 1 5? 6? Remove unnecessary equations 3 4 N/A 4? 1 5? 6? Remove unnecessary equations 3 4 N/A 4? 1 5? L f f Overdetermined system of equations Minimize Normal equations 6?

4 System of equations Normal equations Remember Note d f 1f(x 1) + f(x, y) 1f(x +1) dx Second derivative! Derivative of first derivative = second derivative! Mathematical formulation Original formulation Equivalent Euler-Lagrange equation Also known as Poisson equation Remember Laplace operator 4f = f = f x + f y f = f(x +1,y)+f(x 1,y)+f(x, y +1)+f(x, y 1) 4f(x, y) Divergence div v = vx x + v y y Euler-Lagrange equation Calculus of variations Study functionals, instead of functions Find stationary points (extrema) Minimal surfaces Fermat s principle: light takes path that is stationary point of optical length Euler-Lagrange equation Problem: Get function q that is stationary point (minimum, maximum) of functional L is real valued function, differentiable Solution satisfies Euler-Lagrange equation L x, L v partial derivatives wrt nd and 3rd argument Proof, more details Euler-Lagrange equation Functionals using functions of several variables Discretization in D Based on explicit formulation Linear least squares problem Euler-Lagrange equations x or y component of discrete gradient q q p q q Pixel neighborhood x or y component of guidance fields known unknown 4

5 Discretization in D Solution of linear least squares problem given by set of linear equations Pixel neighborhood N p p N p =4 known unknown Linear system of equations Number of unknown pixels is large! Up to millions of unknowns But system is sparse Most coefficients are zero Many efficient algorithms available Iterative solution Matlab provides numerous implementations Gauss-Seidel method System of equations Iteration Solve equations i for unknown x i in each step Cycle throgh equations until convergence Gauss-Seidel method Pseudocode No need to store matrix explicitly choose an initial approximation x = (x 1,, x n ) do until convergence: for i := (1,, n): σ = 0 for j := (1,, i-1, i+1,, n): σ = σ + a ij * x j next j x i = (b i - σ) / a ii next i next do Converges for positive definite matrices Alternative to determine desired gradients gradient mixing Cut & paste Gradient cut & paste Source/destination ( seamless cloning ) f g Reconstructed image 5

6 Local gamma compression of gradient f Output Summary Poisson image editing Select desired gradients (guidance field) Specify boundary conditions Assemble system of equations Solve known unknown Guidance field Destination, boundary conditions Notes Apply to color channels separately Can lead to color shifts Working in log domain useful Doesn t work well if background of combined images is very different Be careful about boundaries Improvement cuhk edu hk/~leojia/all project webpages/ddp/dragdroppasting pdf Boundary problems Frédo Durand Gradient domain tone mapping Fattal et al., Gradient Domain High Dynamic Range Compression, SIGGRAPH 00 Observation: large changes in luminance correspond to large gradients Idea 1. Identify large gradients. Attenuate their magnitude (but keep direction) 3. Reconstruct image from modified gradients Note: work in log-domain Gradients in log-domain correspond to ratios of luminance Local contrast Gradient domain tone mapping Visualization using one scanline Horizontal scale not consistent HDR input Log domain Gradients Attenuated Reconstruction LDR output gradients (log domain) Gradient attenuation Multiply gradients with attenuation function Attenuated gradients denoted G Gradient attenuation function Gradients of magnitude unchanged Gradients larger than attenuated, given < 1 To capture edges on all scales, compute gradients at different resolutions k Final attenuation factor is multiplication over all resolutions 6

7 Reconstruction Solve poisson problem I =divg Unknown image I Attenuated gradients G Laplacian I = I x + I y Divergence div G Gx x Gy x + y y Neumann Boundary conditions Directional derivative perpendicular to boundary is zero I n =0 Note: compression & reconstruction operates on luminance only Gradient attenuation function Input Gradient attenuation function Color to gray conversion Gooch et al., ColorGray: Salience- Preserving Color Removal, SIGGRAPH Observation: luminance based conversion may miss perceptually important detail Ward et al Gradient domain tone mapping Input Photoshop conversion (005) Salience preservation Approach 1. Convert image to perceptually uniform color space (CIE L*a*b*). Extract salience from chrominance and luminance differences 3. Reconstruct grayscale image that matches target differences Extracting salience Salience represented as target difference ij between pixels i and j Function of both luminance and chrominance differences Details see paper 7

8 Reconstruction Find grayscale pixel values g i by minimizing Difference in grayscale value corresponds to target t difference as much as possible Similar to Poisson equation, but not same! Paper proposes to use all pixel pairs i,j in image I.e., K contains all image pixels Input Photoshop colorgray Input Photoshop colorgray Conclusions Various image manipulation tasks achieved by modifying image gradients Copy & paste, tone mapping, color-to-gray Advantage: specify desired relations (differences) e between pixels, instead of pixel values Need to reconstruct output from modified gradients Poisson equation, or equivalently, linear least squares problem Efficient algorithms exist Next time More image manipulation using optimization 8

Contents. I The Basic Framework for Stationary Problems 1

Contents. I The Basic Framework for Stationary Problems 1 page v Preface xiii I The Basic Framework for Stationary Problems 1 1 Some model PDEs 3 1.1 Laplace s equation; elliptic BVPs... 3 1.1.1 Physical experiments modeled by Laplace s equation... 5 1.2 Other

More information

AMS527: Numerical Analysis II

AMS527: Numerical Analysis II AMS527: Numerical Analysis II A Brief Overview of Finite Element Methods Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao SUNY Stony Brook AMS527: Numerical Analysis II 1 / 25 Overview Basic concepts Mathematical

More information

Introduction to Computer Graphics. Image Processing (1) June 8, 2017 Kenshi Takayama

Introduction to Computer Graphics. Image Processing (1) June 8, 2017 Kenshi Takayama Introduction to Computer Graphics Image Processing (1) June 8, 2017 Kenshi Takayama Today s topics Edge-aware image processing Gradient-domain image processing 2 Image smoothing using Gaussian Filter Smoothness

More information

COMPUTER VISION > OPTICAL FLOW UTRECHT UNIVERSITY RONALD POPPE

COMPUTER VISION > OPTICAL FLOW UTRECHT UNIVERSITY RONALD POPPE COMPUTER VISION 2017-2018 > OPTICAL FLOW UTRECHT UNIVERSITY RONALD POPPE OUTLINE Optical flow Lucas-Kanade Horn-Schunck Applications of optical flow Optical flow tracking Histograms of oriented flow Assignment

More information

Assignment 4: Seamless Editing

Assignment 4: Seamless Editing Assignment 4: Seamless Editing - EE Affiliate I. INTRODUCTION This assignment discusses and eventually implements the techniques of seamless cloning as detailed in the research paper [1]. First, a summary

More information

Filtering Images. Contents

Filtering Images. Contents Image Processing and Data Visualization with MATLAB Filtering Images Hansrudi Noser June 8-9, 010 UZH, Multimedia and Robotics Summer School Noise Smoothing Filters Sigmoid Filters Gradient Filters Contents

More information

Puffin User Manual. March 1, Johan Hoffman and Anders Logg.

Puffin User Manual. March 1, Johan Hoffman and Anders Logg. Puffin User Manual March 1, 2006 Johan Hoffman and Anders Logg www.fenics.org Visit http://www.fenics.org/ for the latest version of this manual. Send comments and suggestions to puffin-dev@fenics.org.

More information

Edge and local feature detection - 2. Importance of edge detection in computer vision

Edge and local feature detection - 2. Importance of edge detection in computer vision Edge and local feature detection Gradient based edge detection Edge detection by function fitting Second derivative edge detectors Edge linking and the construction of the chain graph Edge and local feature

More information

DEEP LEARNING OF COMPRESSED SENSING OPERATORS WITH STRUCTURAL SIMILARITY (SSIM) LOSS

DEEP LEARNING OF COMPRESSED SENSING OPERATORS WITH STRUCTURAL SIMILARITY (SSIM) LOSS DEEP LEARNING OF COMPRESSED SENSING OPERATORS WITH STRUCTURAL SIMILARITY (SSIM) LOSS ABSTRACT Compressed sensing (CS) is a signal processing framework for efficiently reconstructing a signal from a small

More information

Edge Detection. CSE 576 Ali Farhadi. Many slides from Steve Seitz and Larry Zitnick

Edge Detection. CSE 576 Ali Farhadi. Many slides from Steve Seitz and Larry Zitnick Edge Detection CSE 576 Ali Farhadi Many slides from Steve Seitz and Larry Zitnick Edge Attneave's Cat (1954) Origin of edges surface normal discontinuity depth discontinuity surface color discontinuity

More information

Biomedical Image Analysis. Point, Edge and Line Detection

Biomedical Image Analysis. Point, Edge and Line Detection Biomedical Image Analysis Point, Edge and Line Detection Contents: Point and line detection Advanced edge detection: Canny Local/regional edge processing Global processing: Hough transform BMIA 15 V. Roth

More information

Panoramic Image Stitching

Panoramic Image Stitching Mcgill University Panoramic Image Stitching by Kai Wang Pengbo Li A report submitted in fulfillment for the COMP 558 Final project in the Faculty of Computer Science April 2013 Mcgill University Abstract

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 WRI C225 Lecture 04 130131 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Histogram Equalization Image Filtering Linear

More information

Image Composition. COS 526 Princeton University

Image Composition. COS 526 Princeton University Image Composition COS 526 Princeton University Modeled after lecture by Alexei Efros. Slides by Efros, Durand, Freeman, Hays, Fergus, Lazebnik, Agarwala, Shamir, and Perez. Image Composition Jurassic Park

More information

Image Manipulation in MATLAB Due Monday, July 17 at 5:00 PM

Image Manipulation in MATLAB Due Monday, July 17 at 5:00 PM Image Manipulation in MATLAB Due Monday, July 17 at 5:00 PM 1 Instructions Labs may be done in groups of 2 or 3 (i.e., not alone). You may use any programming language you wish but MATLAB is highly suggested.

More information

Blending and Compositing

Blending and Compositing 09/26/17 Blending and Compositing Computational Photography Derek Hoiem, University of Illinois hybridimage.m pyramids.m Project 1: issues Basic tips Display/save Laplacian images using mat2gray or imagesc

More information

Smoothing & Fairing. Mario Botsch

Smoothing & Fairing. Mario Botsch Smoothing & Fairing Mario Botsch Motivation Filter out high frequency noise Desbrun, Meyer, Schroeder, Barr: Implicit Fairing of Irregular Meshes using Diffusion and Curvature Flow, SIGGRAPH 99 2 Motivation

More information

Non-Rigid Image Registration III

Non-Rigid Image Registration III Non-Rigid Image Registration III CS6240 Multimedia Analysis Leow Wee Kheng Department of Computer Science School of Computing National University of Singapore Leow Wee Kheng (CS6240) Non-Rigid Image Registration

More information

Classification of image operations. Image enhancement (GW-Ch. 3) Point operations. Neighbourhood operation

Classification of image operations. Image enhancement (GW-Ch. 3) Point operations. Neighbourhood operation Image enhancement (GW-Ch. 3) Classification of image operations Process of improving image quality so that the result is more suitable for a specific application. contrast stretching histogram processing

More information

Image Enhancement in Spatial Domain (Chapter 3)

Image Enhancement in Spatial Domain (Chapter 3) Image Enhancement in Spatial Domain (Chapter 3) Yun Q. Shi shi@njit.edu Fall 11 Mask/Neighborhood Processing ECE643 2 1 Point Processing ECE643 3 Image Negatives S = (L 1) - r (3.2-1) Point processing

More information

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier Computer Vision 2 SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung Computer Vision 2 Dr. Benjamin Guthier 1. IMAGE PROCESSING Computer Vision 2 Dr. Benjamin Guthier Content of this Chapter Non-linear

More information

Digital Image Processing. Image Enhancement - Filtering

Digital Image Processing. Image Enhancement - Filtering Digital Image Processing Image Enhancement - Filtering Derivative Derivative is defined as a rate of change. Discrete Derivative Finite Distance Example Derivatives in 2-dimension Derivatives of Images

More information

Lecture 7: Most Common Edge Detectors

Lecture 7: Most Common Edge Detectors #1 Lecture 7: Most Common Edge Detectors Saad Bedros sbedros@umn.edu Edge Detection Goal: Identify sudden changes (discontinuities) in an image Intuitively, most semantic and shape information from the

More information

Image Transformation Techniques Dr. Rajeev Srivastava Dept. of Computer Engineering, ITBHU, Varanasi

Image Transformation Techniques Dr. Rajeev Srivastava Dept. of Computer Engineering, ITBHU, Varanasi Image Transformation Techniques Dr. Rajeev Srivastava Dept. of Computer Engineering, ITBHU, Varanasi 1. Introduction The choice of a particular transform in a given application depends on the amount of

More information

Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong)

Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong) Biometrics Technology: Image Processing & Pattern Recognition (by Dr. Dickson Tong) References: [1] http://homepages.inf.ed.ac.uk/rbf/hipr2/index.htm [2] http://www.cs.wisc.edu/~dyer/cs540/notes/vision.html

More information

1.2 Numerical Solutions of Flow Problems

1.2 Numerical Solutions of Flow Problems 1.2 Numerical Solutions of Flow Problems DIFFERENTIAL EQUATIONS OF MOTION FOR A SIMPLIFIED FLOW PROBLEM Continuity equation for incompressible flow: 0 Momentum (Navier-Stokes) equations for a Newtonian

More information

Digital Image Processing. Prof. P. K. Biswas. Department of Electronic & Electrical Communication Engineering

Digital Image Processing. Prof. P. K. Biswas. Department of Electronic & Electrical Communication Engineering Digital Image Processing Prof. P. K. Biswas Department of Electronic & Electrical Communication Engineering Indian Institute of Technology, Kharagpur Lecture - 21 Image Enhancement Frequency Domain Processing

More information

Image warping , , Computational Photography Fall 2017, Lecture 10

Image warping , , Computational Photography Fall 2017, Lecture 10 Image warping http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 10 Course announcements Second make-up lecture on Friday, October 6 th, noon-1:30

More information

Edge Detection. EE/CSE 576 Linda Shapiro

Edge Detection. EE/CSE 576 Linda Shapiro Edge Detection EE/CSE 576 Linda Shapiro Edge Attneave's Cat (1954) 2 Origin of edges surface normal discontinuity depth discontinuity surface color discontinuity illumination discontinuity Edges are caused

More information

Haar Wavelet Image Compression

Haar Wavelet Image Compression Math 57 Haar Wavelet Image Compression. Preliminaries Haar wavelet compression is an efficient way to perform both lossless and lossy image compression. It relies on averaging and differencing the values

More information

1 2 (3 + x 3) x 2 = 1 3 (3 + x 1 2x 3 ) 1. 3 ( 1 x 2) (3 + x(0) 3 ) = 1 2 (3 + 0) = 3. 2 (3 + x(0) 1 2x (0) ( ) = 1 ( 1 x(0) 2 ) = 1 3 ) = 1 3

1 2 (3 + x 3) x 2 = 1 3 (3 + x 1 2x 3 ) 1. 3 ( 1 x 2) (3 + x(0) 3 ) = 1 2 (3 + 0) = 3. 2 (3 + x(0) 1 2x (0) ( ) = 1 ( 1 x(0) 2 ) = 1 3 ) = 1 3 6 Iterative Solvers Lab Objective: Many real-world problems of the form Ax = b have tens of thousands of parameters Solving such systems with Gaussian elimination or matrix factorizations could require

More information

What will we learn? Neighborhood processing. Convolution and correlation. Neighborhood processing. Chapter 10 Neighborhood Processing

What will we learn? Neighborhood processing. Convolution and correlation. Neighborhood processing. Chapter 10 Neighborhood Processing What will we learn? Lecture Slides ME 4060 Machine Vision and Vision-based Control Chapter 10 Neighborhood Processing By Dr. Debao Zhou 1 What is neighborhood processing and how does it differ from point

More information

Machine Learning for Signal Processing Lecture 4: Optimization

Machine Learning for Signal Processing Lecture 4: Optimization Machine Learning for Signal Processing Lecture 4: Optimization 13 Sep 2015 Instructor: Bhiksha Raj (slides largely by Najim Dehak, JHU) 11-755/18-797 1 Index 1. The problem of optimization 2. Direct optimization

More information

APPM 2360 Project 2 Due Nov. 3 at 5:00 PM in D2L

APPM 2360 Project 2 Due Nov. 3 at 5:00 PM in D2L APPM 2360 Project 2 Due Nov. 3 at 5:00 PM in D2L 1 Introduction Digital images are stored as matrices of pixels. For color images, the matrix contains an ordered triple giving the RGB color values at each

More information

CS-465 Computer Vision

CS-465 Computer Vision CS-465 Computer Vision Nazar Khan PUCIT 9. Optic Flow Optic Flow Nazar Khan Computer Vision 2 / 25 Optic Flow Nazar Khan Computer Vision 3 / 25 Optic Flow Where does pixel (x, y) in frame z move to in

More information

ME/CS 132: Introduction to Vision-based Robot Navigation! Low-level Image Processing" Larry Matthies"

ME/CS 132: Introduction to Vision-based Robot Navigation! Low-level Image Processing Larry Matthies ME/CS 132: Introduction to Vision-based Robot Navigation! Low-level Image Processing" Larry Matthies" lhm@jpl.nasa.gov, 818-354-3722" Announcements" First homework grading is done! Second homework is due

More information

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections REVIEW I MATH 254 Calculus IV Exam I (Friday, April 29 will cover sections 14.1-8. 1. Functions of multivariables The definition of multivariable functions is similar to that of functions of one variable.

More information

Chapter 3: Intensity Transformations and Spatial Filtering

Chapter 3: Intensity Transformations and Spatial Filtering Chapter 3: Intensity Transformations and Spatial Filtering 3.1 Background 3.2 Some basic intensity transformation functions 3.3 Histogram processing 3.4 Fundamentals of spatial filtering 3.5 Smoothing

More information

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier

Computer Vision 2. SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung. Computer Vision 2 Dr. Benjamin Guthier Computer Vision 2 SS 18 Dr. Benjamin Guthier Professur für Bildverarbeitung Computer Vision 2 Dr. Benjamin Guthier 3. HIGH DYNAMIC RANGE Computer Vision 2 Dr. Benjamin Guthier Pixel Value Content of this

More information

Fundamentals of Digital Image Processing

Fundamentals of Digital Image Processing \L\.6 Gw.i Fundamentals of Digital Image Processing A Practical Approach with Examples in Matlab Chris Solomon School of Physical Sciences, University of Kent, Canterbury, UK Toby Breckon School of Engineering,

More information

(Sparse) Linear Solvers

(Sparse) Linear Solvers (Sparse) Linear Solvers Ax = B Why? Many geometry processing applications boil down to: solve one or more linear systems Parameterization Editing Reconstruction Fairing Morphing 2 Don t you just invert

More information

Parallel Performance Studies for COMSOL Multiphysics Using Scripting and Batch Processing

Parallel Performance Studies for COMSOL Multiphysics Using Scripting and Batch Processing Parallel Performance Studies for COMSOL Multiphysics Using Scripting and Batch Processing Noemi Petra and Matthias K. Gobbert Department of Mathematics and Statistics, University of Maryland, Baltimore

More information

Core Mathematics 3 Functions

Core Mathematics 3 Functions http://kumarmaths.weebly.com/ Core Mathematics 3 Functions Core Maths 3 Functions Page 1 Functions C3 The specifications suggest that you should be able to do the following: Understand the definition of

More information

Feature Preserving Depth Compression of Range Images

Feature Preserving Depth Compression of Range Images Feature Preserving Depth Compression of Range Images Jens Kerber Alexander Belyaev Hans-Peter Seidel MPI Informatik, Saarbrücken, Germany Figure 1: A Photograph of the angel statue; Range image of angel

More information

smooth coefficients H. Köstler, U. Rüde

smooth coefficients H. Köstler, U. Rüde A robust multigrid solver for the optical flow problem with non- smooth coefficients H. Köstler, U. Rüde Overview Optical Flow Problem Data term and various regularizers A Robust Multigrid Solver Galerkin

More information

Spectral Compression of Mesh Geometry

Spectral Compression of Mesh Geometry Spectral Compression of Mesh Geometry Zachi Karni, Craig Gotsman SIGGRAPH 2000 1 Introduction Thus far, topology coding drove geometry coding. Geometric data contains far more information (15 vs. 3 bits/vertex).

More information

Partial Differential Equations

Partial Differential Equations Simulation in Computer Graphics Partial Differential Equations Matthias Teschner Computer Science Department University of Freiburg Motivation various dynamic effects and physical processes are described

More information

A Modified Spline Interpolation Method for Function Reconstruction from Its Zero-Crossings

A Modified Spline Interpolation Method for Function Reconstruction from Its Zero-Crossings Scientific Papers, University of Latvia, 2010. Vol. 756 Computer Science and Information Technologies 207 220 P. A Modified Spline Interpolation Method for Function Reconstruction from Its Zero-Crossings

More information

Color Me Right Seamless Image Compositing

Color Me Right Seamless Image Compositing Color Me Right Seamless Image Compositing Dong Guo and Terence Sim School of Computing National University of Singapore Singapore, 117417 Abstract. This paper introduces an approach of creating an image

More information

MAT 275 Laboratory 2 Matrix Computations and Programming in MATLAB

MAT 275 Laboratory 2 Matrix Computations and Programming in MATLAB MATLAB sessions: Laboratory MAT 75 Laboratory Matrix Computations and Programming in MATLAB In this laboratory session we will learn how to. Create and manipulate matrices and vectors.. Write simple programs

More information

1. Show that the rectangle of maximum area that has a given perimeter p is a square.

1. Show that the rectangle of maximum area that has a given perimeter p is a square. Constrained Optimization - Examples - 1 Unit #23 : Goals: Lagrange Multipliers To study constrained optimization; that is, the maximizing or minimizing of a function subject to a constraint (or side condition).

More information

Chapter 11 Image Processing

Chapter 11 Image Processing Chapter Image Processing Low-level Image Processing Operates directly on a stored image to improve or enhance it. Stored image consists of a two-dimensional array of pixels (picture elements): Origin (0,

More information

Mixture Models and EM

Mixture Models and EM Mixture Models and EM Goal: Introduction to probabilistic mixture models and the expectationmaximization (EM) algorithm. Motivation: simultaneous fitting of multiple model instances unsupervised clustering

More information

Digital Image Processing (CS/ECE 545) Lecture 5: Edge Detection (Part 2) & Corner Detection

Digital Image Processing (CS/ECE 545) Lecture 5: Edge Detection (Part 2) & Corner Detection Digital Image Processing (CS/ECE 545) Lecture 5: Edge Detection (Part 2) & Corner Detection Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) Recall: Edge Detection Image processing

More information

Segmentation and Grouping

Segmentation and Grouping Segmentation and Grouping How and what do we see? Fundamental Problems ' Focus of attention, or grouping ' What subsets of pixels do we consider as possible objects? ' All connected subsets? ' Representation

More information

Image gradients and edges April 11 th, 2017

Image gradients and edges April 11 th, 2017 4//27 Image gradients and edges April th, 27 Yong Jae Lee UC Davis PS due this Friday Announcements Questions? 2 Last time Image formation Linear filters and convolution useful for Image smoothing, removing

More information

2 T. x + 2 T. , T( x, y = 0) = T 1

2 T. x + 2 T. , T( x, y = 0) = T 1 LAB 2: Conduction with Finite Difference Method Objective: The objective of this laboratory is to introduce the basic steps needed to numerically solve a steady state two-dimensional conduction problem

More information

Motion. 1 Introduction. 2 Optical Flow. Sohaib A Khan. 2.1 Brightness Constancy Equation

Motion. 1 Introduction. 2 Optical Flow. Sohaib A Khan. 2.1 Brightness Constancy Equation Motion Sohaib A Khan 1 Introduction So far, we have dealing with single images of a static scene taken by a fixed camera. Here we will deal with sequence of images taken at different time intervals. Motion

More information

Video 11.1 Vijay Kumar. Property of University of Pennsylvania, Vijay Kumar

Video 11.1 Vijay Kumar. Property of University of Pennsylvania, Vijay Kumar Video 11.1 Vijay Kumar 1 Smooth three dimensional trajectories START INT. POSITION INT. POSITION GOAL Applications Trajectory generation in robotics Planning trajectories for quad rotors 2 Motion Planning

More information

Mariya Zhariy. Uttendorf Introduction to Optical Flow. Mariya Zhariy. Introduction. Determining. Optical Flow. Results. Motivation Definition

Mariya Zhariy. Uttendorf Introduction to Optical Flow. Mariya Zhariy. Introduction. Determining. Optical Flow. Results. Motivation Definition to Constraint to Uttendorf 2005 Contents to Constraint 1 Contents to Constraint 1 2 Constraint Contents to Constraint 1 2 Constraint 3 Visual cranial reflex(vcr)(?) to Constraint Rapidly changing scene

More information

Image gradients and edges April 10 th, 2018

Image gradients and edges April 10 th, 2018 Image gradients and edges April th, 28 Yong Jae Lee UC Davis PS due this Friday Announcements Questions? 2 Last time Image formation Linear filters and convolution useful for Image smoothing, removing

More information

Perceptual Effects in Real-time Tone Mapping

Perceptual Effects in Real-time Tone Mapping Perceptual Effects in Real-time Tone Mapping G. Krawczyk K. Myszkowski H.-P. Seidel Max-Planck-Institute für Informatik Saarbrücken, Germany SCCG 2005 High Dynamic Range (HDR) HDR Imaging Display of HDR

More information

Recap from Monday. Frequency domain analytical tool computational shortcut compression tool

Recap from Monday. Frequency domain analytical tool computational shortcut compression tool Recap from Monday Frequency domain analytical tool computational shortcut compression tool Fourier Transform in 2d in Matlab, check out: imagesc(log(abs(fftshift(fft2(im))))); Image Blending (Szeliski

More information

Discontinuous Galerkin Sparse Grid method for Maxwell s equations

Discontinuous Galerkin Sparse Grid method for Maxwell s equations Discontinuous Galerkin Sparse Grid method for Maxwell s equations Student: Tianyang Wang Mentor: Dr. Lin Mu, Dr. David L.Green, Dr. Ed D Azevedo, Dr. Kwai Wong Motivation u We consider the Maxwell s equations,

More information

Inverse and Implicit functions

Inverse and Implicit functions CHAPTER 3 Inverse and Implicit functions. Inverse Functions and Coordinate Changes Let U R d be a domain. Theorem. (Inverse function theorem). If ϕ : U R d is differentiable at a and Dϕ a is invertible,

More information

Performance Studies for the Two-Dimensional Poisson Problem Discretized by Finite Differences

Performance Studies for the Two-Dimensional Poisson Problem Discretized by Finite Differences Performance Studies for the Two-Dimensional Poisson Problem Discretized by Finite Differences Jonas Schäfer Fachbereich für Mathematik und Naturwissenschaften, Universität Kassel Abstract In many areas,

More information

Parameterization of Meshes

Parameterization of Meshes 2-Manifold Parameterization of Meshes What makes for a smooth manifold? locally looks like Euclidian space collection of charts mutually compatible on their overlaps form an atlas Parameterizations are

More information

CS143 Introduction to Computer Vision Homework assignment 1.

CS143 Introduction to Computer Vision Homework assignment 1. CS143 Introduction to Computer Vision Homework assignment 1. Due: Problem 1 & 2 September 23 before Class Assignment 1 is worth 15% of your total grade. It is graded out of a total of 100 (plus 15 possible

More information

Lagrange multipliers. Contents. Introduction. From Wikipedia, the free encyclopedia

Lagrange multipliers. Contents. Introduction. From Wikipedia, the free encyclopedia Lagrange multipliers From Wikipedia, the free encyclopedia In mathematical optimization problems, Lagrange multipliers, named after Joseph Louis Lagrange, is a method for finding the local extrema of a

More information

RATE DISTORTION OPTIMIZED TONE CURVE FOR HIGH DYNAMIC RANGE COMPRESSION

RATE DISTORTION OPTIMIZED TONE CURVE FOR HIGH DYNAMIC RANGE COMPRESSION RATE DISTORTION OPTIMIZED TONE CURVE FOR HIGH DYNAMIC RANGE COMPRESSION Mikaël Le Pendu 1,2, Christine Guillemot 1 and Dominique Thoreau 2 1 INRIA 2 Technicolor Campus de Beaulieu, 5042 Rennes Cedex France

More information

Computer Vision I - Filtering and Feature detection

Computer Vision I - Filtering and Feature detection Computer Vision I - Filtering and Feature detection Carsten Rother 30/10/2015 Computer Vision I: Basics of Image Processing Roadmap: Basics of Digital Image Processing Computer Vision I: Basics of Image

More information

HIGH DYNAMIC RANGE IMAGE TONE MAPPING BY OPTIMIZING TONE MAPPED IMAGE QUALITY INDEX

HIGH DYNAMIC RANGE IMAGE TONE MAPPING BY OPTIMIZING TONE MAPPED IMAGE QUALITY INDEX HIGH DYNAMIC RANGE IMAGE TONE MAPPING BY OPTIMIZING TONE MAPPED IMAGE QUALITY INDEX Kede Ma, Hojatollah Yeganeh, Kai Zeng and Zhou Wang Department of ECE, University of Waterloo July 17, 2014 2 / 32 Outline

More information

(Sparse) Linear Solvers

(Sparse) Linear Solvers (Sparse) Linear Solvers Ax = B Why? Many geometry processing applications boil down to: solve one or more linear systems Parameterization Editing Reconstruction Fairing Morphing 1 Don t you just invert

More information

MAT 275 Laboratory 2 Matrix Computations and Programming in MATLAB

MAT 275 Laboratory 2 Matrix Computations and Programming in MATLAB MATLAB sessions: Laboratory MAT 75 Laboratory Matrix Computations and Programming in MATLAB In this laboratory session we will learn how to. Create and manipulate matrices and vectors.. Write simple programs

More information

The numerical simulation of complex PDE problems. A numerical simulation project The finite element method for solving a boundary-value problem in R 2

The numerical simulation of complex PDE problems. A numerical simulation project The finite element method for solving a boundary-value problem in R 2 Universidad de Chile The numerical simulation of complex PDE problems Facultad de Ciencias Físicas y Matemáticas P. Frey, M. De Buhan Year 2008 MA691 & CC60X A numerical simulation project The finite element

More information

C E N T E R A T H O U S T O N S C H O O L of H E A L T H I N F O R M A T I O N S C I E N C E S. Image Operations II

C E N T E R A T H O U S T O N S C H O O L of H E A L T H I N F O R M A T I O N S C I E N C E S. Image Operations II T H E U N I V E R S I T Y of T E X A S H E A L T H S C I E N C E C E N T E R A T H O U S T O N S C H O O L of H E A L T H I N F O R M A T I O N S C I E N C E S Image Operations II For students of HI 5323

More information

Comparison between Various Edge Detection Methods on Satellite Image

Comparison between Various Edge Detection Methods on Satellite Image Comparison between Various Edge Detection Methods on Satellite Image H.S. Bhadauria 1, Annapurna Singh 2, Anuj Kumar 3 Govind Ballabh Pant Engineering College ( Pauri garhwal),computer Science and Engineering

More information

x' = c 1 x + c 2 y + c 3 xy + c 4 y' = c 5 x + c 6 y + c 7 xy + c 8

x' = c 1 x + c 2 y + c 3 xy + c 4 y' = c 5 x + c 6 y + c 7 xy + c 8 1. Explain about gray level interpolation. The distortion correction equations yield non integer values for x' and y'. Because the distorted image g is digital, its pixel values are defined only at integer

More information

Conforming Vector Interpolation Functions for Polyhedral Meshes

Conforming Vector Interpolation Functions for Polyhedral Meshes Conforming Vector Interpolation Functions for Polyhedral Meshes Andrew Gillette joint work with Chandrajit Bajaj and Alexander Rand Department of Mathematics Institute of Computational Engineering and

More information

Ulrik Söderström 16 Feb Image Processing. Segmentation

Ulrik Söderström 16 Feb Image Processing. Segmentation Ulrik Söderström ulrik.soderstrom@tfe.umu.se 16 Feb 2011 Image Processing Segmentation What is Image Segmentation? To be able to extract information from an image it is common to subdivide it into background

More information

Radiosity. Johns Hopkins Department of Computer Science Course : Rendering Techniques, Professor: Jonathan Cohen

Radiosity. Johns Hopkins Department of Computer Science Course : Rendering Techniques, Professor: Jonathan Cohen Radiosity Radiosity Concept Global computation of diffuse interreflections among scene objects Diffuse lighting changes fairly slowly across a surface Break surfaces up into some number of patches Assume

More information

Wireless Communication

Wireless Communication Wireless Communication Systems @CS.NCTU Lecture 6: Image Instructor: Kate Ching-Ju Lin ( 林靖茹 ) Chap. 9 of Fundamentals of Multimedia Some reference from http://media.ee.ntu.edu.tw/courses/dvt/15f/ 1 Outline

More information

Examples. Bilateral filter. Input. Soft texture is removed

Examples. Bilateral filter. Input. Soft texture is removed A Gentle Introduction to Bilateral Filtering and its Applications Limitation? Pierre Kornprobst (INRIA) 0:20 Examples Soft texture is removed Input Bilateral filter Examples Constant regions appear Input

More information

Numerical Algorithms

Numerical Algorithms Chapter 10 Slide 464 Numerical Algorithms Slide 465 Numerical Algorithms In textbook do: Matrix multiplication Solving a system of linear equations Slide 466 Matrices A Review An n m matrix Column a 0,0

More information

Horn-Schunck and Lucas Kanade 1

Horn-Schunck and Lucas Kanade 1 Horn-Schunck and Lucas Kanade 1 Lecture 8 See Sections 4.2 and 4.3 in Reinhard Klette: Concise Computer Vision Springer-Verlag, London, 2014 1 See last slide for copyright information. 1 / 40 Where We

More information

6B Quiz Review Learning Targets ,

6B Quiz Review Learning Targets , 6B Quiz Review Learning Targets 5.10 6.3, 6.5-6.6 Key Facts Double transformations when more than one transformation is applied to a graph o You can still use our transformation rules to identify which

More information

Driven Cavity Example

Driven Cavity Example BMAppendixI.qxd 11/14/12 6:55 PM Page I-1 I CFD Driven Cavity Example I.1 Problem One of the classic benchmarks in CFD is the driven cavity problem. Consider steady, incompressible, viscous flow in a square

More information

Linear Equation Systems Iterative Methods

Linear Equation Systems Iterative Methods Linear Equation Systems Iterative Methods Content Iterative Methods Jacobi Iterative Method Gauss Seidel Iterative Method Iterative Methods Iterative methods are those that produce a sequence of successive

More information

C2: Medical Image Processing Linwei Wang

C2: Medical Image Processing Linwei Wang C2: Medical Image Processing 4005-759 Linwei Wang Content Enhancement Improve visual quality of the image When the image is too dark, too light, or has low contrast Highlight certain features of the image

More information

CS 4495 Computer Vision Motion and Optic Flow

CS 4495 Computer Vision Motion and Optic Flow CS 4495 Computer Vision Aaron Bobick School of Interactive Computing Administrivia PS4 is out, due Sunday Oct 27 th. All relevant lectures posted Details about Problem Set: You may *not* use built in Harris

More information

Sharpening through spatial filtering

Sharpening through spatial filtering Sharpening through spatial filtering Stefano Ferrari Università degli Studi di Milano stefano.ferrari@unimi.it Methods for Image Processing academic year 2017 2018 Sharpening The term sharpening is referred

More information

Optimizations and Lagrange Multiplier Method

Optimizations and Lagrange Multiplier Method Introduction Applications Goal and Objectives Reflection Questions Once an objective of any real world application is well specified as a function of its control variables, which may subject to a certain

More information

Efficient Imaging Algorithms on Many-Core Platforms

Efficient Imaging Algorithms on Many-Core Platforms Efficient Imaging Algorithms on Many-Core Platforms H. Köstler Dagstuhl, 22.11.2011 Contents Imaging Applications HDR Compression performance of PDE-based models Image Denoising performance of patch-based

More information

High Dynamic Range Imaging.

High Dynamic Range Imaging. High Dynamic Range Imaging High Dynamic Range [3] In photography, dynamic range (DR) is measured in exposure value (EV) differences or stops, between the brightest and darkest parts of the image that show

More information

CS 565 Computer Vision. Nazar Khan PUCIT Lectures 15 and 16: Optic Flow

CS 565 Computer Vision. Nazar Khan PUCIT Lectures 15 and 16: Optic Flow CS 565 Computer Vision Nazar Khan PUCIT Lectures 15 and 16: Optic Flow Introduction Basic Problem given: image sequence f(x, y, z), where (x, y) specifies the location and z denotes time wanted: displacement

More information

Analysis and extensions of the Frankle-McCann

Analysis and extensions of the Frankle-McCann Analysis and extensions of the Frankle-McCann Retinex algorithm Jounal of Electronic Image, vol.13(1), pp. 85-92, January. 2004 School of Electrical Engineering and Computer Science Kyungpook National

More information

Image Blending and Compositing NASA

Image Blending and Compositing NASA Image Blending and Compositing NASA CS194: Image Manipulation & Computational Photography Alexei Efros, UC Berkeley, Fall 2016 Image Compositing Compositing Procedure 1. Extract Sprites (e.g using Intelligent

More information

Image processing. Reading. What is an image? Brian Curless CSE 457 Spring 2017

Image processing. Reading. What is an image? Brian Curless CSE 457 Spring 2017 Reading Jain, Kasturi, Schunck, Machine Vision. McGraw-Hill, 1995. Sections 4.2-4.4, 4.5(intro), 4.5.5, 4.5.6, 5.1-5.4. [online handout] Image processing Brian Curless CSE 457 Spring 2017 1 2 What is an

More information

Lecture 6: Edge Detection

Lecture 6: Edge Detection #1 Lecture 6: Edge Detection Saad J Bedros sbedros@umn.edu Review From Last Lecture Options for Image Representation Introduced the concept of different representation or transformation Fourier Transform

More information

Filters. Advanced and Special Topics: Filters. Filters

Filters. Advanced and Special Topics: Filters. Filters Filters Advanced and Special Topics: Filters Dr. Edmund Lam Department of Electrical and Electronic Engineering The University of Hong Kong ELEC4245: Digital Image Processing (Second Semester, 2016 17)

More information